








SN75158

SLLS085C - JANUARY 1977 - REVISED MARCH 2024

# DUAL DIFFERENTIAL LINE DRIVER

## 1 Features

Texas

- Meets or exceeds the requirements of ANSI EIA/ TIA-422-B and ITU recommendation V.11
- Single 5V supply
- Balanced-line operation

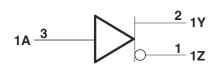
INSTRUMENTS

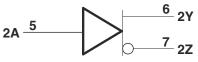
- TTL compatible
- High output impedance in power-off condition
- High-current active-pullup outputs
- Short-circuit protection
- Dual channels
- · Input clamp diodes

## 2 Applications

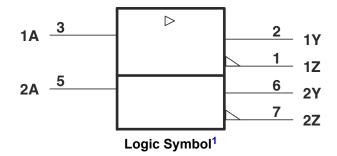
- Factory automation
- ATM and cash counters
- Smart grid
- AC and servo motor drives

## **3 Description**


The SN75158 is a dual differential line driver designed to satisfy the requirements set by the ANSI EIA/ TIA-422-B and ITU V.11 interface specifications. The outputs provide signals with high-current capability for driving balanced lines, such as twisted pair, at normal line impedance without high power dissipation. The output stages are TTL totem-pole outputs, providing a high-impedance state in the power-off condition.


The SN75158 is characterized for operation from 0°C to 70°C.

#### Package Information


| PART NUMBER | PACKAGE <sup>(1)</sup> | PACKAGE SIZE <sup>(2)</sup> |
|-------------|------------------------|-----------------------------|
|             | SOIC (D, 8)            | 4.9mm × 6mm                 |
| SN75158     | PDIP (P, 8)            | 9.81mm × 9.43mm             |
|             | SOP (PS, 8)            | 6.2mm × 7.8mm               |

- (1) For more information, see Section 8.
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.





Logic Diagram (Positive Logic)





An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.



# **Table of Contents**

| 1 Features                           | 1 |
|--------------------------------------|---|
| 2 Applications                       | 1 |
| 3 Description                        |   |
| 4 Pin Configuration and Functions    |   |
| 5 Specifications                     | 4 |
| 5.1 Absolute Maximum Ratings         | 4 |
| 5.2 Dissipation Ratings              | 4 |
| 5.3 Recommended Operating Conditions | 4 |
| 5.4 Thermal Information              | 4 |
| 5.5 Electrical Characteristics       | 5 |
| 5.6 Switching Characteristics        | 5 |

| 5.7 Typical Characteristics                         | 6    |
|-----------------------------------------------------|------|
| Parameter Measuremrnt Information                   |      |
| 6 Device and Documentation Support                  | 10   |
| 6.1 Receiving Notification of Documentation Updates | 10   |
| 6.2 Support Resources                               | . 10 |
| 6.3 Trademarks                                      | . 10 |
| 6.4 Electrostatic Discharge Caution                 | 10   |
| 6.5 Glossary                                        | 10   |
| 7 Revision History                                  | . 10 |
| 8 Mechanical, Packaging, and Orderable Information  | 10   |



## **4** Pin Configuration and Functions

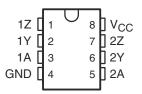



Figure 4-1. D, P, OR PS Package (Top View)

#### **Table 4-1. Pin Functions**

| PIN             |     |     | DESCRIPTION                                               |  |
|-----------------|-----|-----|-----------------------------------------------------------|--|
| NAME            | NO. |     |                                                           |  |
| 1Z              | 1   | 0   | Inverting Output of Differential Driver on Channel 1      |  |
| 1Y              | 2   | 0   | Non-Inverting Output for Differential Driver on Channel 1 |  |
| 1A              | 3   | I   | Single Ended Data Input for Channel 1                     |  |
| GND             | 4   | GND | Device Ground                                             |  |
| 2A              | 5   | I   | Single Ended Data Input for Channel 2                     |  |
| 2Y              | 6   | 0   | Non-Inverting Output for Differential Driver on Channel 2 |  |
| 2Z              | 7   | 0   | Inverting Output of Differential Driver on Channel 2      |  |
| V <sub>CC</sub> | 8   | Р   | 5V Power Supply Positive Terminal Connection              |  |

(1) Signal Types: I = Input, O = Output, I/O = Input or Output, P = Power, GND = Ground.



# **5** Specifications

## 5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

|                  |                                                        | MIN | MAX                    | UNIT |  |  |
|------------------|--------------------------------------------------------|-----|------------------------|------|--|--|
| V <sub>CC</sub>  | Supply voltage <sup>(2)</sup>                          |     | 7                      | V    |  |  |
| VI               | Input voltage range                                    |     | 5.5                    | V    |  |  |
|                  | Continuous total power dissipation                     |     | See Dissipation Rating |      |  |  |
| TJ               | Operating free-air temperature range                   | 0   | 70                     | °C   |  |  |
| T <sub>stg</sub> | Storage temperature range                              | -65 | 150                    | °C   |  |  |
|                  | Lead temperature 1,6 mm (1/16 inch) from case for 10 s |     | 260                    | °C   |  |  |

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential input voltage, are with respect to the network ground terminal.

(3) Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

### **5.2 Dissipation Ratings**

| PACKAGE | TA ≤ 25°C<br>POWER RATING | OPERATING FACTOR<br>ABOVE TA = 25°C | TA ≤ 70°C<br>POWER RATING |
|---------|---------------------------|-------------------------------------|---------------------------|
| D       | 725 mW                    | 5.8 mW/°C                           | 464 mW                    |
| Р       | 1000 mW                   | 8.0 mW/°C                           | 640 mW                    |
| PS      | 450 mW                    | 3.6 mW/°C                           | 288 mW                    |

### **5.3 Recommended Operating Conditions**

|                 |                                | MIN  | NOM   | MAX  | UNIT |
|-----------------|--------------------------------|------|-------|------|------|
| V <sub>CC</sub> | Supply voltage                 | 4.75 | 5     | 5.25 | V    |
| VIH             | High-level input voltage       | 2    |       |      | V    |
| V <sub>IL</sub> | Low-level input voltage        |      |       | 0.8  | V    |
| I <sub>OH</sub> | High-level output current      |      | · · · | -40  | mA   |
| I <sub>OL</sub> | Low-level output current       |      |       | 40   | mA   |
| T <sub>A</sub>  | Operating free-air temperature | 0    |       | 70   | °C   |

### **5.4 Thermal Information**

|                       | THERMAL METRIC <sup>(1)</sup>                | D     | Р    | PS   | UNIT |
|-----------------------|----------------------------------------------|-------|------|------|------|
|                       |                                              |       | UNIT |      |      |
| R <sub>0JA</sub>      | Junction-to-ambient thermal resistance       | 116.7 | 84.3 | 89.5 | °C/W |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 56.3  | 65.4 | 46.2 | °C/W |
| R <sub>0JB</sub>      | Junction-to-board thermal resistance         | 63.4  | 62.1 | 50.7 | °C/W |
| TLΨ                   | Junction-to-top characterization parameter   | 8.8   | 31.3 | 23.5 | °C/W |
| Ψ <sub>JB</sub>       | Junction-to-board characterization parameter | 62.6  | 60.4 | 60.3 | °C/W |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | N/A   | N/A  | N/A  | °C/W |

(1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC package thermal metrics* application report.



## **5.5 Electrical Characteristics**

over recommended ranges of supply voltage, common-mode input voltage, and operating free-air temperature (unless otherwise noted)

| PARAMETER                                                         | TEST C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TYP <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input clamp voltage                                               | V <sub>CC</sub> = MIN,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>I</sub> = –12mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| High-level output voltage                                         | $V_{CC} = MIN,$<br>$V_{IH} = 2V,$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>IL</sub> = 0.8V,<br>I <sub>OH</sub> = -40mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Low-level output voltage                                          | $V_{CC} = MIN,$<br>$V_{IH} = 2V,$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>IL</sub> = 0.8V,<br>I <sub>OH</sub> = 40mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                   | V <sub>CC</sub> = MAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>O</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 × V <sub>OD2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Differential output voltage                                       | V <sub>CC</sub> = MIN,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R <sub>L</sub> = 100Ω,<br>See Figure 6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Change in magnitude of differential output voltage <sup>(3)</sup> | V <sub>CC</sub> = MIN,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R <sub>L</sub> = 100Ω,<br>See Figure 6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Common mode output voltage(4)                                     | V <sub>CC</sub> = MAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R <sub>L</sub> = 100Ω,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Common-mode output voltage                                        | V <sub>CC</sub> = MIN,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See Figure 6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Change in magnitude of common-mode output voltage $^{(3)}$        | V <sub>CC</sub> = MIN or<br>MAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R <sub>L</sub> = 100Ω,<br>See Figure 6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>O</sub> = 6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Output current with power off                                     | V <sub>CC</sub> = 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>O</sub> = -0.25V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $V_{O}$ = -0.25 to 6V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Input current at maximum input voltage                            | V <sub>CC</sub> = MAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>I</sub> = 5.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| High-level input current                                          | V <sub>CC</sub> = MAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>I</sub> = 2.4V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Low-level input current                                           | V <sub>CC</sub> = MAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>I</sub> = 0.4V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Short-circuit output current <sup>(5)</sup>                       | V <sub>CC</sub> = MAX,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | –150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Supply current (both drivers)                                     | V <sub>CC</sub> = MAX,<br>T <sub>A</sub> = 25°C,                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inputs grounded,<br>No load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                   | Input clamp voltage      High-level output voltage      Low-level output voltage      Differential output voltage      Change in magnitude of differential output voltage <sup>(3)</sup> Common-mode output voltage <sup>(4)</sup> Change in magnitude of common-mode output voltage <sup>(3)</sup> Output current with power off      Input current at maximum input voltage      High-level input current      Low-level input current      Short-circuit output current <sup>(5)</sup> | Input clamp voltage $V_{CC} = MIN$ ,High-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ ,Low-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ ,Differential output voltage $V_{CC} = MAX$ ,<br>$V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,Change in magnitude of differential output<br>voltage(3) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,Change in magnitude of differential output<br>voltage(3) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,Common-mode output voltage(4) $V_{CC} = MAX$ ,<br>$V_{CC} = MIN$ ,Change in magnitude of common-mode output<br>voltage(3) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN,$ Output current with power off $V_{CC} = MAX$ ,<br>$MAX$ ,Input current at maximum input voltage $V_{CC} = MAX$ ,<br>$V_{CC} = MAX$ ,<br>$V_{CC} = MAX$ ,<br>$V_{CC} = MAX$ ,<br>Short-circuit output current(5) $V_{CC} = MAX$ ,<br>$V_{CC} = MAX$ , | Input clamp voltage $V_{CC} = MIN$ , $I_I = -12mA$ High-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ , $V_{IL} = 0.8V$ ,<br>$I_{OH} = -40mA$ Low-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ , $V_{IL} = 0.8V$ ,<br>$I_{OH} = 40mA$ Differential output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ , $V_{IL} = 0.8V$ ,<br>$I_{OH} = 40mA$ Differential output voltage $V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ , $V_{IL} = 0.00$ ,<br>See Figure 6-1Change in magnitude of differential output<br>voltage(3) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ , $R_L = 100\Omega$ ,<br>See Figure 6-1Common-mode output voltage(4) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ , $R_L = 100\Omega$ ,<br>See Figure 6-1Change in magnitude of common-mode output<br>voltage(3) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ , $R_L = 100\Omega$ ,<br>See Figure 6-1Output current with power off $V_{CC} = MIN$ ,<br>$V_{CC} = 0$ , $R_L = 100\Omega$ ,<br>See Figure 6-1Input current at maximum input voltage $V_{CC} = MAX$ ,<br>$V_{CC} = 0$ , $V_O = -0.25V$<br>$V_O = -0.25V$ High-level input current $V_{CC} = MAX$ ,<br>$V_{I} = 2.4V$ $V_{I} = 2.4V$ Low-level input current $V_{CC} = MAX$ ,<br>$V_{I} = 0.4V$ $V_{I} = 0.4V$ Short-circuit output current(5) $V_{CC} = MAX$ ,<br>$V_{CC} = MAX$ ,Inputs grounded, | $ \begin{array}{ c c c c c } \mbox{Input clamp voltage} & V_{CC} = MIN, & I_I = -12mA & & & \\ \mbox{V}_{IG} = low, & V_{IL} = 0.8V, & & \\ \mbox{I}_{IH} = 2V, & V_{IL} = 0.8V, & & \\ \mbox{I}_{OH} = -40mA & & & \\ \mbox{V}_{IH} = 2V, & V_{IL} = 0.8V, & & \\ \mbox{I}_{OH} = -40mA & & & \\ \mbox{V}_{IH} = 2V, & V_{IL} = 0.8V, & & \\ \mbox{I}_{OH} = 40mA & & & \\ \mbox{V}_{CC} = MIN, & V_{IL} = 0.8V, & & \\ \mbox{I}_{OH} = 40mA & & & \\ \mbox{V}_{CC} = MAX, & I_O = 0 & & \\ \mbox{V}_{CC} = MIN, & & & \\ \mbox{R}_L = 100\Omega, & & \\ \mbox{See Figure 6-1} & & \\ \mbox{Correstriation} & & \\ \mbox{V}_{CC} = MIN, & & \\ \mbox{R}_L = 100\Omega, & & \\ \mbox{See Figure 6-1} & & \\ \mbox{Correstriation} & & \\ \mbox{V}_{CC} = MIN, & & \\ \mbox{See Figure 6-1} & & \\ \mbox{Correstriation} & & \\ \m$ | Input clamp voltage $V_{CC} = MIN$ , $I_I = -12mA$ $-0.9$ High-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ , $V_{IL} = 0.8V$ ,<br>$I_{OH} = -40mA$ $2.4$ $3$ Low-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ , $V_{IL} = 0.8V$ ,<br>$I_{OH} = 40mA$ $0.2$ Differential output voltage $V_{CC} = MAX$ ,<br>$V_{IH} = 2V$ , $I_{OH} = 40mA$ $0.2$ Differential output voltage $V_{CC} = MAX$ ,<br>$V_{CC} = MAX$ ,<br>$V_{CC} = MIN$ , $R_L = 100\Omega$ ,<br>See Figure 6-1 $3$ Change in magnitude of differential output<br>voltage(3) $V_{CC} = MIN$ , $R_L = 100\Omega$ ,<br>See Figure 6-1 $\pm 0.02$ Common-mode output voltage(4) $V_{CC} = MAX$ ,<br>$V_{CC} = MIN$ , $R_L = 100\Omega$ ,<br>See Figure 6-1 $\pm 0.02$ Change in magnitude of common-mode output<br>voltage(3) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ , $R_L = 100\Omega$ ,<br>See Figure 6-1 $\pm 0.02$ Output current with power off $V_{CC} = MAX$ ,<br>$V_{CC} = 0$ , $R_L = 100\Omega$ ,<br>$V_{C} = -0.25V$ $-0.1$ Output current at maximum input voltage $V_{CC} = MAX$ ,<br>$V_C = 0$ , $V_0 = 6V$ $0.1$ Input current at maximum input voltage $V_{CC} = MAX$ ,<br>$V_C = MAX$ ,<br>$V_I = 2.4V$ $-40$ $-90$ High-level input current $V_{CC} = MAX$ ,<br>$V_C = MAX$ , $V_1 = 0.4V$ $-1$ Short-circuit output current(5) $V_{CC} = MAX$ ,<br>$V_C = MAX$ , $I_Puts$ grounded, $-40$ | Input clamp voltage $V_{CC} = MIN$ ,<br>$V_{IL} = 0.8V$ ,<br>$V_{IL} = 0.8V$ ,<br>$V_{IL} = -40mA$ $-0.9$ $-1.5$ High-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ ,<br>$V_{IH} = 2V$ ,<br>$V_{IH} = 40mA$ $2.4$ $3$ Low-level output voltage $V_{CC} = MIN$ ,<br>$V_{IH} = 2V$ ,<br>$I_{OH} = 40mA$ $2.4$ $3$ Differential output voltage $V_{CC} = MIN$ ,<br>$V_{IL} = 0.8V$ ,<br>$I_{OH} = 40mA$ $0.2$ $0.4$ Differential output voltage $V_{CC} = MAX$ ,<br>$V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,<br>$V_{CC} = MIN$ ,<br>$V_{CC} = MIN,$<br>$See Figure 6-1$ $3$ $3$ Change in magnitude of differential output<br>voltage(3) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN,$<br>$V_{CC} = MIN,$<br>$V_{CC} = MIN,$<br>$See Figure 6-1$ $\pm 0.02$ $\pm 0.4$ Common-mode output voltage(4) $V_{CC} = MIN$ ,<br>$V_{CC} = MIN,$<br>$V_{CC} = MIN,$<br>$See Figure 6-1$ $\pm 0.02$ $\pm 0.4$ Output current with power off $V_{CC} = MIN$ ,<br>$V_{CC} = 0,$ $R_L = 100\Omega$ ,<br>$See Figure 6-1$ $\pm 0.02$ $\pm 0.4$ Output current with power off $V_{CC} = MAX$ ,<br>$V_{CC} = 0,$ $V_{O} = 6V$ $0.1$ $100$ Input current at maximum input voltage $V_{CC} = MAX$ ,<br>$V_{C} = MAX$ ,<br>$V_{I} = 0.4V$ $-0.1$ $-100$ Input current (5) $V_{CC} = MAX$ ,<br>$V_{C} = MAX$ , $V_{I} = 0.4V$ $-1$ $-1.6$ Short-circuit output current (6) $V_{CC} = MAX$ ,<br>$V_{C} = MAX$ , $-40$ $-90$ $-150$ Sunch current (6) $V_{CC} = MAX$ ,<br>$V_{C} = MAX$ , $-40$ $-90$ $-150$ |

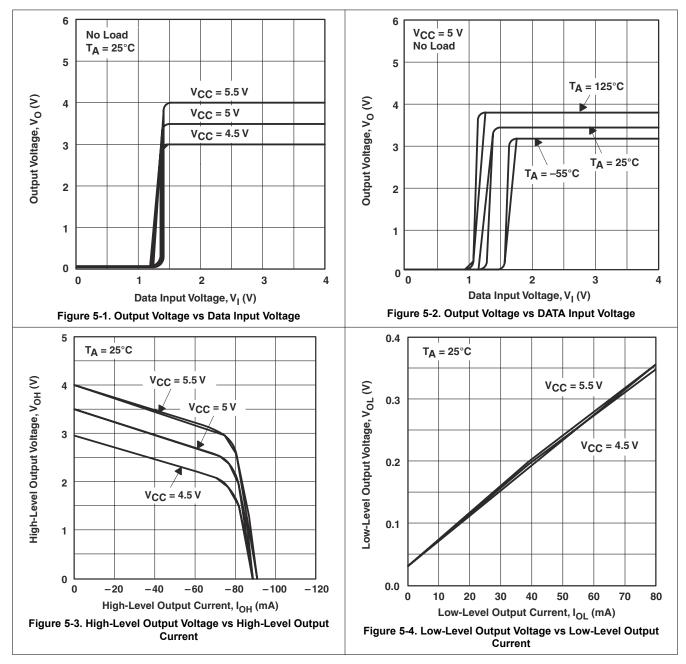
(1) For conditions shown as MIN or MAX, use the appropriate value specified under Recommended Operating Conditions.

(2) All typical values are at  $V_{CC}$  = 5 V and  $T_A$  = 25°C except for  $V_{OC}$ , for which  $V_{CC}$  is as stated under test conditions.

(3)  $\Delta V_{OD}$  and  $\Delta |V_{OC}|$  are the changes in magnitudes of  $V_{OD}$  and  $V_{OC}$ , respectively, that occur when the input is changed from a high level to a low level.

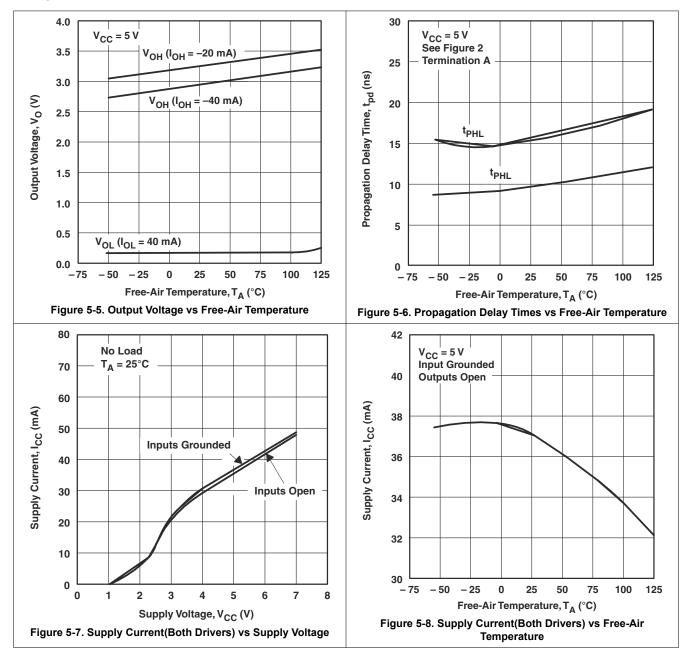
(4) In ANSI Standard EIA/TIA-422-B, V<sub>OC</sub>, which is the average of the two output voltages with respect to ground, is called output offset voltage, V<sub>OS</sub>.

(5) Only one output should be shorted at a time, and duration of the short circuit should not exceed one second.


### **5.6 Switching Characteristics**

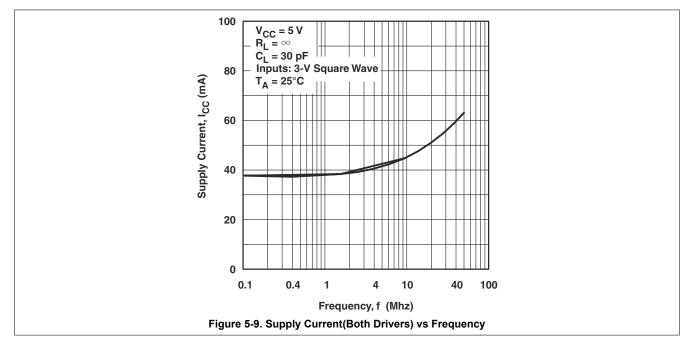
 $V_{CC} = 5V, T_A = 25^{\circ}C$ 

|                  | PARAMETER                                         | TEST C         | MIN           | TYP | MAX | UNIT |     |
|------------------|---------------------------------------------------|----------------|---------------|-----|-----|------|-----|
| t <sub>PLH</sub> | Propagation delay time, low- to high-level output | See Figure 6-2 | Termination A |     | 16  | 25   | ns  |
|                  | Propagation delay time, low- to high-level output | See Figure 0-2 | Termination B |     | 13  | 20   | 115 |
| t <sub>PHL</sub> | Propagation delay time, high- to low-level output | See Figure 6-2 | Termination A |     | 10  | 20   | 20  |
| Pro              | Propagation delay time, high- to low-level output |                | Termination B |     | 9   | 15   | ns  |
| t <sub>TLH</sub> | Transition time, low-to-high-level output         | See Figure 6-2 | Termination A |     | 4   | 20   | ns  |
| t <sub>THL</sub> | Transition time, high- to low-level output        | See Figure 6-2 | Termination A |     | 4   | 20   | ns  |
|                  | Overshoot factor                                  | See Figure 6-2 | Termination C |     |     | 10   | %   |



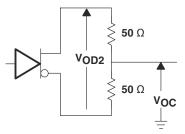

### **5.7 Typical Characteristics**



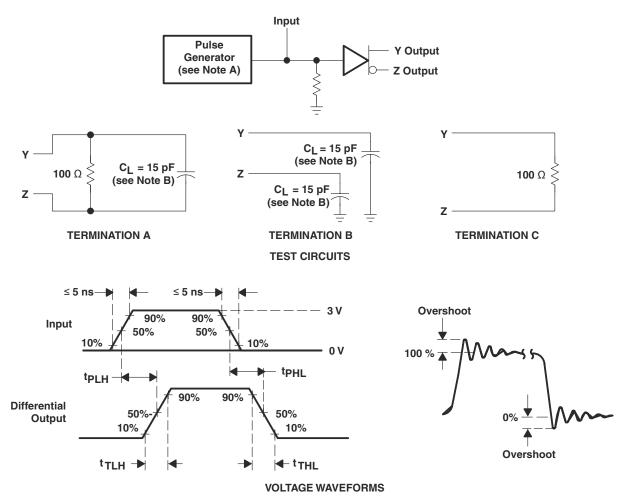



### 5.7 Typical Characteristics (continued)






## 5.7 Typical Characteristics (continued)






### **Parameter Measuremrnt Information**







A. The input pulse is supplied by a generator having the following characteristics:  $Z_0 = 50\Omega$ ,  $t_w = 25ns$ , PRR  $\leq 10$ MHz.

B. C<sub>L</sub> includes probe and jig capacitance.

Figure 6-2. Test Circuit and Voltage Waveforms



## 6 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

### 6.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 6.2 Support Resources

TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

### 6.3 Trademarks

TI E2E<sup>™</sup> is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

### 6.4 Electrostatic Discharge Caution



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 6.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

### 7 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Revision B (May 1995) to Revision C (March 2024) | Page |
|---------------------------------------------------------------|------|
|                                                               |      |

## 8 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



## PACKAGING INFORMATION

| Orderable Device | Status   | Package Type | •       | Pins | •    | Eco Plan     | Lead finish/  | MSL Peak Temp      | Op Temp (°C) | Device Marking | Samples |
|------------------|----------|--------------|---------|------|------|--------------|---------------|--------------------|--------------|----------------|---------|
|                  | (1)      |              | Drawing |      | Qty  | (2)          | Ball material | (3)                |              | (4/5)          |         |
|                  |          |              |         |      |      |              | (6)           |                    |              |                |         |
| SN75158D         | OBSOLETE | SOIC         | D       | 8    |      | TBD          | Call TI       | Call TI            | 0 to 70      | 75158          |         |
| SN75158DR        | ACTIVE   | SOIC         | D       | 8    | 2500 | RoHS & Green | NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | 75158          | Samples |
| SN75158P         | ACTIVE   | PDIP         | Р       | 8    | 50   | RoHS & Green | NIPDAU        | N / A for Pkg Type | 0 to 70      | SN75158P       | Samples |
| SN75158PSR       | ACTIVE   | SO           | PS      | 8    | 2000 | RoHS & Green | NIPDAU        | Level-1-260C-UNLIM | 0 to 70      | A158           | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

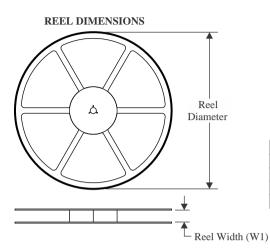
<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

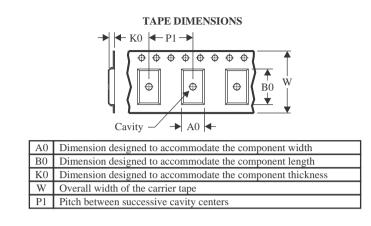
<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

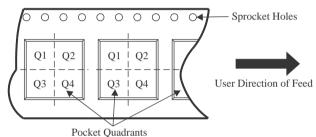


www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




Texas


STRUMENTS

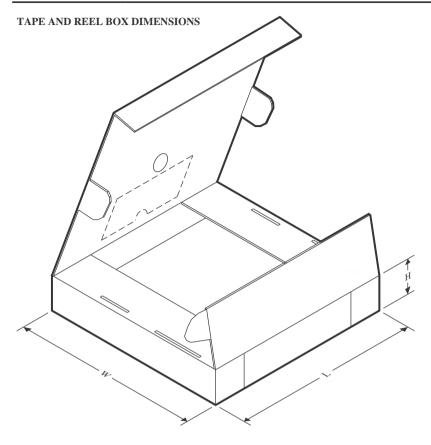
## TAPE AND REEL INFORMATION





#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




| *All dimensions are nom | inal            |                    |   |      |                          |                          |            |            |            |            |           |                  |
|-------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                  | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| SN75158DR               | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
| SN75158PSR              | SO              | PS                 | 8 | 2000 | 330.0                    | 16.4                     | 8.35       | 6.6        | 2.4        | 12.0       | 16.0      | Q1               |



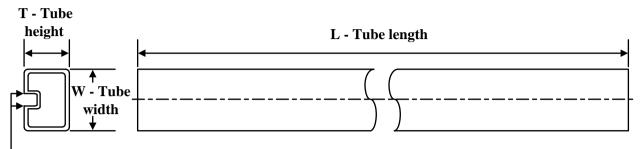
www.ti.com

# PACKAGE MATERIALS INFORMATION

9-Aug-2022



\*All dimensions are nominal


| Device     | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN75158DR  | SOIC         | D               | 8    | 2500 | 340.5       | 336.1      | 25.0        |
| SN75158PSR | SO           | PS              | 8    | 2000 | 356.0       | 356.0      | 35.0        |

## TEXAS INSTRUMENTS

www.ti.com

9-Aug-2022

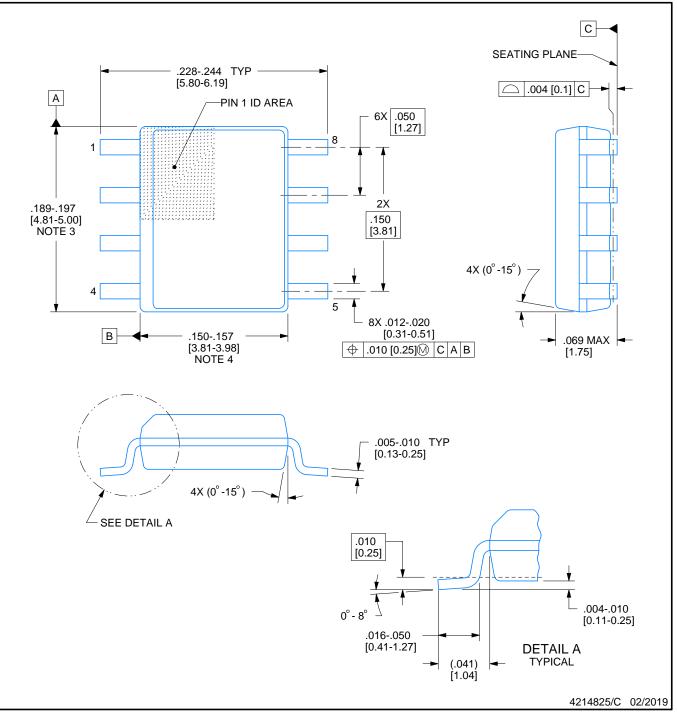
## TUBE



## - B - Alignment groove width

#### \*All dimensions are nominal

| Device     | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| SN75158D   | D            | SOIC         | 8    | 75  | 507    | 8      | 3940   | 4.32   |
| SN75158DG4 | D            | SOIC         | 8    | 75  | 507    | 8      | 3940   | 4.32   |
| SN75158P   | Р            | PDIP         | 8    | 50  | 506    | 13.97  | 11230  | 4.32   |


# D0008A



# **PACKAGE OUTLINE**

## SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



#### NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



# D0008A

# **EXAMPLE BOARD LAYOUT**

# SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



# D0008A

# **EXAMPLE STENCIL DESIGN**

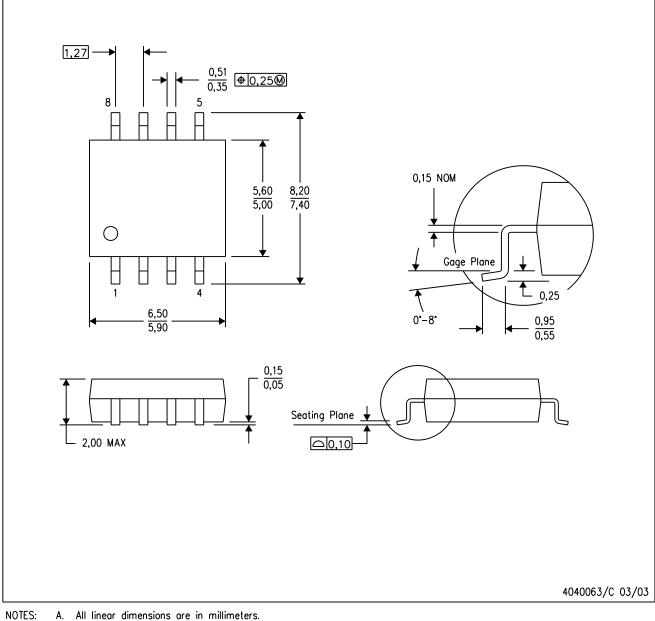
# SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

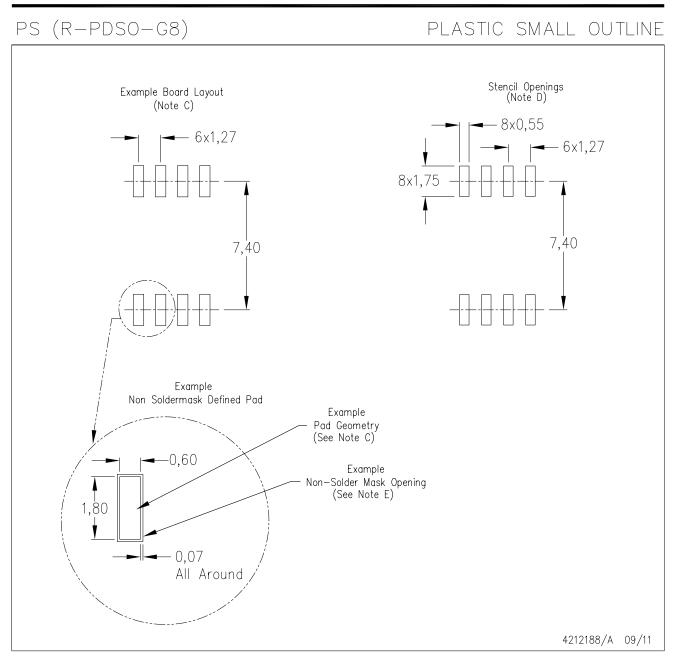

9. Board assembly site may have different recommendations for stencil design.



## **MECHANICAL DATA**

## PS (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE




A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.





NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
  E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.



## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated