
SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

- Meets or Exceeds the Requirements of ANSI Standard EIA/TIA-232-E and ITU Recommendation V.28
- Input Resistance . . . 3 k Ω to 7 k Ω Over Full EIA/TIA-232-E Voltage Range
- Input Threshold Adjustable to Meet Fail-Safe Requirements Without Using External Components
- Built-In Hysteresis for Increased Noise Immunity
- Inverting Output Compatible With TTL
- Output With Active Pullup for Symmetrical Switching Speeds
- Standard Supply Voltages . . . 5 V or 12 V

D OR N PACKAGE (TOP VIEW)

† For function of R1, see schematic

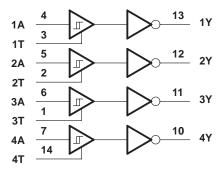
description

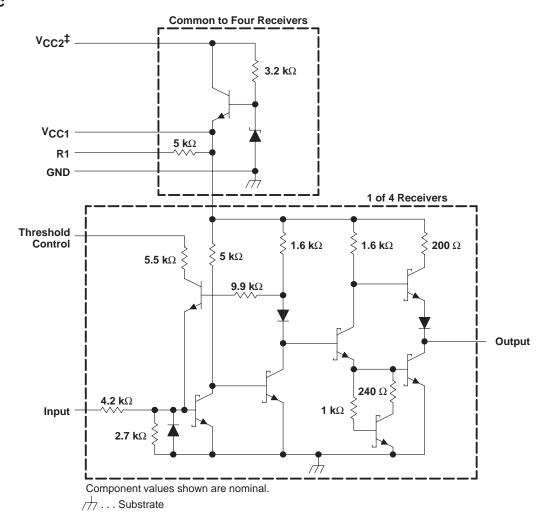
The SN75154 is a monolithic low-power Schottky line receiver designed to satisfy the requirements of the standard interface between data terminal equipment and data communication equipment as defined by ANSI Standard EIA/TIA-232-E. Other applications are for relatively short, single-line, point-to-point data transmission and for level translators. Operation is normally from a single 5-V supply; however, a built-in option allows operation from a 12-V supply without the use of additional components. The output is compatible with most TTL circuits when either supply voltage is used.

In normal operation, the threshold-control terminals are connected to the V_{CC1} terminal, even if power is being supplied via the alternate V_{CC2} terminal. This provides a wide hysteresis loop, which is the difference between the positive-going and negative-going threshold voltages. See typical characteristics. In this mode of operation, if the input voltage goes to zero, the output voltage will remain at the low or high level as determined by the previous input.

For fail-safe operation, the threshold-control terminals are open. This reduces the hysteresis loop by causing the negative-going threshold voltage to be above zero. The positive-going threshold voltage remains above zero as it is unaffected by the disposition of the threshold terminals. In the fail-safe mode, if the input voltage goes to zero or an open-circuit condition, the output will go to the high level regardless of the previous input condition.

The SN75154 is characterized for operation from 0°C to 70°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


logic symbol†

1A 13 1T THRS ADJ 5 2A 12 2 2Y **2T** 6 3A 11 **3Y 3T** 7 4A 10 4Y 14 4T

logic diagram (positive logic)

schematic

[‡] When V_{CC1} is used, V_{CC2} may be left open or shorted to V_{CC1}. When V_{CC2} is used, V_{CC1} must be left open or connected to the threshold control pins.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Norm	nal supply voltage, V _{CC1} (see Note 1)	 7 V
	nate supply voltage, V _{CC2}	
Input	voltage, V _I	 ±25 V
Conti	nuous total power dissipation	 See Dissipation Rating Table
Oper	ating free-air temperature range, TA	 0°C to 70°C
Stora	ige temperature range, T _{sta}	 65°C to 150°C
	temperature 1.6 mm (1/16 inch) from	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW
N	1150 mW	9.2 mW/°C	736 mW
NS	625 mW	5.0 mW/°C	400 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Normal supply voltage, V _{CC1}	4.5	5	5.5	V
Alternate supply voltage, V _{CC2}	10.8	12	13.2	V
High-level input voltage, VIH (see Note 2)	3		15	V
Low-level input voltage, V _{IL} (see Note 2)	-15		-3	V
High-level output current, IOH			-400	μΑ
Low-level output current, IOL			16	mA
Operating free-air temperature, T _A	0		70	°C

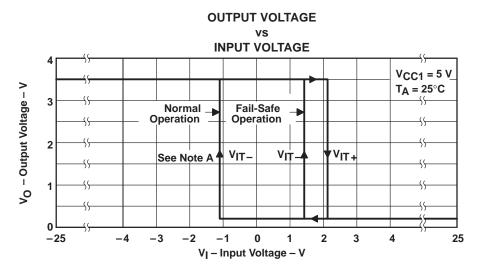
NOTE 2: The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic and threshold levels only, e.g., when 0 V is the maximum, the minimum limit is a more negative voltage.

NOTE 1: Voltage values are with respect to network GND terminal.

SLLS083B - NOVEMBER 1970 - REVISED MAY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER				TEST COND	ITIONS	MIN	TYP	MAX	UNIT	
\/	Positive-going input	ng input Normal operation				0.8	2.2	3	V	
V _{IT+}	threshold voltage	Fail-safe operation	1			0.8	2.2	3	V	
\/	Negative-going input	Normal operation	1			-3	-1.1	0	V	
VIT-	threshold voltage	Fail-safe operation	'			0.8	1.4	3	V	
\/.	Normal operation		1			0.8	3.3	6	V	
V _{hys} (V _{IT+} - V _{IT-})		Fail-safe operation	'			0	0.8	2.2	V	
Vон	High-level output voltage		1	I _{OH} = -400 μA		2.4	3.5		V	
VOL	Low-level output voltage		1	I _{OL} = 16 mA			0.29	0.4	V	
				$\Delta V_{\parallel} = -25 \text{ V to } -16$	4 V	3	5	7		
				$\Delta V_{ } = -14 \text{ V to } -3$	V	3	5	7	kΩ	
rį	Input resistance		2	$\Delta V_{I} = -3 \text{ V to } 3 \text{ V}$		3	6	8		
				$\Delta V_I = 3 V \text{ to } 14 V$		3	5	7	KS2	
				ΔV_{\parallel} = 14 V to 25 V	'	3	5	7		
V _{I(open)}	oen) Open-circuit input voltage		3	I _I = 0		0	0.2	2	V	
los	_ · · · · · · · · · · · · · · · · · · ·		4	$V_{CC1} = 5.5 \text{ V},$	$V_{I} = -5 V$	-10	-20	-40	mA	
I _{CC1}	I _{CC1} Supply current from V _{CC1}		5	$V_{CC1} = 5.5 \text{ V},$	T _A = 25°C		20	35		
I _{CC2}	Supply current from V _{CC2}		ا ا	$V_{CC2} = 13.2 \text{ V},$	T _A = 25°C		23	40	mA	


switching characteristics, V_{CC1} = 5 V, T_{A} = 25°C, N = 10

PARAMETER		TEST FIGURE	TEST CONDITION	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low- to high-level output					11		ns
tPHL	Propagation delay time, high- to low-level output	6	$C_1 = 50 \text{ pF}, R_1 = 3$	$R_L = 390 \Omega$		8		ns
tTLH	Transition time, low- to high-level output	0	CL = 50 pr,			7		ns
tTHL	Transition time, high- to low-level output					2.2		ns

[†] All typical values are at V_{CC1} = 5 V, T_A = 25°C. ‡ Not more than one output should be shorted at a time.

TYPICAL CHARACTERISTICS

NOTE A: For normal operation, the threshold controls are connected to $V_{\rm CC1}$. For fail-safe operation, the threshold controls are open.

Figure 1

PARAMETER MEASUREMENT INFORMATION

dc test circuits†

TEST TABLE

TEST	MEASURE	Α	Т	Y	V _{CC1}	V _{CC2}
Open circuit input (fail agfa)	Voн	Open	Open	IOH	4.5 V	Open
Open-circuit input (fail safe)	Voн	Open	Open	loh	Open	10.8 V
View min View min (fail acta)	Voн	0.8 V	Open	IOH	5.5 V	Open
V _{IT+} min, V _{IT-} min (fail safe)	VOH	0.8 V	Open	IOH	Open	13.2 V
Vi- min (normal)	Voн	Note A	V _{CC1}	IOH	5.5 V and T	Open
V _{IT+} min (normal)	Voн	Note A	V _{CC1}	IOH	Т	13.2 V
Viii may Vi= min (normal)	Voн	-3 V	V _{CC1}	I _{OH}	5.5 V and T	Open
V _{IL} max, V _{IT+} min (normal)	Voн	-3 V	V _{CC1}	I _{OH}	Т	13.2 V
Vullmin Vie may Vie may (fail acts)	VOL	3 V	Open	loL	4.5 V	Open
V _{IH} min, V _{IT+} max, V _{IT-} max (fail safe)	VOL	3 V	Open	loL	Open	10.8 V
Vullmin Vim may (normal)	VOL	3 V	V _{CC1}	loL	4.5 V and T	Open
V _{IH} min, V _{IT+} max (normal)	VOL	3 V	V _{CC1}	loL	Т	10.8 V
View may (normal)	VOL	Note B	VCC1	loL	5.5 V and T	Open
V _{IT} max (normal)	VOL	Note B	V _{CC1}	loL	Т	13.2 V

NOTES: A. Momentarily apply -5 V, then 0.8 V.

B. Momentarily apply 5 V, then GND.

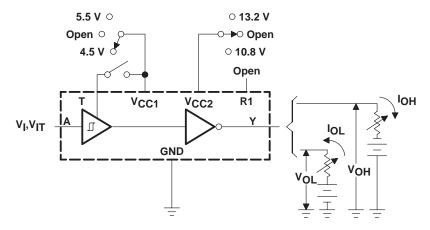
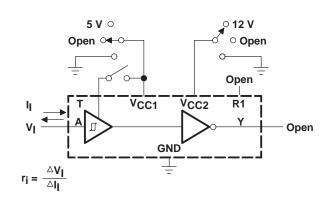
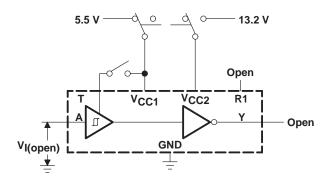



Figure 2. V_{IH}, V_{IL}, V_{IT+}, V_{IT-}, V_{OH}, V_{OL}

[†] Arrows indicate actual direction of current flow. Current into a terminal is a positive value.


PARAMETER MEASUREMENT INFORMATION

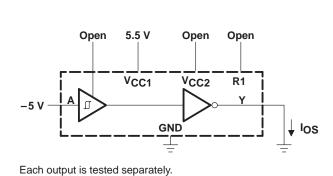
dc test circuits† (continued)

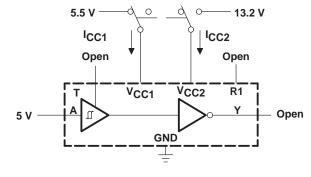
	TEST TABLE	
Т	V _{CC1}	V _{CC2}
Open	5 V	Open
Open	GND	Open
Open	Open	Open
V _{CC1}	T and 5 V	Open
GND	GND	Open
Open	Open	12 V
Open	Open	GND
V _{CC1}	Т	12 V
V _{CC1}	Т	GND
VCC1	Т	Open

Figure 3. Input Resistance

 TEST TABLE

 T
 VCC1
 VCC2


 Open
 5.5 V
 Open


 VCC1
 5.5 V
 Open

 Open
 Open
 13.2 V

 VCC1
 T
 13.2 V

Figure 4. Input Voltage (Open)

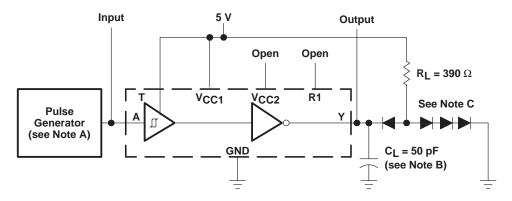
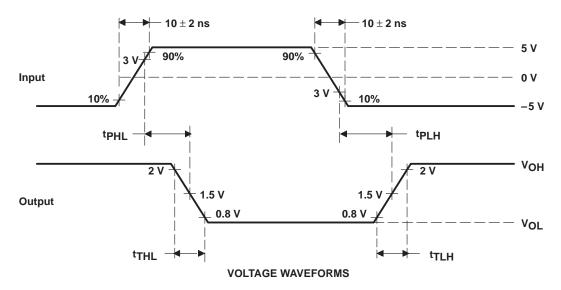

All four line receivers are tested simultaneously.

Figure 5. Output Short-Circuit Current


Figure 6. Supply Current

[†] Arrows indicate actual direction of current flow. Current into a terminal is a positive value.

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

NOTES: A. The pulse generator has the following characteristics: Z_O = 50 Ω , $t_W \le 200$ ns, duty cycle $\le 20\%$.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N3064.

Figure 6. Test Circuit and Voltage Waveforms

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN75154D	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154
SN75154D.A	Active	Production	SOIC (D) 16	40 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154
SN75154DR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154
SN75154DR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154
SN75154N	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75154N
SN75154N.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75154N
SN75154NSR	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154
SN75154NSR.A	Active	Production	SOP (NS) 16	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75154

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

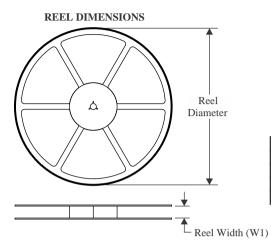
⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

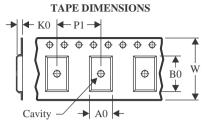
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

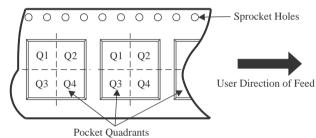
PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

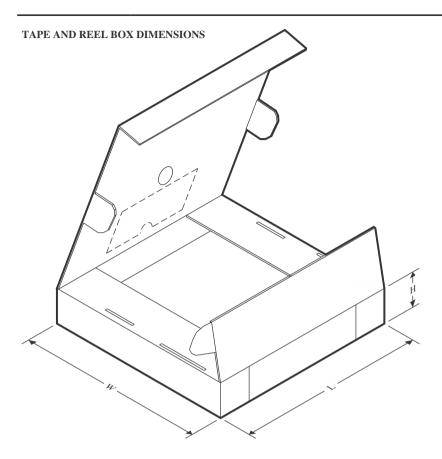
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

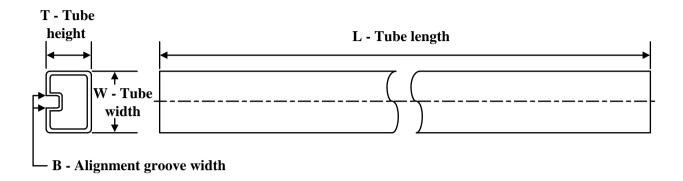


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75154DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75154NSR	SOP	NS	16	2000	330.0	16.4	8.1	10.4	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

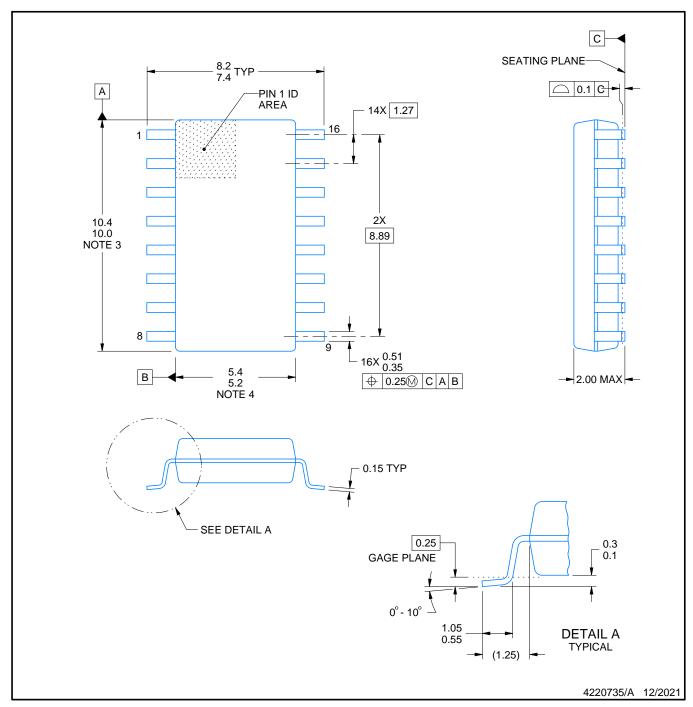

*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	SN75154DR	SOIC	D	16	2500	340.5	336.1	32.0
İ	SN75154NSR	SOP	NS	16	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

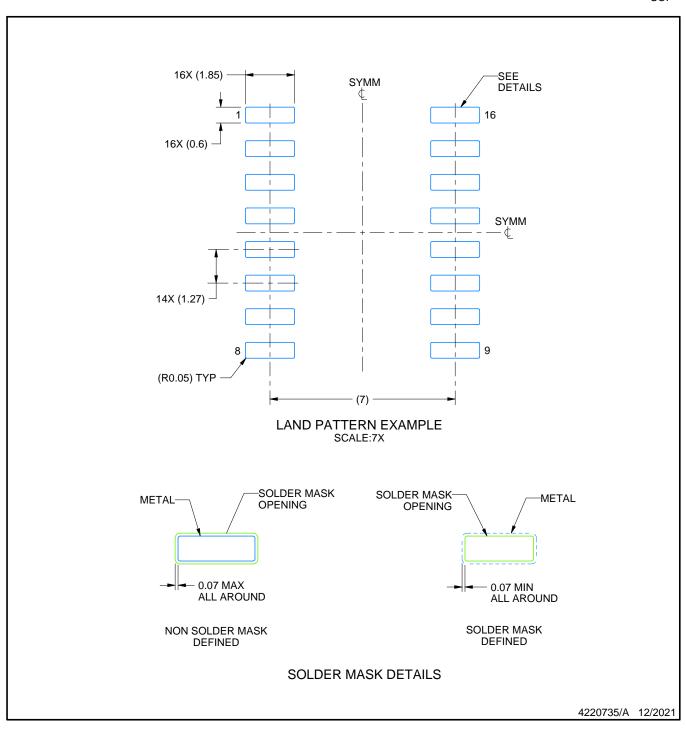


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75154D	D	SOIC	16	40	507	8	3940	4.32
SN75154D.A	D	SOIC	16	40	507	8	3940	4.32
SN75154N	N	PDIP	16	25	506	13.97	11230	4.32
SN75154N.A	N	PDIP	16	25	506	13.97	11230	4.32

SOP

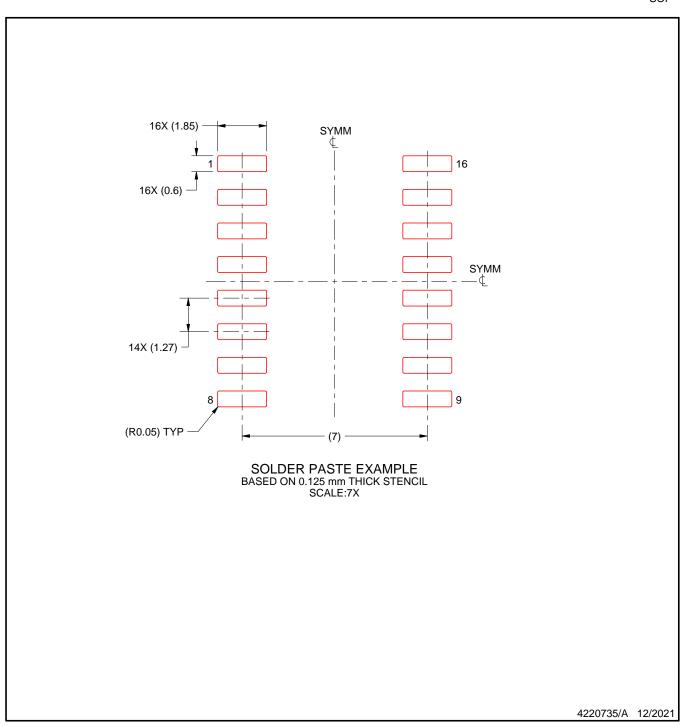
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

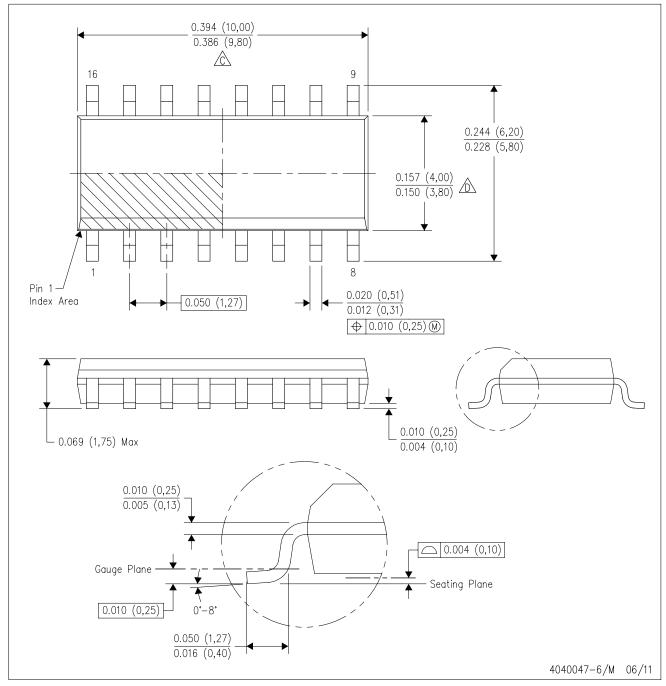
SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOF

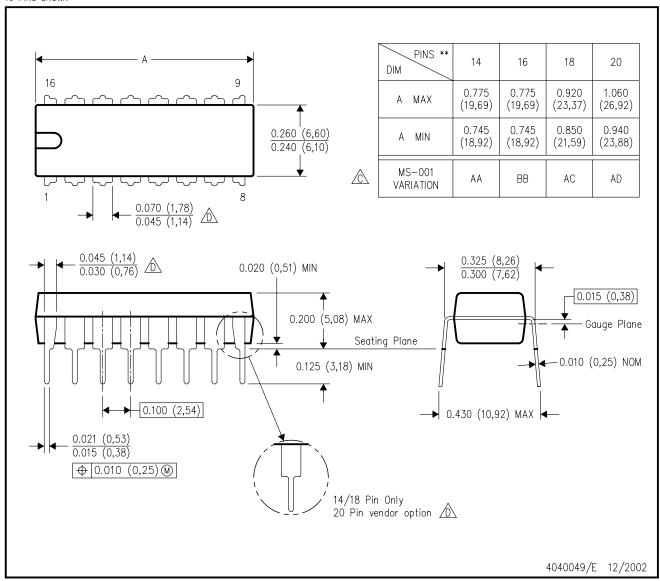

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025