

TLC5926-Q1, TLC5927-Q1

SLVS973A - SEPTEMBER 2009-REVISED JULY 2015

TLC592x-Q1 16-Channel Constant-Current LED Sink Drivers

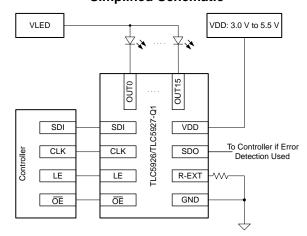
Features

- **Qualified for Automotive Applications**
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level 2
- 16 Constant-Current Output Channels
- Output Current Adjusted By External Resistor
- Constant Output Current Range: 5 mA to 120 mA
- Constant Output Current Invariant to Load Voltage Change
- Open Load, Shorted Load, and Overtemperature Detection
- 256-Step Programmable Global Current Gain
- **Excellent Output Current Accuracy:**
 - Between Channels: < ±6% (Maximum), 10 mA to 50 mA
 - Between ICs: < ±6% (Maximum), 10 mA to 50 mA
- 30-MHz Clock Frequency
- Schmitt-Trigger Input
- 3.3-V or 5-V Supply Voltage
- Thermal Shutdown for Overtemperature Protection
- ESD Performance: 2-kV HBM

2 Applications

- General LED Lighting Applications
- LED Display Systems
- LED Signage
- Automotive LED Lighting
- White Goods

Description 3


The TLC592x-Q1 Constant-Current LED Sink Drivers is designed to work alone or cascaded. Because each output is independently controlled, they can be programmed to be on or off by the user. The high LED voltage (VLED) allows for the use of a single LED per output or multiple LEDs on a single string. With independently controlled outputs supplied with constant current, the LEDs can be combined in parallel to create higher currents on a single string. The constant sink current for all channels is set through a single external resistor. This allows different LED drivers in the same application to sink currents which provides various implementation of multi-color LEDs. An additional advantage of the independent outputs is the ability to leave unused channels floating. The flexibility of the TLC592x-Q1 LED driver is ideal for applications such as (but not limited to): automotive LED lighting, 7segment displays, scrolling single color displays, gaming machines, white goods, video billboards and video panels.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)			
TLC5926-Q1	LITECOD (24)	7.00			
TLC5927-Q1	HTSSOP (24)	7.80 mm × 4.40 mm			

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1	Features 1		9.1 Overview	13
2	Applications 1		9.2 Functional Block Diagram	13
3	Description 1		9.3 Feature Description	14
4	Revision History2		9.4 Device Functional Modes	15
5	Device Comparison Table	10	Application and Implementation	20
6	Pin Configuration and Functions		10.1 Application Information	20
7	Specifications		10.2 Typical Applications	22
′	7.1 Absolute Maximum Ratings	11	Power Supply Recommendations	26
	7.2 ESD Ratings	12	Layout	26
	7.3 Recommended Operating Conditions		12.1 Layout Guidelines	26
	7.4 Thermal Information		12.2 Layout Example	27
	7.5 Electrical Characteristics: V _{DD} = 3 V	13	Device and Documentation Support	28
	7.6 Electrical Characteristics: V _{DD} = 5.5 V		13.1 Related Links	28
	7.7 Timing Requirements		13.2 Community Resources	28
	7.8 Switching Characteristics: V _{DD} = 3 V		13.3 Trademarks	28
	7.9 Switching Characteristics: V _{DD} = 5.5 V		13.4 Electrostatic Discharge Caution	28
	7.10 Typical Characteristics		13.5 Glossary	28
8	Parameter Measurement Information 10	14	Mechanical, Packaging, and Orderable Information	28
9	Detailed Description 13			

4 Revision History

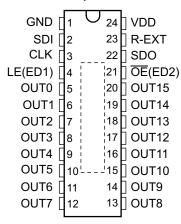
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (September 2009) to Revision A

Page

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated


Device Comparison Table

DEVICE ⁽¹⁾	OPEN-LOAD DETECTION	SHORT TO GND DETECTION	SHORT TO V _{LED} DETECTION
TLC5926-Q1	x	x	
TLC5927-Q1	x	x	х

(1) The device has one single error register for all these conditions (one error bit per channel)

6 Pin Configuration and Functions

PWP Package 24-Pin HTSSOP With PowerPAD™ **Top View**

NOTE: The exposed thermal pad should be connected to ground in all applications.

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
CLK	3	I	Clock input for data shift on rising edge
GND	1	_	Ground for control logic and current sink
LE(ED1)	4	I	Data strobe input Serial data is transferred to the respective latch when LE(ED1) is high. The data is latched when LE(ED1) goes low. Also, a control signal input for an Error Detection mode and Current Adjust mode (See Timing Diagram). LE(ED1) has an internal pulldown.
ŌE(ED2)	21	I	Output enable. When $\overline{\text{OE}}$ (ED2)(active) is low, the output drivers are enabled; when $\overline{\text{OE}}$ (ED2) is high, all output drivers are turned OFF (blanked). Also, a control signal input for an Error Detection mode and Current Adjust mode (See <i>Device Functional Modes</i>). $\overline{\text{OE}}$ (ED2) has an internal pullup.
OUT0-OUT 15	15, 16, 17, 18, 19, 20	0	Constant-current output
R-EXT	23	I	Input pin used to connect an external resistor for setting up all output currents
SDI	2	I	Serial-data input to the Shift register
SDO	22	0	Serial-data output to the following SDI of next driver IC or to the microcontroller
VDD	24	ı	Supply voltage
Exposed Thermal PAD ⁽¹⁾		_	Connect to GND. The thermal pad should be soldered to ground in all applications.

(1) The exposed Thermal PAD should be connected to ground in all applications.

Copyright © 2009–2015, Texas Instruments Incorporated

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V _{DD} (2)(3)(4)	Supply voltage	0	7	V
V _I ⁽²⁾⁽⁵⁾	Input voltage	-0.4	$V_{DD} + 0.4$	V
V _O (2)(6)(7)	Output voltage	-0.5	20	V
I _{OUT}	Output current		120	mA
I _{GND}	GND terminal current		1920	mA
T _A	Free-air operating temperature	-40	125	°C
TJ	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-55	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V

⁽¹⁾ AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V_{DD}	Supply voltage			3	5.5	V
Vo	Supply voltage to the output pins	OUT0-OUT15			17	V
	I _O Output current	DO to take it	V _O ≥ 0.6 V	5		A
IO		DC test circuit	V _O ≥ 1 V		120	mA
I _{OH}	High-level output current	SDO shorted to GND	•		-1	mA
I _{OL}	Low-level output current	SDO shorted to GND	SDO shorted to GND			mA
V _{IH}	High-level input voltage	CLK, OE(ED2), LE(ED1),	CLK, $\overline{\text{OE}}(\text{ED2})$, LE(ED1), and SDI		V_{DD}	V
V_{IL}	Low-level input voltage	CLK, OE(ED2), LE(ED1),	and SDI	0	$0.3 \times V_{DD}$	V

All voltage values are with respect to GND

Absolute negative voltage on these terminals not to go below 0 V

Absolute maximum voltage 7 V for 200 ms
Absolute negative voltage on these terminals not to go below –0.4 V

Absolute negative voltage on these terminals not to go below -0.5 V

Absolute maximum voltage 20 V for 200 ms

7.4 Thermal Information

		THERMAL METRIC ⁽¹⁾⁽²⁾	TLC592x-Q1 PWP (HTSSOP)	UNIT
			24 PINS	
R		Mounted on JEDEC 1-layer board (JESD 51-3), No airflow	63.9	
	Junction-to-ambient thermal resistance	Mounted on JEDEC 4-layer board (JESD 51-7), No airflow	42.7	°C/W
		Mounted on JEDEC 4-layer board (JESD 51-5), No airflow	39.7	
$R_{\theta JC(top)}$	Junction-to-case (top) t	hermal resistance	23.4	°C/W
$R_{\theta JB}$	Junction-to-board thern	nal resistance	20.4	°C/W
ΨЈТ	Junction-to-top charact	erization parameter	0.7	°C/W
ΨЈВ	Junction-to-board characterization parameter		20.2	°C/W
R _{0JC(bot)}	Junction-to-case (botto	m) thermal resistance	3.9	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: $V_{DD} = 3 \text{ V}$

 $V_{DD} = 3 \text{ V}, T_{J} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
V _O	Supply voltage to the output pins					17	٧
	Outrast assument	V _O ≥ 0.6 V		5			A
lo	Output current	V _O ≥ 1 V				120	mA
V _{IH}	High-level input voltage			0.7 × V _{DD}		V_{DD}	V
V_{IL}	Low-level input voltage			GND	(V_{DD}	
		TI 05006 04 V 47 V	$T_J = 25^{\circ}C$			0.5	
1	Output lookaga aurrant	TLC5926-Q1, $V_{OH} = 17 \text{ V}$	$T_J = 125$ °C			1	
I _{leak}	Output leakage current	TI C5027 O4 V = 47 V	$T_J = 25^{\circ}C$			0.5	μA
		TLC5927-Q1, $V_{OH} = 17 \text{ V}$	$T_J = 125$ °C			5	
V_{OH}	High-level output voltage	SDO, I _{OL} = -1 mA		V _{DD} – 0.4			٧
V _{OL}	Low-level output voltage	SDO, I _{OH} = 1 mA				0.4	V
	Output current 1	$V_{OUT} = 0.6 \text{ V}, R_{ext} = 720 \Omega, C$		26		mA	
I _O ⁽¹⁾ (2)	Output current error, dieto-die	I_{OL} = 26 mA, V_{O} = 0.6 V, R_{ex} 25°C			±6%		
	Output current error, channel-to-channel	$I_{OL} = 26 \text{ mA}, V_{O} = 0.6 \text{ V}, R_{ex}$ 25°C			±6%		
	Output current 2	$V_{O} = 0.8 \text{ V}, R_{ext} = 360 \Omega, CG$		52%		mA	
I _O ⁽¹⁾ (2)	Output current error, dieto-die	$I_{OL} = 52 \text{ mA}, V_{O} = 0.8 \text{ V}, R_{ex}$ 25°C	_{tt} = 360 Ω, T _J =			±6%	
	Output current error, channel-to-channel	$I_{OL} = 52 \text{ mA}, V_{O} = 0.8 \text{ V}, R_{ex}$ 25°C	_{tt} = 360 Ω, T _J =			±6%	
I _{OUT} vs V _{OUT}	Output current vs output voltage regulation	$V_O = 1 \text{ V to } 3 \text{ V, } I_O = 26 \text{ mA}$ $V_{DD} = 3 \text{ V to } 5.5 \text{ V, } I_O = 26 \text{ mA}/120 \text{ mA}$			±0.1		0/ 0/
I _{OUT} vs V _{DD}	Output current vs supply voltage				±1		%/V
	Pullup resistance	OE(ED2)		250	500	800	kΩ
	Pulldown resistance	LE(ED1)		250	500	800	kΩ

⁽¹⁾ Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material.

(2) Specified by design

⁽²⁾ The thermal data is based on JEDEC standard high-K profile – JESD 51-5. The copper pad is soldered to the thermal land pattern. Also, correct attachment procedure must be incorporated.

Electrical Characteristics: V_{DD} = 3 V (continued)

 $V_{DD} = 3 \text{ V}, T_{J} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{sd}	Overtemperature shutdown (2)		150	175	200	°C
T _{hys}	Restart temperature hysteresis			15		°C
I _{OUT,Th}	Threshold current for open error detection	I _{OUT,target} = 5 mA to 120 mA		0.5 × I _{target%}		
V _{OUT,TTh}	Trigger threshold voltage for short-error detection (TLC5927 only)	I _{OUT,target} = 5 mA to 120 mA	2.3	2.6	3.2	V
V _{OUT} , RTh	Return threshold voltage for short-error detection (TLC5927 only)	I _{OUT,target} = 5 mA to 120 mA	1.9			V
		OUT0-OUT15 = off, R_{ext} = Open, \overline{OE} = V_{IH}			10	
		OUT0-OUT15 = off, $R_{ext} = 720 \Omega$, $\overline{OE} = V_{IH}$			14	
		OUT0-OUT15 = off, R_{ext} = 360 Ω , \overline{OE} = V_{IH}			18	
I _{DD}	Supply current	OUT0-OUT15 = off, R_{ext} = 180 Ω , \overline{OE} = V_{IH}			20	mA
		OUT0-OUT15 = on, $R_{ext} = 720 \Omega$, $\overline{OE} = V_{IL}$			14	
		OUT0-OUT15 = on, $R_{ext} = 360 \Omega$, $\overline{OE} = V_{IL}$			18	
		OUT0-OUT15 = on, R_{ext} = 180 Ω , \overline{OE} = V_{IL}			20	

7.6 Electrical Characteristics: $V_{DD} = 5.5 \text{ V}$

 $V_{DD} = 5.5 \text{ V}, T_{J} = -40 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
Vo	Supply voltage to the output pins					17	V
ı	Output current	V _O ≥ 0.6 V		5			mA
I _O	Output current	V _O ≥ 1 V				120	IIIA
V_{IH}	High-level input voltage			$0.7 \times V_{DD}$		V_{DD}	V
V_{IL}	Low-level input voltage			GND		$0.3 \times V_{DD}$	V
I _{leak}		TLC5006 V 47 V	$T_J = 25^{\circ}C$			0.5	
	Output leakage current	TLC5926, $V_{OH} = 17 \text{ V}$	$T_J = 125$ °C			1	
		TLC5927, V _{OH} = 17 V	$T_J = 25^{\circ}C$			0.5	μA
			T _J = 125°C			5	
V _{OH}	High-level output voltage	SDO, $I_{OL} = -1 \text{ mA}$	·	V _{DD} - 0.4			V
V _{OL}	Low-level output voltage	SDO, I _{OH} = 1 mA				0.4	V
	Output current 1	$V_{OUT} = 0.6 \text{ V}, R_{ext} = 720 \Omega, C$	CG = 0.992		26		mA
I _{O(1)} (1) (1)	Output current error, dieto-die	I_{OL} = 26 mA, V_O = 0.6 V, R_{ext} = 720 Ω , T_J = 25°C				±6%	
	Output current error, channel-to-channel	$I_{OL} = 26 \text{ mA}, V_O = 0.6 \text{ V}, R_{ext} = 720 \Omega, T_J = 25^{\circ}\text{C}$				±6%	
	Output current 2	$V_{O} = 0.8 \text{ V}, R_{ext} = 360 \Omega, CG$	G = 0.992		52		mA
I _{O(2)} (1) (2)	Output current error, dieto-die	$I_{OL} = 52 \text{ mA}, V_{O} = 0.8 \text{ V}, R_{ex}$	t = 360 Ω, T _J = 25°C			±6%	
-(-)	Output current error, channel-to-channel	$I_{OL} = 52 \text{ mA}, V_{O} = 0.8 \text{ V}, R_{ex}$	t = 360 Ω, T _J = 25°C			±6%	

⁽¹⁾ Typical values represent the likely parametric nominal values determined at the time of characterization. Typical values depend on the application and configuration and may vary over time. Typical values are not ensured on production material.

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated

⁽²⁾ Specified by design

Electrical Characteristics: $V_{DD} = 5.5 \text{ V}$ (continued)

 V_{DD} = 5.5 V, T_{J} = -40°C to 125°C (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{OUT} vs V _{OUT}	Output current vs output voltage regulation	$V_O = 1 \text{ V to } 3 \text{ V}, I_O = 26 \text{ mA}$		±0.1		%/V
I _{OUT} vs V _{DD}	Output current vs supply voltage	$V_{DD} = 3 \text{ V to } 5.5 \text{ V}, I_{O} = 26 \text{ mA/} 120 \text{ mA}$		±1		76/ V
	Pullup resistance	ŌE(ED2)	250	500	800	kΩ
	Pulldown resistance	LE(ED1)	250	500	800	kΩ
T _{sd}	Overtemperature shutdown (2)		150	175	200	°C
T _{hys}	Restart temperature hysteresis			15		°C
I _{OUT,Th}	Threshold current for open error detection	I _{OUT,target} = 5 mA to 120 mA		0.5 × I _{target} %		
$V_{OUT,TTh}$	Trigger threshold voltage for short-error detection (TLC5927 only)	I _{OUT,target} = 5 mA to 120 mA	2.3	2.6	3.2	V
$V_{OUT, RTh}$	Return threshold voltage for short-error detection (TLC5927 only)	I _{OUT,target} = 5 mA to 120 mA	1.9			٧
		OUT0-OUT15 = off, R_{ext} = Open, \overline{OE} = V_{IH}			11	
		OUT0-OUT15 = off, R_{ext} = 720 Ω , \overline{OE} = V_{IH}			17	
		OUT0-OUT15 = off, R_{ext} = 360 Ω , \overline{OE} = V_{IH}			18	
I_{DD}	Supply current	OUT0-OUT15 = off, R_{ext} = 180 Ω , \overline{OE} = V_{IH}			25	mA
		OUT0-OUT15 = on, R_{ext} = 720 Ω , \overline{OE} = V_{IL}			17	
		OUT0-OUT15 = on, R_{ext} = 360 Ω , \overline{OE} = V_{IL}			18	
		OUT0-OUT15 = on, $R_{ext} = 180 \Omega$, $\overline{OE} = V_{IL}$			25	

7.7 Timing Requirements

 $V_{DD} = 3 \text{ V to } 5.5 \text{ V (unless otherwise noted)}$

			MIN MAX	UNIT
t _{w(L)}	LE(ED1) pulse duration	Normal mode	20	ns
t _{w(CLK)}	CLK pulse duration	Normal mode	20	ns
t _{w(OE)}	OE(ED2) pulse duration	Normal mode	1000	ns
t _{su(D)}	Setup time for SDI	Normal mode	7	ns
t _{h(D)}	Hold time for SDI	Normal mode	3	ns
t _{su(L)}	Setup time for LE(ED1)	Normal mode	18	ns
t _{h(L)}	Hold time for LE(ED1)	Normal mode	18	ns
t _{w(CLK)}	CLK pulse duration	Error Detection mode	20	ns
t _{w(ED2)}	OE(ED2) pulse duration	Error Detection mode	2000	ns
t _{su(ED1)}	Setup time for LE(ED1)	Error Detection mode	7	ns
t _{h(ED1)}	Hold time for LE(ED1)	Error Detection mode	10	ns
t _{su(ED2)}	Setup time for OE(ED2)	Error Detection mode	7	ns
t _{h(ED2)}	Hold time for OE(ED2)	Error Detection mode	10	ns
f _{CLK}	Clock frequency	Cascade operation, V _{DD} = 3 V to 5.5 V	30	MHz

7.8 Switching Characteristics: $V_{DD} = 3 \text{ V}$

 V_{DD} = 3 V, T_J = -40°C to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH1}	Low-to-high propagation delay time, CLK to OUTn		35	65	105	ns
t _{PLH2}	Low-to-high propagation delay time, LE(ED1) to OUTn		35	65	105	ns
t _{PLH3}	Low-to-high propagation delay time, $\overline{\text{OE}}(\text{ED2})$ to OUTn		35	65	105	ns
t _{PLH4}	Low-to-high propagation delay time, CLK to SDO			20	45	ns
t _{PHL1}	High-to-low propagation delay time, CLK to OUTn		200	300	470	ns
t _{PHL2}	High-to-low propagation delay time, LE(ED1) to OUTn		200	300	470	ns
t _{PHL3}	High-to-low propagation delay time, $\overline{\text{OE}}(\text{ED2})$ to OUTn		200	300	470	ns
t _{PHL4}	High-to-low propagation delay time, CLK to SDO			20	40	ns
$t_{w(CLK)}$	Pulse duration, CLK		20			ns
$t_{w(L)}$	Pulse duration LE(ED1)	$V_{IH} = V_{DD}$, $V_{IL} = GND$,	20			ns
$t_{w(OE)}$	Pulse duration, OE(ED2)	$R_{ext} = 360 \Omega, V_L = 4 V,$ $R_L = 44 \Omega, C_L = 70 pF,$	1000			ns
$t_{w(ED2)}$	Pulse duration, OE(ED2) in Error Detection mode	CG = 0.992	2			μs
t _{h(ED1,ED2)}	Hold time, LE(ED1), and $\overline{\text{OE}}(\text{ED2})$		10			ns
t _{h(D)}	Hold time, SDI		5			ns
t _{su(D,ED1,ED2)}	Setup time, SDI, LE(ED1), and OE(ED2)		7			ns
t _{h(L)}	Hold time, LE(ED1), Normal mode		18			ns
$t_{su(L)}$	Setup time, LE(ED1), Normal mode		18			ns
t _r	Rise time, CLK ⁽¹⁾				500	ns
t _f	Fall time, CLK ⁽¹⁾				500	ns
t _{or}	Rise time, outputs (off)				245	ns
t _{of}	Rise time, outputs (on)				600	ns
f _{CLK}	Clock frequency	Cascade operation			30	MHz

⁽¹⁾ If the devices are connected in cascade and t_r or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated

7.9 Switching Characteristics: $V_{DD} = 5.5 \text{ V}$

 $V_{DD} = 5.5 \text{ V}, T_{J} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH1}	Low-to-high propagation delay time, CLK to OUTn		27	65	95	ns
t _{PLH2}	Low-to-high propagation delay time, LE(ED1) to OUTn		27	65	95	ns
t _{PLH3}	Low-to-high propagation delay time, $\overline{\text{OE}}(\text{ED2})$ to OUTn		27	65	95	ns
t _{PLH4}	Low-to-high propagation delay time, CLK to SDO			20	30	ns
t _{PHL1}	High-to-low propagation delay time, CLK to OUTn		180	300	445	ns
t _{PHL2}	High-to-low propagation delay time, LE(ED1) to OUTn		180	300	445	ns
t _{PHL3}	High-to-low propagation delay time, $\overline{\text{OE}}(\text{ED2})$ to OUTn		180	300	445	ns
t _{PHL4}	High-to-low propagation delay time, CLK to SDO			20	30	ns
t _{w(CLK)}	Pulse duration, CLK		20			ns
$t_{w(L)}$	Pulse duration LE(ED1)	$V_{IH} = V_{DD}, V_{IL} = GND,$	20			ns
$t_{w(OE)}$	Pulse duration, OE(ED2)	$R_{\text{ext}} = 360 \ \Omega, \ V_{\text{L}} = 4 \ V,$ $R_{\text{L}} = 44 \ \Omega, \ C_{\text{L}} = 70 \ \text{pF},$	1000			ns
t _{w(ED2)}	Pulse duration, OE(ED2) in Error Detection mode	CG = 0.992	2			μs
t _{h(ED1,ED2)}	Hold time, LE(ED1), and OE(ED2)		10			ns
t _{h(D)}	Hold time, SDI		3			ns
t _{su(D,ED1,ED2)}	Setup time, SDI, LE(ED1), and OE(ED2)		4			ns
t _{h(L)}	Hold time, LE(ED1), Normal mode		15			ns
$t_{su(L)}$	Setup time, LE(ED1), Normal mode		15			ns
t _r	Rise time, CLK ⁽¹⁾				500	ns
t _f	Fall time, CLK ⁽¹⁾				500	ns
t _{or}	Rise time, outputs (off)				245	ns
t _{of}	Rise time, outputs (on)				570	ns
f _{CLK}	Clock frequency	Cascade operation			30	MHz

⁽¹⁾ If the devices are connected in cascade and t_r or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

7.10 Typical Characteristics

Figure 1: At low voltage levels (V_0) , the output current (I_0) may be limited. Figure 1 shows the dependency of the output current on the output voltage.

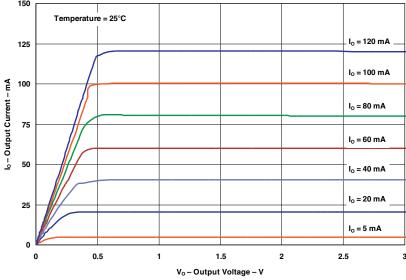


Figure 1. Output Current vs Output Voltage

8 Parameter Measurement Information

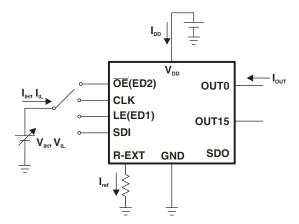


Figure 2. Test Circuit for Electrical Characteristics

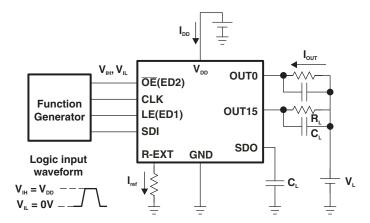


Figure 3. Test Circuit for Switching Characteristics

Submit Documentation Feedback

Parameter Measurement Information (continued)

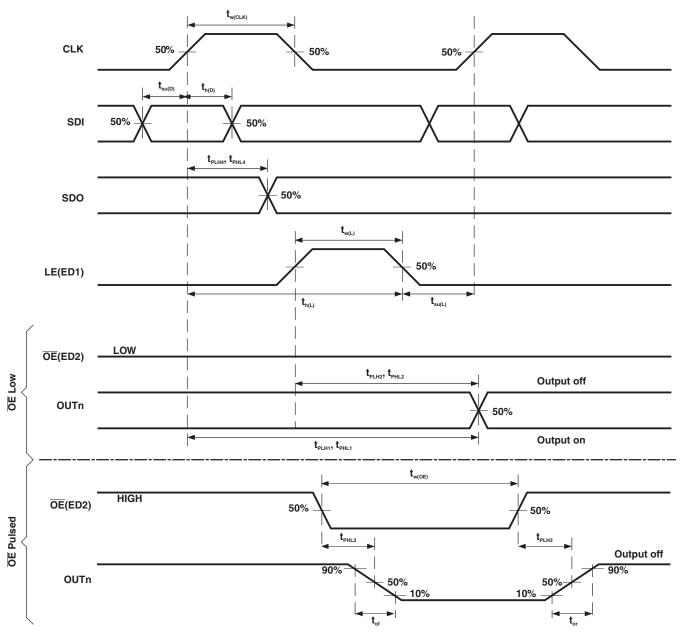


Figure 4. Normal Mode Timing Waveforms

Parameter Measurement Information (continued)

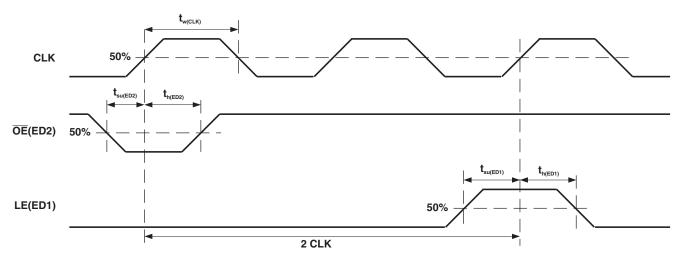


Figure 5. Switching to Special Mode Timing Waveforms

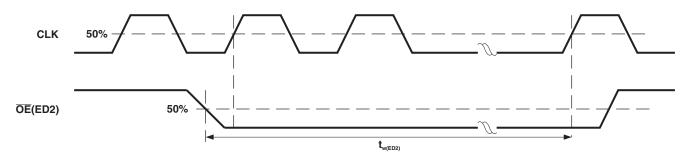
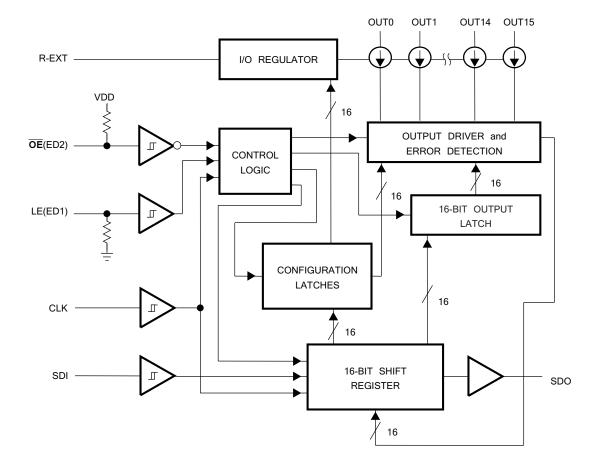


Figure 6. Reading Error Status Code Timing Waveforms

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated



9 Detailed Description

9.1 Overview

The TLC592x-Q1 is designed for LED displays and LED lighting applications with open-load, shorted-load, and overtemperature detection, and constant-current control. The TLC592x-Q1 contains a 16-bit shift register and data latches, which convert serial input data into parallel output format. At the TLC592x-Q1 output stage, 16 regulated- current ports provide uniform and constant current for driving LEDs within a wide range of VF (Forward Voltage) variations. Used in systems designed for LED display applications (that is, LED panels), TLC592x-Q1 provides great flexibility and device performance. Users can adjust the output current from 5 mA to 120 mA through an external resistor, R-EXT, which gives flexibility in controlling the light intensity of LEDs. TLC592x-Q1 is designed for up to 17 V at the output port. The high clock frequency, 30 MHz, also satisfies the system requirements of high-volume data transmission.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Open-Circuit Detection Principle

The LED Open-Circuit Detection compares the effective current level I_{OUT} with the open load detection threshold current $I_{OUT,Th}$. If I_{OUT} is below the $I_{OUT,Th}$ threshold, the TLC592x-Q1 detects an open-load condition. This error status can be read as an error status code in the Special mode. For open-circuit error detection, a channel must be on.

Table 1. Open-Circuit Detection

STATE OF OUTPUT PORT	CONDITION OF OUTPUT CURRENT	ERROR STATUS CODE	MEANING
Off	I _{OUT} = 0 mA	0	Detection not possible
0.5	I _{OUT} < I _{OUT,Th} ⁽¹⁾	0	Open circuit
On	I _{OUT} ≥ I _{OUT,Th} (1)	1	Normal

⁽¹⁾ $I_{OUT,Th} = 0.5 \times I_{OUT,target}$ (typical)

9.3.2 Short-Circuit Detection Principle (TLC5927-Q1 Only)

The LED short-circuit detection compares the effective voltage level V_{OUT} with the shorted-load detection threshold voltages $V_{OUT,TTh}$ and $V_{OUT,RTh}$. If V_{OUT} is above the $V_{OUT,TTh}$ threshold, the TLC5927-Q1 detects a shorted-load condition. If the V_{OUT} is below $V_{OUT,RTh}$ threshold, no error is detected and the error bit is reset. This error status can be read as an error status code in the Special mode. For short-circuit error detection, a channel must be on.

Table 2. Short-Circuit Detection

STATE OF OUTPUT PORT	CONDITION OF OUTPUT VOLTAGE ERROR STATUS CODE		MEANING	
Off	I _{OUT} = 0 mA	0	Detection not possible	
0.5	V _{OUT} ≥ V _{OUT,TTh}	0	Short circuit	
On	VOLIT < VOLIT RTh	1	Normal	

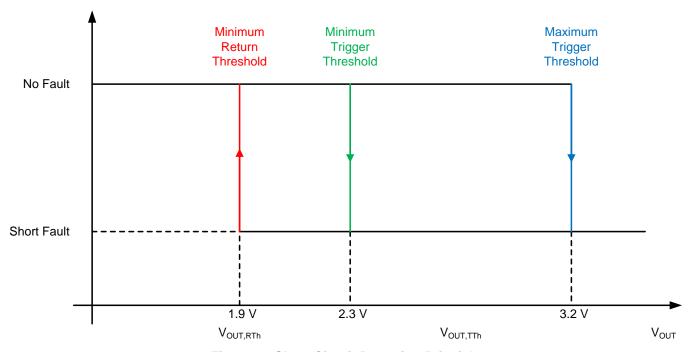


Figure 7. Short-Circuit Detection Principle

9.3.3 Overtemperature Detection and Shutdown

The TLC592x-Q1 is equipped with a global overtemperature sensor and 16 individual, channel-specific overtemperature sensors.

- When the global sensor reaches the trip temperature, all output channels are shutdown, and the error status
 is stored in the internal Error Status register of every channel. After shutdown, the channels automatically
 restart after cooling down, if the control signal (output latch) remains on. The stored error status is not reset
 after cooling down and can be read out as the error status code in the Special mode.
- When one of the channel-specific sensors reaches trip temperature, only the affected output channel is shut down, and the error status is stored only in the internal Error Status register of the affected channel. After shutdown, the channel automatically restarts after cooling down, if the control signal (output latch) remains on. The stored error status is not reset after cooling down and can be read out as error status code in the Special mode.

For channel-specific overtemperature error detection, a channel must be on.

The error status code is reset when the TLC592x-Q1 returns to Normal mode.

		•	
STATE OF OUTPUT PORT	CONDITION	ERROR STATUS CODE	MEANING
Off	$I_{OUT} = 0 \text{ mA}$	0	
On	T _j < T _{j,trip} global	1	Normal
On → all channels Off	$T_j > T_{j,trip}$ global	All error status bits = 0	Global overtemperature
On	T _j < T _{j,trip} channel n	1	Normal
$On \to Off$	T _j > T _{j,trip} channel n	Channel n error status bit = 0	Channel n overtemperature

Table 3. Overtemperature Detection⁽¹⁾

9.4 Device Functional Modes

The TLC5926/TLC5927-Q1 provides a Special Mode in which two functions are included: Error Detection and Current Gain Control. In the TLC5926/TLC5927-Q1 there are two operation modes and three phases: Normal Mode phase, Mode Switching transition phase, and Special mode phase. The signal on the multiple- function pin OE(ED2) is monitored, and when a one- clock-wide short pulse appears on OE(ED2), TLC5926/TLC5927-Q1 enters the Mode Switching phase. At this time, the voltage level on LE (ED1) determines the next mode into which the TLC5926/TLC5927-Q1 switches.

In the Normal Mode phase, the serial data is transferred into TLC5926/TLC5927-Q1 via SDI, shifted in the shift register, and transferred out via SDO. LE (ED1) can latch the serial data in the shift register to the output latch. OE(ED2) enables the output drivers to sink current.

In the Special Mode phase, the low-voltage-level signal OE(ED2) can enable output channels and detect the status of the output current, to tell if the driving current level is enough or not. The detected error status is loaded into the 16-bit shift register and shifted out via SDO, along with the CLK signal. The system controller can read the error status to determine whether or not the LEDs are properly lit. In the Special Mode phase, TLC5926/TLC5927-Q1 also allows users to adjust the output current level by setting a runtime-programmable Configuration Code. The code is sent into TLC5926/TLC5927-Q1 via SDI. The positive pulse of LE (ED1) latches the code in the shift register into a built-in 8-bit configuration latch, instead of the output latch. The code affects the voltage at R-EXT and controls the output-current regulator. The output current can be adjusted finely by a gain ranging from 1/12 to 127/128 in 256 steps. Therefore, the current skew between ICs can be compensated within less than 1%, and this feature is suitable for white balancing in LED color-display panels.

⁽¹⁾ The global shutdown threshold temperature is approximately 170°C.

Device Functional Modes (continued)

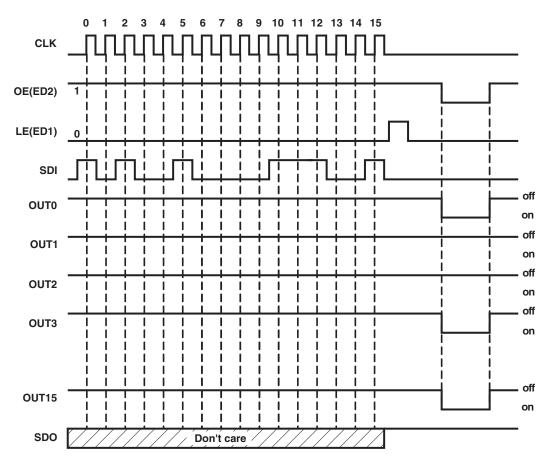


Figure 8. Normal Mode

Table 4. Truth Table in Normal Mode

CLK	LE(ED1)	OE(ED2)	SDI	OUT0OUT15	SDO
1	Н	L	Dn	DnDn – 7Dn – 15	Dn – 15
↑	L	L	Dn + 1	No change	Dn – 14
↑	Н	L	Dn + 2	Dn + 2Dn – 5Dn – 13	Dn – 13
↓	X	L	Dn + 3	Dn + 2Dn – 5Dn – 13	Dn – 13
\downarrow	X	Н	Dn + 3	off	Dn – 13

The signal sequence shown in Figure 9 makes the TLC592x-Q1 enter Current Adjust and Error Detection mode.

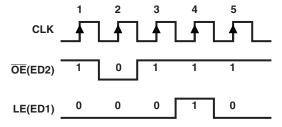


Figure 9. Switching to Special Mode

In the Current Adjust mode, sending the positive pulse of LE(ED1), the content of the shift register (a current adjust code) is written to the 16-bit configuration latch (see Figure 10).

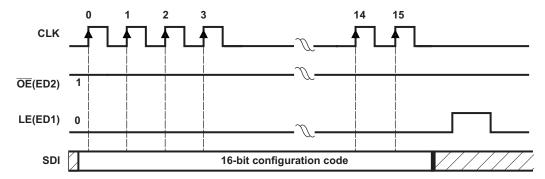


Figure 10. Writing Configuration Code

When the TLC592x-Q1 is in the error detection mode, the signal sequence shown in Figure 11 enables a system controller to read error status codes through SDO.

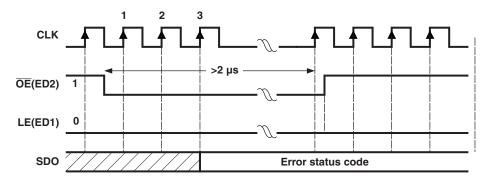


Figure 11. Reading Error Status Code

The signal sequence shown in Figure 12 makes TLC592x-Q1 resume the Normal mode. Switching to Normal mode resets all internal Error Status registers. OE (ED2) always enables the output port, whether the TLC592x-Q1 enters current adjust mode or not.

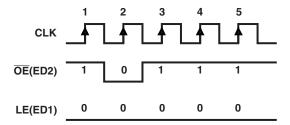


Figure 12. Switching to Normal Mode

Copyright © 2009-2015, Texas Instruments Incorporated

9.4.1 Operation Mode Switching

In order to switch between its two modes, TLC592x-Q1 monitors the signal $\overline{OE}(ED2)$. When a one-clock-wide pulse of $\overline{OE}(ED2)$ appears, TLC592x-Q1 enters the two-clock-period transition phase, the Mode Switching phase. After power on, the default operation mode is the Normal Mode (see Figure 13).

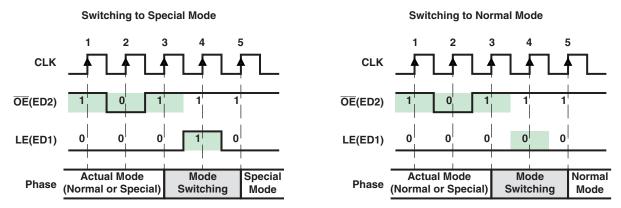


Figure 13. Mode Switching

As shown in Figure 13, once a one-clock-wide short pulse (101) of $\overline{\text{OE}}(\text{ED2})$ appears, TLC592x-Q1 enters the Mode Switching phase. At the fourth rising edge of CLK, if LE(ED1) is sampled as voltage high, TLC592x-Q1 switches to Special mode; otherwise, it switches to Normal mode. The signal LE(ED1) between the third and the fifth rising edges of CLK cannot latch any data. Its level is used only to determine into which mode to switch. However, the short pulse of $\overline{\text{OE}}(\text{ED2})$ can still enable the output ports. During mode switching, the serial data can still be transferred through SDI and shifted out from SDO.

NOTE

- 1. The signal sequence for the mode switching may be used frequently to ensure that the TLC592x-Q1 is in the proper mode.
- 2. The 1 and 0 on the LE(ED1) signal are sampled at the rising edge of CLK. The X means its level does not affect the result of mode switching mechanism.
- 3. After power on, the default operation mode is Normal mode.

9.4.2 Normal Mode Phase

Serial data is transferred into TLC592x-Q1 via SDI, shifted in the Shift Register, and output via SDO. LE(ED1) can latch the serial data in the Shift Register to the Output Latch. $\overline{OE}(ED2)$ enables the output drivers to sink current. These functions differ only as described in Operation Mode Switching, in which case, a short pulse triggers TLC592x-Q1 to switch the operation mode. However, as long as LE(ED1) is high in the Mode Switching phase, TLC592x-Q1 remains in the Normal mode, as if no mode switching occurred.

9.4.3 Special Mode Phase

In the Special mode, as long as $\overline{\text{OE}}(\text{ED2})$ is not low, the serial data is shifted to the Shift Register via SDI and shifted out via SDO, as in the Normal mode. However, there are two differences between the Special Mode and the Normal Mode, as shown in the following sections.

9.4.3.1 Reading Error Status Code in Special Mode

When $\overline{OE}(ED2)$ is pulled low while in Special mode, error detection and load error status codes are loaded into the Shift Register, in addition to enabling output ports to sink current. Figure 14 shows the timing sequence for error detection. The 0 and 1 signal levels are sampled at the rising edge of each CLK. At least three zeros must be sampled at the voltage low signal $\overline{OE}(ED2)$. Immediately after the second 0 is sampled, the data input source of the Shift Register changes to the 16-bit parallel Error Status Code register, instead of from the serial data on SDI. Normally, the error status codes are generated at least 2 μ s after the falling edge of $\overline{OE}(ED2)$. The

occurrence of the third or later 0 saves the detected error status codes into the Shift Register. Therefore, when $\overline{\text{OE}}(\text{ED2})$ is low, the serial data cannot be shifted into TLC592x-Q1 via SDI. When $\overline{\text{OE}}(\text{ED2})$ is pulled high, the data input source of the Shift Register is changed back to SDI. At the same time, the output ports are disabled and the error detection is completed. Then, the error status codes saved in the Shift Register can be shifted out via SDO bit-by-bit along with CLK, as well as the new serial data can be shifted into TLC592x-Q1 via SDI.

While in Special mode, the TLC592x-Q1 cannot simultaneously transfer serial data and detect LED load error status.

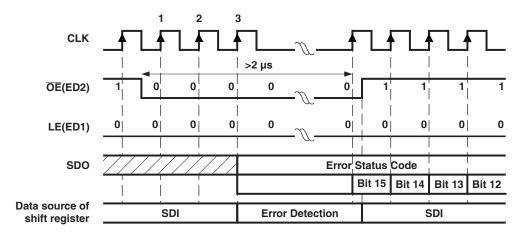


Figure 14. Reading Error Status Code

9.4.3.2 Writing Configuration Code in Special Mode

When in Special mode, the active high signal LE(ED1) latches the serial data in the Shift Register to the Configuration Latch, instead of the Output Latch. The latched serial data is used as the Configuration Code.

The code is stored until power off or the Configuration Latch is rewritten. As shown in Figure 15, the timing for writing the Configuration Code is the same as the timing in the Normal Mode to latching output channel data. Both the Configuration Code and Error Status Code are transferred in the common 16-bit Shift Register. Users must pay attention to the sequence of error detection and current adjustment to avoid the Configuration Code being overwritten by Error Status Code.

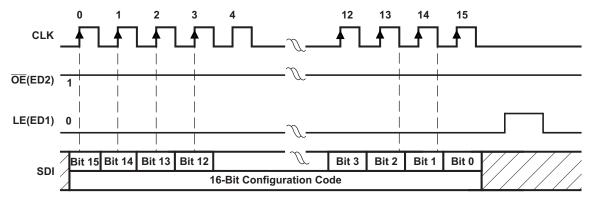


Figure 15. Writing Configuration Code

Product Folder Links: TLC5926-Q1 TLC5927-Q1

Submit Documentation Feedback

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

10.1.1 Constant Current

In LED display applications, TLC592x-Q1 provides nearly no current variations from channel to channel and from IC to IC. While $I_{OUT} \le 50$ mA, the maximum current skew between channels is less than $\pm 6\%$ and between ICs is less than $\pm 6\%$.

10.1.2 Adjusting Output Current

TLC592x-Q1 scales up the reference current, I_{ref} , set by the external resistor R_{ext} to sink a current, I_{out} , at each output port. Users can follow Equation 1, Equation 2, and Equation 3 to calculate the target output current $I_{OUT,target}$ in the saturation region:

$$V_{R-EXT} = 1.26 \text{ V} \times \text{VG}$$
 (1)

$$I_{ref} = V_{R-EXT}/R_{ext}$$
, if another end of the external resistor R_{ext} is connected to ground. (2)

$$I_{OUT,target} = I_{ref} \times 15 \times 3^{CM-1}$$
 (3)

Where R_{ext} is the resistance of the external resistor connected to the R-EXT terminal, and $V_{\text{R-EXT}}$ is the voltage of R-EXT, which is controlled by the programmable voltage gain (VG), which is defined by the Configuration Code. The Current Multiplier (CM) determines that the ratio $I_{\text{OUT,target}}/I_{\text{ref}}$ is 15 or 5. After power on, the default value of VG is 127/128 = 0.992, and the default value of CM is 1, so that the ratio $I_{\text{OUT,target}}/I_{\text{ref}}$ = 15. Based on the default VG and CM.

$$V_{R-EXT} = 1.26 \text{ V} \times 127 / 128 = 1.25 \text{ V}$$
 (4)

$$I_{OUT,target} = (1.25 \text{ V} / R_{ext}) \times 15 \tag{5}$$

Therefore, the default current is approximately 52 mA at 360 Ω and 26 mA at 720 Ω . The default relationship after power on between $I_{OUT,target}$ and R_{ext} is shown in Figure 16.

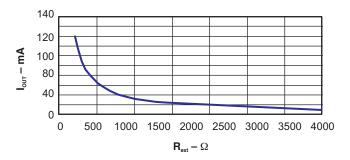


Figure 16. Default Relationship Curve Between I_{OUT,target} and R_{ext}

10.1.3 16-Bit Configuration Code and Current Gain

Table 5 shows the bit definition of the Configuration Code in the Configuration Latch.

Table 5. Bit Definition of 16-Bit Configuration Code

	BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 7	BIT 15:8
Meaning	СМ	HC	CC0	CC1	CC2	CC3	CC4	CC5	Don't care
Default	1	1	1	1	1	1	1	1	X

Bit 7 is first sent into TLC592x-Q1 via SDI. Bits 1 to 7 {HC, CC[0:5]} determine the voltage gain (VG) that affects the voltage at R-EXT and indirectly affects the reference current, I_{ref}, flowing through the external resistor at R-EXT. Bit 0 is the Current Multiplier (CM) that determines the ratio I_{OUT,target} / I_{ref}. Each combination of VG and CM gives a specific Current Gain (CG).

• VG: the relationship between {HC,CC[0:5]} and the voltage gain is calculated as:

$$VG = (1 + HC) \times (1 + D/64) / 4$$
 (6)

$$D = CC0 \times 2^{5} + CC1 \times 2^{4} + CC2 \times 2^{3} + CC3 \times 2^{2} + CC4 \times 2^{1} + CC5 \times 2^{0}$$
(7)

Where HC is 1 or 0, and D is the binary value of CC[0:5]. So, the VG could be regarded as a floating-point number with 1-bit exponent HC and 6-bit mantissa CC[0:5]. {HC,CC[0:5]} divides the programmable voltage gain VG into 128 steps and two sub-bands:

Low voltage sub-band (HC = 0): $VG = 1/4 \sim 127/256$, linearly divided into 64 steps High voltage sub-band (HC = 1): $VG = 1/2 \sim 127/128$, linearly divided into 64 steps

CM: In addition to determining the ratio I_{OUT,target}/I_{ref}, CM limits the output current range.
 High Current Multiplier (CM = 1): I_{OUT,target}/I_{ref} = 15, suitable for output current range I_{OUT} = 10 mA to 120 mA.
 Low Current Multiplier (CM = 0): I_{OUT,target}/I_{ref} = 5, suitable for output current range I_{OUT} = 5 mA to 40 mA

CG: The total Current Gain is defined as the following.

$$V_{R-EXT} = 1.26 \text{ V} \times \text{VG}$$
 (8)

$$I_{ref} = V_{R-EXT}/R_{ext}$$
, if the external resistor, R_{ext} , is connected to ground. (9)

$$I_{OUT, target} = I_{ref} \times 15 \times 3^{CM-1} = 1.26 \text{ V/R}_{ext} \times \text{VG} \times 15 \times 3^{CM-1} = (1.26 \text{ V/R}_{ext} \times 15) \times CG$$
 (10)

$$CG = VG \times 3^{CM-1}$$
 (11)

Therefore, CG = (1/12) to (127/128) divided into 256 steps.

Examples

- Configuration Code {CM, HC, CC[0:5]} = {1,1,111111}
 VG = 127/128 = 0.992 and CG = VG x 3⁰ = VG = 0.992
- Configuration Code = {1,1,000000}

$$VG = (1 + 1) \times (1 + 0/64)/4 = 1/2 = 0.5$$
, and $CG = 0.5$

Configuration Code = {0,0,000000}

$$VG = (1 + 0) \times (1 + 0/64)/4 = 1/4$$
, and $CG = (1/4) \times 3^{-1} = 1/12$

After power on, the default value of the Configuration Code {CM, HC, CC[0:5]} is {1,1,111111}. Therefore, VG = CG = 0.992. The relationship between the Configuration Code and the Current Gain is shown in Figure 17.

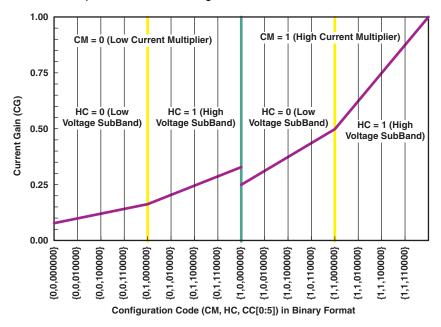


Figure 17. Current Gain vs Configuration Code

10.2 Typical Applications

10.2.1 Single Implementation of TLC5926/TLC5927-Q1 Device

The TLC592x-Q1 Constant-Current LED Sink Drivers is designed to work alone or cascaded. shows implementation of a single TLC591x-Q1 device.

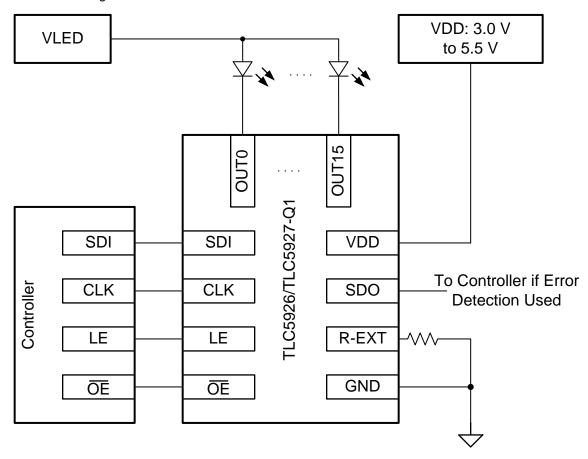


Figure 18. Simple Implementation of TLC591x-Q1 Circuit

10.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 6. The purpose of this design procedure is to calculate the power dissipation in the device and the operating junction temperature.

Table 6. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
No. of LED strings	16
No. of LEDs per string	3
LED current (mA)	20
Forward voltage of each LED (V)	3.5
Junction-to-ambient thermal resistance (°C/W)	39.7
Ambient temperature of application (°C)	115
V _{DD} (V)	5
I _{DD} (mA)	17
Max operating junction temperature (°C)	150

10.2.1.2 Detailed Design Procedure

$$T_J = T_A + \theta_{JA} \times P_{D_TOT}$$

where

- T_J is the junction temperature
- T_A is the ambient temperature
- θ_{JA} is the junction-to-ambient thermal resistance
- P_{D TOT} is the total power dissipation in the IC

(12)

$$P_{D TOT} = P_{D CS} + I_{DD} \times V_{DD}$$

where

- P_{D CS} is the power dissipation in the LED current sinks
- I_{DD} is the IC supply current
- V_{DD} is the IC supply voltage (13)

 $P_{D,CS} = I_O \times V_O \times n_{CH}$

where

- I_O is the LED current
- V_O is the voltage at the output pin
- n_{CH} is the number of LED strings (14)

 $V_O = V_{LED} - (n_{LED} \times V_F)$

where

- V_{LED} is the voltage applied to the LED string
- n_{LED} is the number of LEDs in the string
- V_F is the forward voltage of each LED (15)

 V_O must not be too high as this will cause excess power dissipation inside the current sink. However, V_O must also not be too low as this will not allow the full LED current (refer to the output voltage vs. output current graph). With $V_{LED} = 12 \text{ V}$:

$$V_0 = 12 \text{ V} - (3 \times 3.5 \text{ V}) = 1.5 \text{ V}$$
 (16)

$$P_{D CS} = 20 \text{ mA} \times 1.5 \text{ V} \times 16 = 0.48 \text{ W}$$
 (17)

Using P_{D CS}, calculate:

$$P_{D_TOT} = P_{D_CS} + I_{DD} \times V_{DD} = 0.48 \text{ W} + 0.017 \text{ A} \times 5 \text{ V} = 0.565 \text{ W}$$
(18)

Using P_{D TOT}, calculate:

$$T_J = T_A + \theta_{JA} \times P_{D \text{ TOT}} = 115^{\circ}\text{C} + 39.7^{\circ}\text{C/W} \times 0.565 \text{ W} = 137.6^{\circ}\text{C}$$
 (19)

This design example has demonstrated how to calculate power dissipation in the IC and ensure that the junction temperature is kept below 150°C.

NOTE

This design example assumes that all channels have the same electrical parameters (n_{LED} , I_O , V_F , V_{LED}). If the parameters are unique for each channel, then the power dissipation must be calculated for each current sink separately. Then, each result must be added together to calculate the total power dissipation in the current sinks.

Copyright © 2009–2015, Texas Instruments Incorporated

10.2.1.3 Application Curve

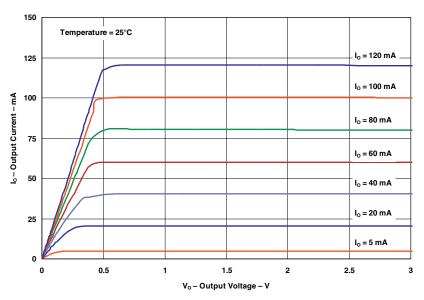


Figure 19. Output Current vs Output Voltage

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated

10.2.2 Cascading Implementation of TLC5926/ TLC5927-Q1 Device

The TLC592x-Q1 Constant-Current LED Sink Drivers is designed to work alone or cascaded. Figure 20 shows a cascaded driver implementation.

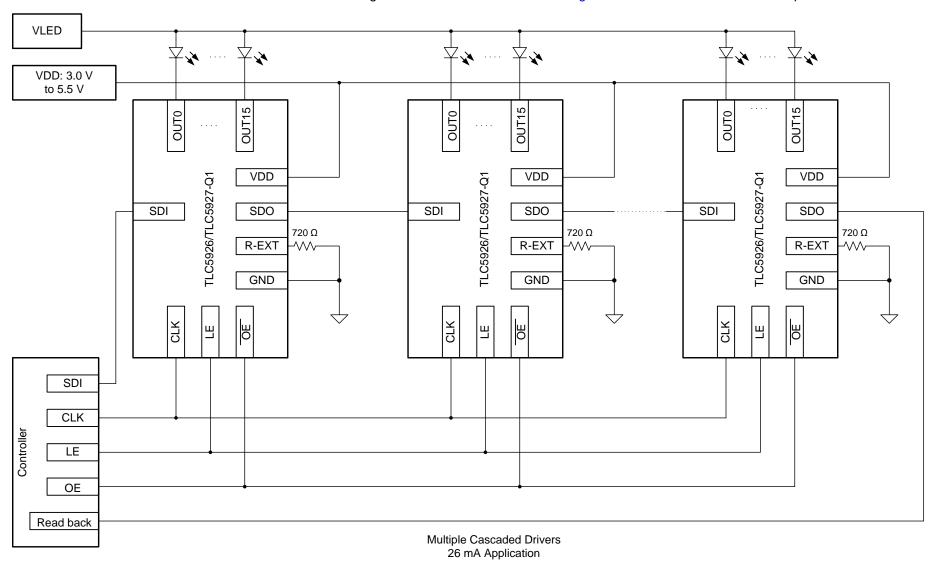


Figure 20. Cascading Implementation of TLC592x-Q1 Schematic

Copyright © 2009–2015, Texas Instruments Incorporated

Submit Documentation Feedback

11 Power Supply Recommendations

The device is designed to operate from a VDD supply between 3 V and 5.5 V. The LED supply voltage should be determined by the number of LEDs in each string and the forward voltage of the LEDs. The maximum recommended supply voltage on the output pins (OUT0-OUT15) is 17 V.

12 Layout

12.1 Layout Guidelines

The traces that carry current from the LED cathodes to the OUTx pins must be wide enough to support the default current (up to 120 mA).

The SDI, CLK, LE (ED1), \overline{OE} (ED2), and SDO pins should be connected to the microcontroller.

There are several ways to achieve this, including the following methods:

- Traces may be routed underneath the package on the top layer.
- The signal may travel through a via to another layer.

The thermal pad in the PWP package should be connected to the ground plane through thermal relief vias. This layout technique will improve the thermal performance of the package.

Product Folder Links: TLC5926-Q1 TLC5927-Q1

Submit Documentation Feedback

12.2 Layout Example

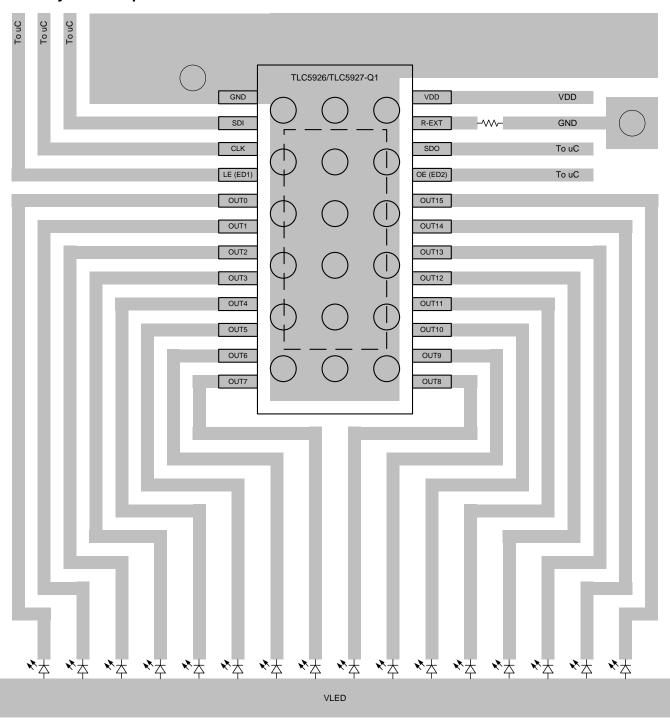


Figure 21. TLC592x-Q1 Layout Example

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 7. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TLC5926-Q1	Click here	Click here	Click here	Click here	Click here
TLC5927-Q1	Click here	Click here	Click here	Click here	Click here

13.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.3 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

13.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.5 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TLC5926QPWPRQ1	Active	Production	HTSSOP (PWP) 24	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TLC5926Q
TLC5926QPWPRQ1.A	Active	Production	HTSSOP (PWP) 24	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TLC5926Q
TLC5927QPWPRQ1	Active	Production	HTSSOP (PWP) 24	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TLC5927Q
TLC5927QPWPRQ1.A	Active	Production	HTSSOP (PWP) 24	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TLC5927Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. Tl and Tl suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLC5926-Q1, TLC5927-Q1:

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

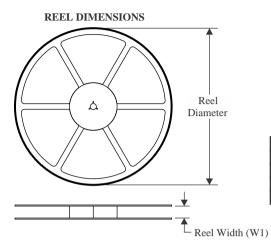
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

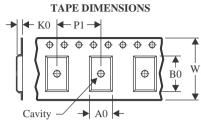
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 10-Nov-2025

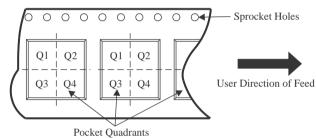
● Catalog : TLC5926, TLC5927


NOTE: Qualified Version Definitions:

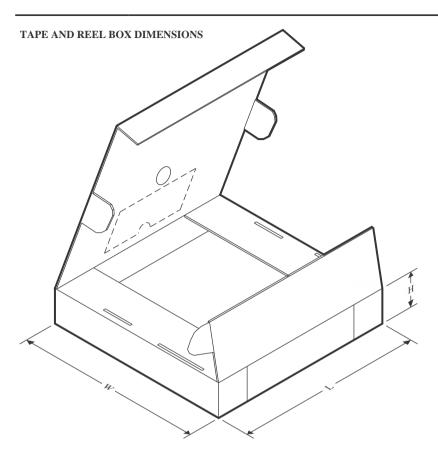

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Oct-2025


TAPE AND REEL INFORMATION

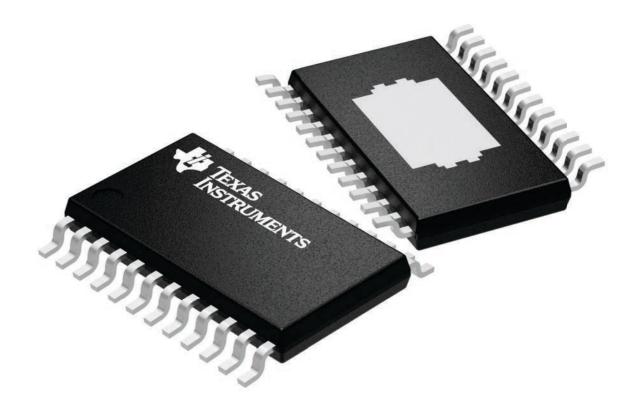
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC5926QPWPRQ1	HTSSOP	PWP	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
TLC5927QPWPRQ1	HTSSOP	PWP	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

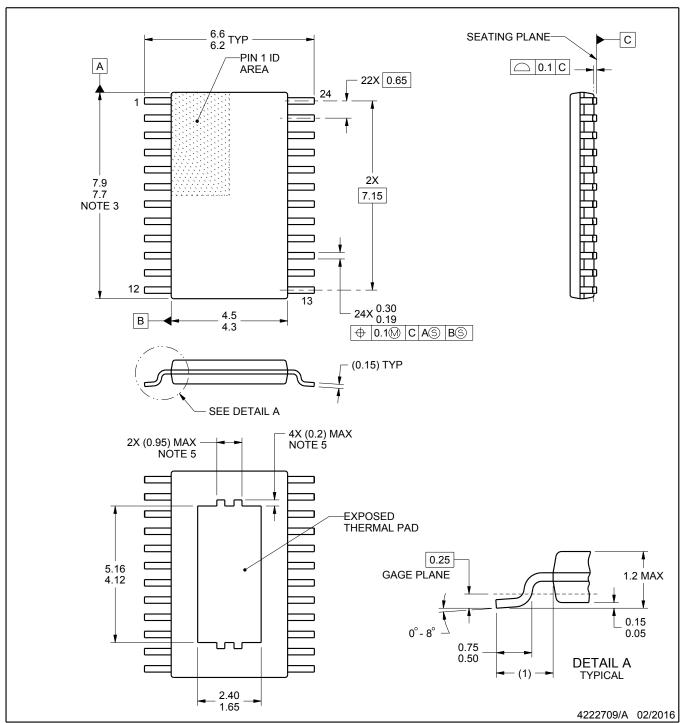
www.ti.com 9-Oct-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC5926QPWPRQ1	HTSSOP	PWP	24	2000	353.0	353.0	32.0
TLC5927QPWPRQ1	HTSSOP	PWP	24	2000	353.0	353.0	32.0

4.4 x 7.6, 0.65 mm pitch

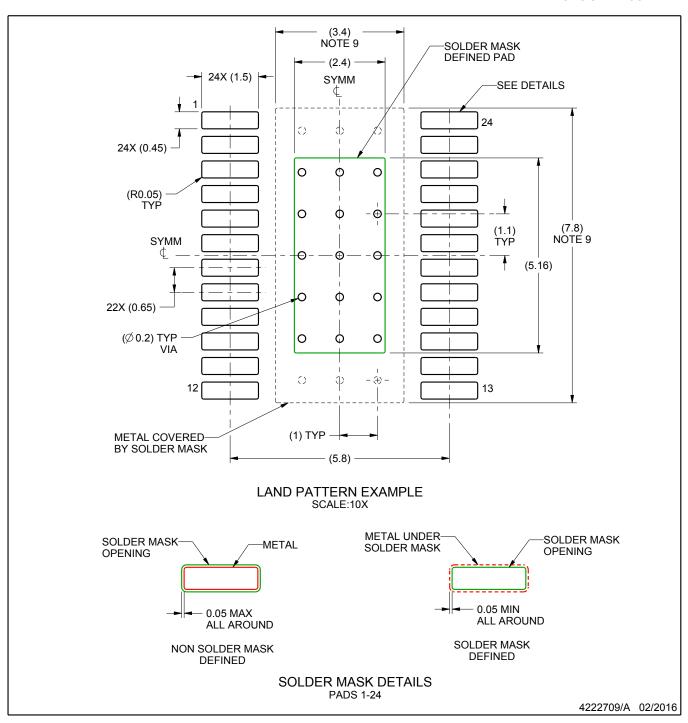
PLASTIC SMALL OUTLINE


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

·in the state of t

PowerPAD™ TSSOP - 1.2 mm max height

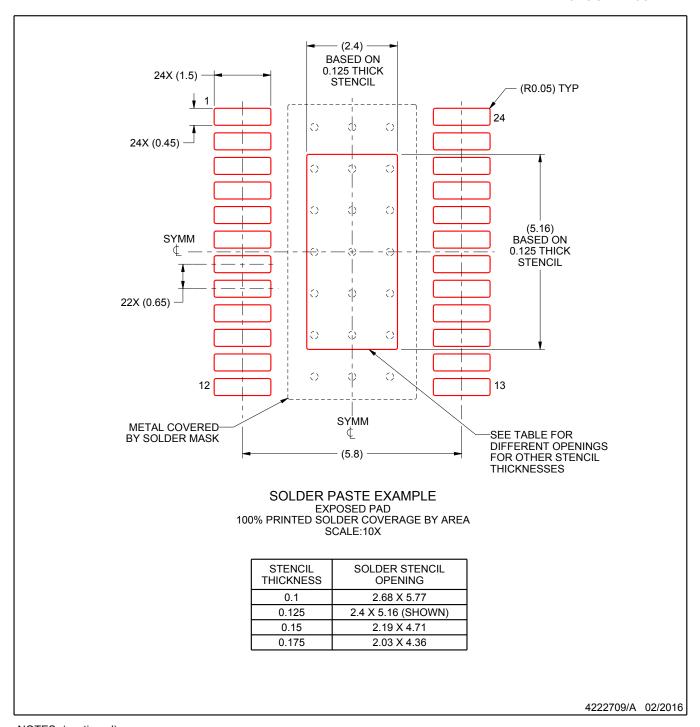
PLASTIC SMALL OUTLINE


NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
- 5. Features may not be present and may vary.

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025