
SLRS048A - MAY 1998 - REVISED APRIL 2000

- SN75LBC031 Meets Standard ISO/DIS 11898 (up to 500 k Baud)
- Driver Output Capability at 50 mA
- Wide Positive and Negative Input/output Bus Voltage Range
- Bus Outputs Short-Circuit-Protected to Battery Voltage and Ground
- Thermal Shutdown
- Available in Q-Temp Automotive
 - HighRel Automotive Applications
 - Configuration Control/Print Support
 - Qualification to Automotive Standards

description

The SN75LBC031 is a CAN transceiver used as an interface between a CAN controller and the physical bus for high speed applications of up to 500 kBaud. The device provides transmit capability to the differential bus and differential receive capability to the controller. The transmitter outputs (CANH and CANL), feature internal transition regulation to provide controlled symmetry resulting in low EMI emissions. Both

TERMINAL FUNCTIONS

TERMINAL	DESCRIPTION				
TX	Transmitter input				
GND	Ground				
V _C C	Supply voltage				
RX	Receiver output				
REF	Reference output				
CANL	Low side bus output driver				
CANH	High side bus output driver				
ASC	Adjustable slope control				

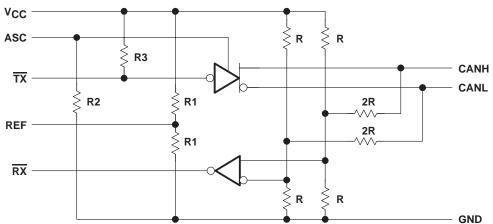
FUNCTION TABLE

TX	CANH	CANL	BUS STATE	RX
L	Н	L	Dominant	L
High or floating	Floating	Floating	Recessive	Н

L = low, H = high

transmitter outputs are fully protected against battery short circuits and electrical transients that can occur on the bus lines. In the event of excessive device power dissipation the output drivers are disabled by the thermal shutdown circuitry at a junction temperature of approximately 160° C. The inclusion of an internal pullup resistor on the transmitter input ensures a defined output during power up and protocol controller reset. For normal operation at 500 kBaud the ASC terminal is open or tied to GND. For slower speed operation at 125 kBaud the bus output transition times can be increased to reduce EMI by connecting the ASC terminal to V_{CC} . The receiver includes an integrated filter that suppresses the signal into pulses less than 30 ns wide.

The SN75LBC031 is characterized for operation from -40° C to 85° C. The SN65LBC031 is characterized for operation from -40° C to 125° C. The SN65LBC031Q is characterized for operation over the automotive temperature range of -40° C to 125° C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLRS048A - MAY 1998 - REVISED APRIL 2000

logic diagram

SLRS048A - MAY 1998 - REVISED APRIL 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Logic supply voltage, V _{CC} (see Note 1)	7 V
Bus terminal voltage	5 V to 20 V
Input current at TX and ASC terminal, I ₁	±10 mA
Input voltage at TX and ASC terminal, V _I	2 × V _{CC}
Operating free-air temperature range, T _A : SN65LBC031, SN65LBC031Q	40°C to125°C
SN75LBC031	40°C to 85°C
Operating juncation range, T _J	–40°C to 150°C
Continuous total power dissipation at (or below) 25°C free-air temperature .	. See Dissipation Rating Table
Storage temperature range, T _{stq}	65°C to 150°C
Case temperature for 10 sec T _C , D package	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential bus voltage, are measured with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	OPERATING FACTOR ABOVE T _C = 25°C	T _C = 125°C POWER RATING
D	725 mW	5.8 mW/°C	145 mW

DISSIPATION DERATING CURVE

FREE-AIR TEMPERATURE

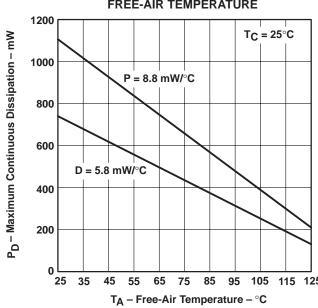


Figure 1

SLRS048A - MAY 1998 - REVISED APRIL 2000

recommended operating conditions

		MIN	NOM	MAX	UNIT
Logic supply voltage, V _{CC}		4.5	5	5.5	V
Voltage at any bus terminal (separately or common mode), V _I or V _{IC} (see Note 3)				7	V
High-level input voltage, VIH	TX	2		VCC	V
Low-level input voltage, V _{IL}	TX	0		0.8	V
I Pale Lavel autout avenue of 1	Transmitter			-50	mA
High-level output current, IOH	Receiver			-400	μΑ
Low lovel output ourrent lov	Transmitter			50	A
Low-level output current, IOL	Receiver			1	mA
Operating free air temperature T.	SN75LBC031	-40		85	°C
Operating free-air temperature, T _A	SN65LBC031, SN65LBC031Q	-40		125	-0

NOTES: 2. All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

3. For bus voltages from -5 V to -2 V and 7 V to 20 V the receiver output is stable.

SYMBOL DEFINITION

DATA SHEET PARAMETER	DEFINITION
VO(CANHR)	CANH bus output voltage (recessive state)
VO(CANLR)	CANL bus output voltage (recessive state)
VO(CANHD)	CANH bus output voltage (dominant state)
VO(CANLD)	CANL bus output voltage (dominant state)
VO(DIFFR)	Bus differential output voltage (recessive state)
V _{O(DIFFD)}	Bus differential output voltage (dominant state)
V _I (ASC)	Adjustable slope control input voltage

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO(REF)	Reference source output voltage	I _{REF} = ±20 μA	0.45 V _{CC}		0.55 V _{CC}	V
R _{O(REF)}	Reference source output resistance		5		10	kΩ
ICC(REC)	Logic supply current, recessive state	See Figure 2, S1 closed		12	20	mA
ICC(DOM)	Logic supply current, dominant state	See Figure 2, ST Closed		55	80	IIIA

SLRS048A - MAY 1998 - REVISED APRIL 2000

transmitter electrical characteristics over recommended ranges of supply and operating free-air temperature (unless otherwise noted)

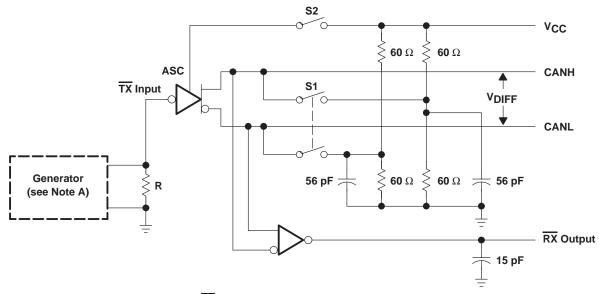
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO(CANHR) VO(CANLR)	Output voltage (recessive state)	See Figure 2, S1 open	2	0.5V _{CC}	3	V
V _{O(DIFFR)}	Differential output voltage (recessive state)		-500	0	50	mV
VO(CANHD)	Output voltage (dominant state)		2.75	3.5	4.5	
VO(CANLD)	Output voltage (dominant state)	See Figure 2, S1 closed	0.5	1.5	2.25	V
VO(DIFFD)	Differential output voltage (dominant state)		1.5	2	3	
lu com o	High-level input current (TX)	V _{IH} = 2.4 V		-100	-185	^
I _{IH} (TX)	righ-lever input current (1%)	VIH = VCC			±2	μΑ
lu va oo'	High-level input current (ASC)	V _{IH} = 2.4 V		100	165	μΑ
IH(ASC)	righ-level input current (ASC)	V _{IH} = V _{CC}		200	340	μΑ
I _{IL(TX)}	Low-level input current (\overline{TX})	V _{IL} = 0.4 V		-180	-400	μΑ
IL(ASC)	Low-level input current (ASC)	V _{IL} = 0.4 V		15	25	μΑ
C _{I(TX)}	TX input capacitance			8		pF
I _{O(ssH)}	CANH short circuit output current	$V_{O(CANH)} = -2 V \text{ to } 20 V$		-95	-200	mA
I _{O(ssL)}	CANL short circuit output current	V _{O(CANL)} = 20 V to −2 V		140	250	mA

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

transceiver dynamic characteristics over recommended operating free-air temperature range and V_{CC} = 5 V

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
	Loop time	See Figures 2 and 3, S1 closed,	VI(ASC) = 0 V or open circuit, S2 open			280	ns
^t (loop)	Loop time	See Figures 2 and 3, S1 closed,	VI(ASC) = V _{CC} , S2 closed			400	ns
CD (==)	Differential-output slew rate	See Figures 2 and 4, S1 closed,	V _I (ASC) = 0 or open circuit, S2 open		35		V/μs
SR _(RD)	(recessive to dominant)	See Figures 2 and 4, S1 closed,	VI(ASC) = VCC, S2 closed		10		V/μs
CD	Differential-output slew rate	See Figures 2 and 4, S1 closed,	V _I (ASC) = 0 or open circuit, S2 open		10		V/μs
SR _(DR)	(dominant to recessive)	See Figures 2 and 4, S1 closed,	VI(ASC) = VCC, S2 closed		10		V/μs
t _d (RD)	Differential output delay time	San Figure 2	S1 closed		55		ns
t _d (DR)	Differential-output delay time	See Figure 2,	ST Closed		160		ns
tpd(RECRD)	Receiver propagation delay	See Figures 2 and 5			90		ns
tpd(RECDR)	time	See Figures 2 and 5			55		ns

NOTE 4: Receiver input pulse width should be >50 ns. Input pulses of <30 ns are suppressed.


SLRS048A - MAY 1998 - REVISED APRIL 2000

receiver electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIT(REC)	Differential input threshold voltage for recessive state	\/\.o = 2\/\.to 7\/			500	mV
VIT(DOM)	Differential input threshold voltage for dominant state	$V_{IC} = -2 V \text{ to } 7 V$	900			IIIV
V _{hys}	Recessive-dominant input hysteresis		100	180		mV
VOH(RX)	High-level output voltage	$V_{O(DIFF)} = 500 \text{ mV},$ $I_{OH} = -400 \mu\text{A}$	V _{CC} -0.5 V		VCC	V
V _{OL(RX)}	Low-level output voltage	$V_{O(DIFF)} = 900 \text{ mV},$ $I_{OL} = 1 \text{ mA}$	0		0.5	V
rI(REC)	CANH and CANL input resistance in recessive state	dc, no load	5		50	kΩ
rI(DIFF)	Differential CANH and CANL input resistance in recessive state	dc, no load	10		100	kΩ
Ci	CANH and CANL input capacitance			20		pF
C _{i(DHL)}	Differential CANH and CANL input capacitance			10		pF

NOTE 2: All voltage values, except differential bus voltage, are measured with respect to the ground terminal.

PARAMETER MEASUREMENT INFORMATION

NOTE A: The input pulse is supplied to \overline{TX} by a generator having a t_f and $t_f = 5$ ns.

Figure 2. Test Circuit

PARAMETER MEASUREMENT INFORMATION

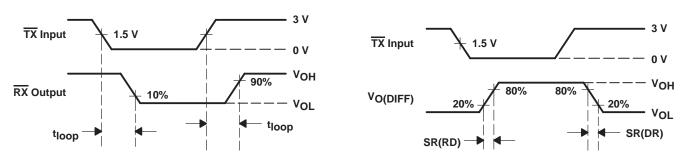
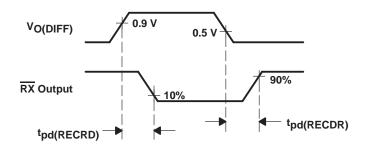



Figure 3. Loop Time

Figure 4. Slew Rate

NOTE A: The input pulse is supplied to \overline{TX} by a generator having a t_f and $t_f = 5$ ns.

NOTE A: The input pulse is supplied as V_{DIFF} using CANH and CANL respectively by a generator having a t_r and $t_f = 5$ ns.

Figure 5. Receiver Delay Times

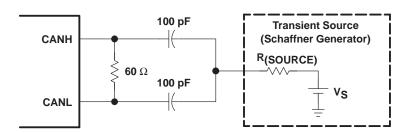


Figure 6. Transient Stress Capability Test Circuit

PARAMETER MEASUREMENT INFORMATION

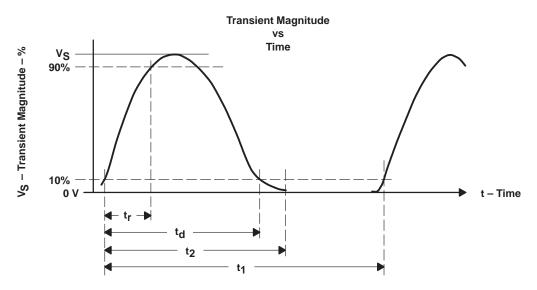


Figure 7. Transient Stress Capability Waveform

Table 1. Test Circuit Results According to DIN 40839

TEST PULSE	TRANSIENT MAGNITUDE VS	SOURCE IMPEDANCE RSOURCE	PULSE WIDTH t _d (see Note 5)	PULSE RISE TIME, t _r (see Note 6)	PULSE TIME, t ₂ (see Figure 7)	REPETITION PERIOD, t ₁ (see Figure 7)	NUMBER OF PULSES
1	–100 V	10 Ω	2 ms	1 μs	200 ms	5 s	5000
2	100 V	10 Ω	50 μs	1 μs	200 ms	5 s	5000
3a	−150 V	50 Ω	0.1 μs	5 ns	100 μs	100 μs	See Note 7
3b	100 V	50 Ω	0.1 μs	5 ns	100 μs	100 μs	See Note 7
5	60 V	1 Ω	400 ms	5 ms	_	_	1

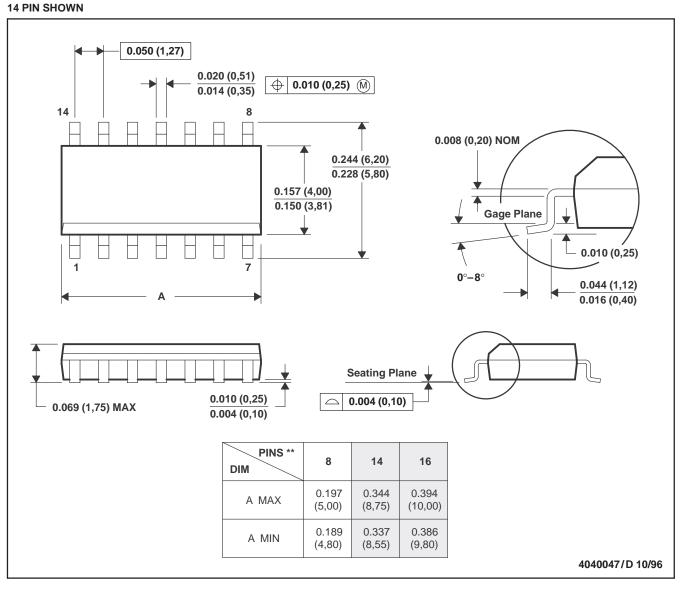
NOTES: 5. Measured from 10% on rising edge to 10% on falling edge

- 6. Measured from 10% to 90% of pulse
- 7. Pulse package for a period of 3600 s, 10 ms pulse time, 90 ms stop time

SLRS048A - MAY 1998 - REVISED APRIL 2000

APPLICATION INFORMATION 5 V 💳 100 nF 3 120 Ω \lesssim 10 k Ω 10 kΩ § 8 **VCC VCC** 8 ASC TL7705B **CANH** 7 SENSE SN75LBC031 RESIN RESET GND CANL REF **GND** c_{in} TX REF RX 120 Ω 5 0.1 μF4 **CAN Microcontroller**

Figure 8. Typical SN75LBC031 Application


SLRS048A - MAY 1998 - REVISED APRIL 2000

MECHANICAL DATA

D (R-PDSO-G**)

.

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

www.ti.com

11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	,	()			(-,	(4)	(5)		(-/
SN65LBC031D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-220C-UNLIM	-40 to 85	6LB031
SN65LBC031D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-220C-UNLIM	-40 to 85	6LB031
SN65LBC031DG4	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB031
SN65LBC031DG4.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB031
SN65LBC031DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-220C-UNLIM	-40 to 85	6LB031
SN65LBC031DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-220C-UNLIM	-40 to 85	6LB031
SN65LBC031DRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-	6LB031
SN65LBC031DRG4.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB031
SN65LBC031QD	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	6LB031Q
SN65LBC031QD.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	6LB031Q
SN65LBC031QDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LB031Q
SN65LBC031QDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LB031Q
SN75LBC031D	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB031
SN75LBC031D.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB031
SN75LBC031DR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB031
SN75LBC031DR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	7LB031

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

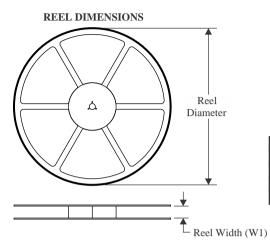
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

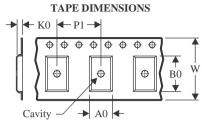
PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

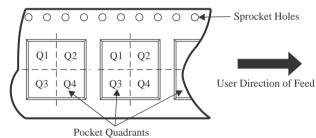
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025


TAPE AND REEL INFORMATION

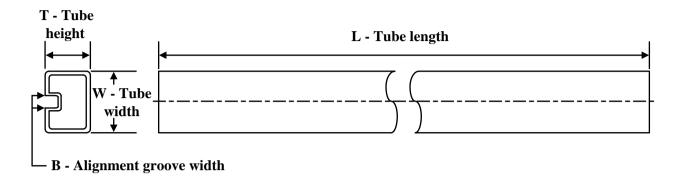
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LBC031DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65LBC031QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75LBC031DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 23-May-2025

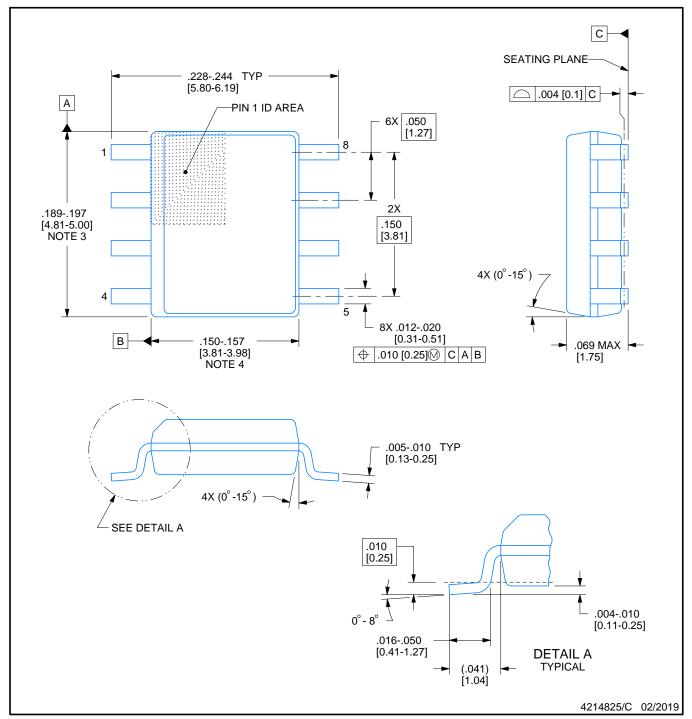

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC031DR	SOIC	D	8	2500	350.0	350.0	43.0
SN65LBC031QDR	SOIC	D	8	2500	350.0	350.0	43.0
SN75LBC031DR	SOIC	D	8	2500	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

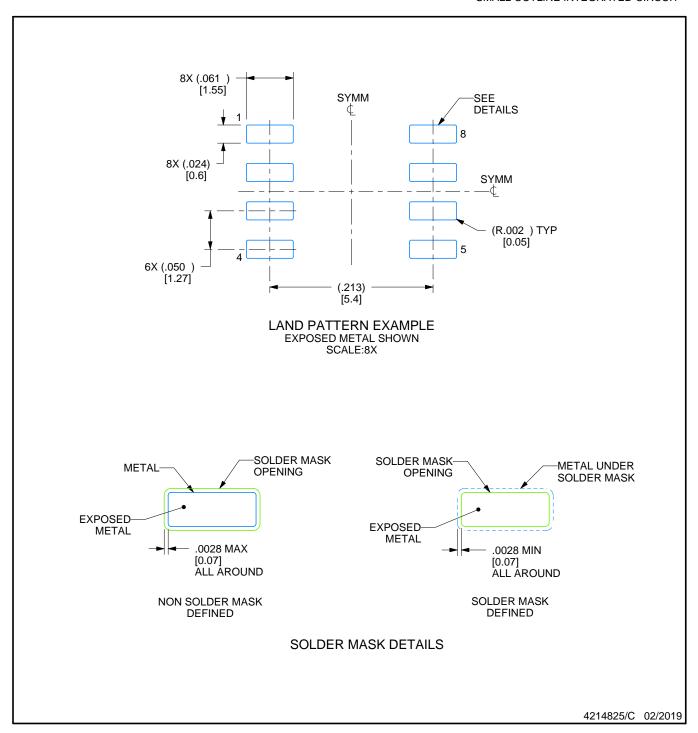
TUBE



*All dimensions are nominal

7 til dilliciololio ale florilliai								
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65LBC031D	D	SOIC	8	75	505.46	6.76	3810	4
SN65LBC031D.A	D	SOIC	8	75	505.46	6.76	3810	4
SN65LBC031DG4	D	SOIC	8	75	505.46	6.76	3810	4
SN65LBC031DG4.A	D	SOIC	8	75	505.46	6.76	3810	4
SN65LBC031QD	D	SOIC	8	75	505.46	6.76	3810	4
SN65LBC031QD.A	D	SOIC	8	75	505.46	6.76	3810	4
SN75LBC031D	D	SOIC	8	75	505.46	6.76	3810	4
SN75LBC031D.A	D	SOIC	8	75	505.46	6.76	3810	4

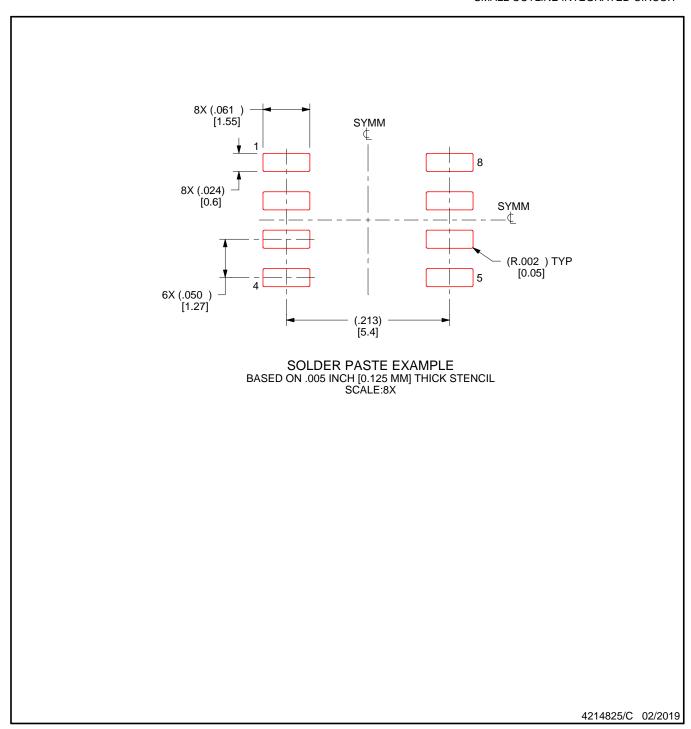
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025