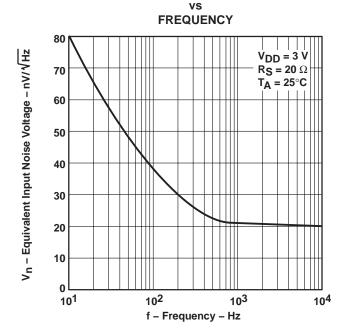

- Output Swing Includes Both Supply Rails
- Low Noise . . . 21 nV/ $\sqrt{\text{Hz}}$ Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Very Low Power . . . 11 μA Per Channel Typ
- Common-Mode Input Voltage Range Includes Negative Rail
- Wide Supply Voltage Range 2.7 V to 10 V
- Available in the SOT-23 Package
- Macromodel Included


description

The TLV2211 is a single low-voltage operational amplifier available in the SOT-23 package. It consumes only 11 μA (typ) of supply current and is ideal for battery-power applications. Looking at Figure 1, the TLV2211 has a 3-V noise level of 22 nV/\delta at 1kHz; 5 times lower than competitive SOT-23 micropower solutions. The device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLV2211 is fully characterized at 3 V and 5 V and is optimized for low-voltage applications.

The TLV2211, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs).

EQUIVALENT INPUT NOISE VOLTAGE[†]

[†] All loads are referenced to 1.5 V.

Figure 1. Equivalent Input Noise Voltage Versus Frequency

AVAILABLE OPTIONS

_	V	PACKAGED DEVICES	OVMDOL	CHIP FORM [‡]
TA	V _{IO} max AT 25°C	SOT-23 (DBV) [†]	SYMBOL	(Y)
0°C to 70°C	3 mV	TLV2211CDBV	VACC	TI V2211Y
-40°C to 85°C	3 mV	TLV2211IDBV	VACI	ILVZZIII

[†]The DBV package available in tape and reel only.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Advanced LinCMOS is a trademark of Texas Instruments.

[‡] Chip forms are tested at $T_A = 25$ °C only.

description (continued)

With a total area of 5.6mm², the SOT-23 package only requires one-third the board space of the standard 8-pin SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal source, minimizing noise pick-up from long PCB traces. TI has also taken special care to provide a pinout that is optimized for board layout (see Figure 2). Both inputs are separated by GND to prevent coupling or leakage paths. The OUT and IN – terminals are on the same end of the board to provide negative feedback. Finally, gain setting resistors and decoupling capacitor are easily placed around the package.

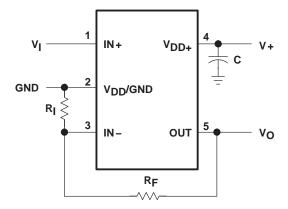
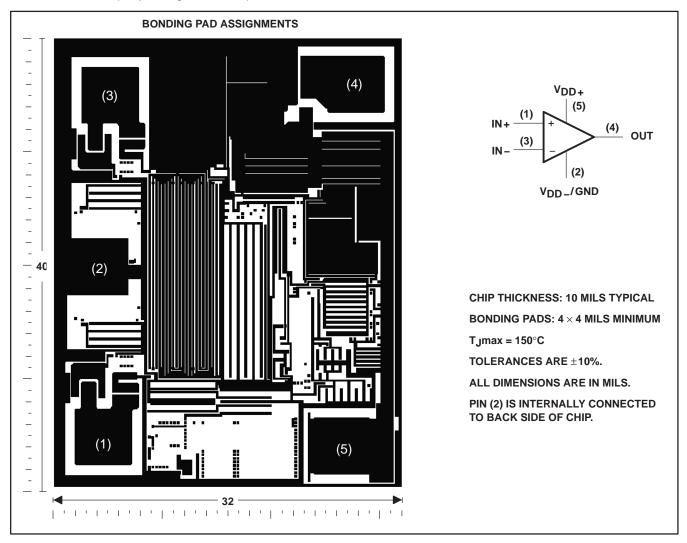
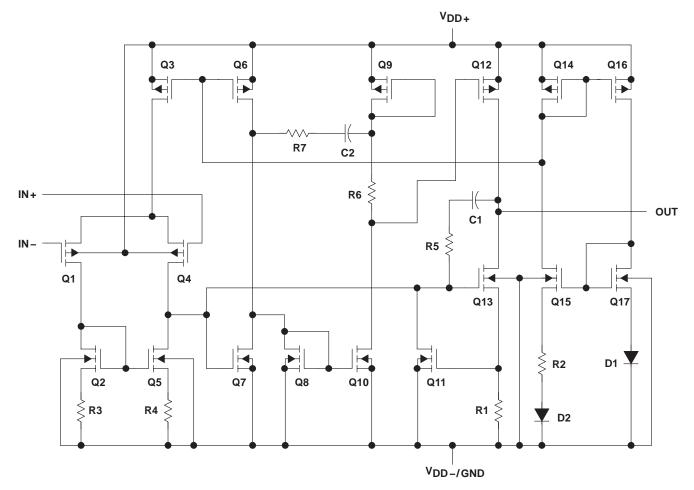



Figure 2. Typical Surface Mount Layout for a Fixed-Gain Noninverting Amplifier



TLV2211Y chip information

This chip, when properly assembled, displays characteristics similar to the TLV2211C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.

equivalent schematic

COMPONENT COUNT [†]						
Transistors	23					
Diodes	6					
Resistors	11					
Capacitors	2					

† Includes both amplifiers and all ESD, bias, and trim circuitry

TLV2211, TLV2211Y Advanced LinCMOS™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

SLOS156E - MAY 1996 - REVISED SEPTEMBER 2006

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input, see Note 1)	
Input current, I _I (each input)	
Output current, I _O	
Total current into V _{DD+}	
Total current out of V _{DD}	±50 mA
Duration of short-circuit current (at or below) 25°C (see Note 3)	unlimited
Continuous total power dissipation	
Operating free-air temperature range, T _A : TLV2211C	
TLV2211I	
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DBV package	e 260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD} _.
 - 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below V_{DD} = 0.3 V.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ Power rating	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	150 mW	1.2 mW/°C	96 mW	78 mW

recommended operating conditions

	TLV2211C MIN MAX		TL		
			MIN	MAX	UNIT
Supply voltage, V _{DD} (see Note 1)	2.7	10	2.7	10	V
Input voltage range, V _I	V _{DD} _	V _{DD+} -1.3	V _{DD} _	V _{DD+} -1.3	V
Common-mode input voltage, V _{IC}	V_{DD-}	V _{DD+} -1.3	V_{DD-}	V _{DD+} -1.3	V
Operating free-air temperature, TA	0	70	-40	85	°C

NOTE 1: All voltage values, except differential voltages, are with respect to VDD _.

TLV2211, TLV2211Y Advanced LinCMOS™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

SLOS156E - MAY 1996 - REVISED SEPTEMBER 2006

electrical characteristics at specified free-air temperature, $V_{DD} = 3 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		T. †	TI	_V2211	С	Т	LV2211	I	
	PARAMETER	TEST COND	ITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage					0.47	3		0.47	3	mV
αΛΙΟ	Temperature coefficient of input offset voltage	V 14.5.V	V 0	Full range		1			1		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 1.5 \text{ V},$ $V_{O} = 0,$	$V_{IC} = 0$, RS = 50 Ω	25°C		0.003			0.003		μV/mo
lιΟ	Input offset current			Full range		0.5	60		0.5	60	pА
I_{IB}	Input bias current			Full range		1	60		1	60	pА
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	R _S = 50 Ω	25°C	0 to 2	-0.3 to 2.2		0 to 2	-0.3 to 2.2		V
				Full range	to 1.7			to 1.7			
	LP ab Javal autaut	$I_{OH} = -100 \mu A$		25°C		2.94			2.94		
∨он	High-level output voltage	J 050 A		25°C		2.85			2.85		V
	voltage	I _{OH} = -250 μA		Full range	2.5			2.5			
		$V_{IC} = 1.5 V,$	$I_{OL} = 50 \mu\text{A}$	25°C		15			15		
VOL	Low-level output voltage		I _{OL} = 500 μA	25°C		150			150		mV
	vollago	V _{IC} = 1.5 V,		Full range			500			500	
	Large-signal		B. 10 kgt	25°C	3	7		3	7		
A_{VD}	differential voltage	$V_{IC} = 1.5 \text{ V},$ $V_{O} = 1 \text{ V to 2 V}$	$R_L = 10 \text{ k}\Omega^{\ddagger}$	Full range	1			1			V/mV
	amplification	VO = 1 V to 2 V	$R_L = 1 M\Omega^{\ddagger}$	25°C		600			600		
r _{i(d)}	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω
r _{i(c)}	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω
ci(c)	Common-mode input capacitance	f = 10 kHz,		25°C		5			5		pF
z _o	Closed-loop output impedance	f = 7 kHz,	A _V = 1	25°C		200			200		Ω
CMDD	Common-mode	$V_{IC} = 0 \text{ to } 1.7 \text{ V},$	V _O = 1.5 V,	25°C	65	83		65	83		-10
CMRR	rejection ratio	$R_S = 50 \Omega$	_	Full range	60			60			dB
ksvr	Supply voltage rejection ratio	$V_{DD} = 2.7 \text{ V to 8 V},$	$V_{IC} = V_{DD}/2$	25°C	80	95		80	95		dB
	$(\Delta V_{DD} / \Delta V_{IO})$	No load ,	,	Full range	80			80			ub
IDD	Supply current	V _O = 1.5 V,	No load	25°C		11	25		11	25	μA
יטט.	Cappi) contone	10 - 1.0 0,		Full range			30			30	μ, ,

 $[\]sp{\uparrow}$ Full range for the TLV2211C is 0°C to 70°C. Full range for the TLV2211I is – 40°C to 85°C.

[‡]Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at $T_A = 150$ °C extrapolated to $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2211, TLV2211Y Advanced LinCMOSTM RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS156E - MAY 1996 - REVISED SEPTEMBER 2006

operating characteristics at specified free-air temperature, $V_{DD} = 3 V$ (unless otherwise noted)

	242445752	7507.00110	ITIONIO	_ +	Т	LV22110	C	1	LV2211	I	UNIT	
	PARAMETER	TEST COND	IIIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
		V= 44V+=40V	B. 40 kgt	25°C	0.01	0.025		0.01	0.025			
SR	Slew rate at unity gain	$V_O = 1.1 \text{ V to } 1.9 \text{ V},$ $C_L = 100 \text{ pF}^{\ddagger}$	KL = 10 K22+,	Full range	0.005			0.005			V/µs	
.,	Equivalent input noise	f = 10 Hz		25°C		80			80		2)//s/II=	
V _n	voltage	f = 1 kHz		25°C		22			22		nV/√Hz	
\/	Peak-to-peak equivalent	f = 0.1 Hz to 1 Hz f = 0.1 Hz to 10 Hz		25°C		660			660		>/	
V _N (PP)	input noise voltage			25°C		880			880		nV	
In	Equivalent input noise current			25°C		0.6			0.6		fA/√Hz	
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		56			56		kHz	
BOM	Maximum output-swing bandwidth	$V_{O(PP)} = 1 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$	$A_V = 1,$ $C_L = 100 \text{ pF}^{\ddagger}$	25°C		7			7		kHz	
φm	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	C _L = 100 pF [‡]	25°C		56°			56°			
	Gain margin			25°C		20			20		dB	

[†] Full range is –40°C to 85°C. ‡ Referenced to 1.5 V

TLV2211, TLV2211Y Advanced LinCMOS™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

SLOS156E - MAY 1996 - REVISED SEPTEMBER 2006

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS TAT		TI	LV22110	3	TLV2211I				
	PARAMETER	TEST COND	IIIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage					0.45	3		0.45	3	mV
αVIO	Temperature coefficient of input offset voltage			Full range		0.5			0.5		μV/°C
	Input offset voltage long-term drift (see Note 5)	$V_{DD\pm} = \pm 2.5 \text{ V},$ $V_{O} = 0,$	$V_{IC} = 0$, RS = 50 Ω	25°C		0.003			0.003		μV/mo
I _{IO}	Input offset current			25°C		0.5	60		0.5	60	рA
IO	input onset current			Full range			150			150	РΛ
I _{IB}	Input bias current			25°C		1	60		1	60	рA
.ID	input blue ourront			Full range			150			150	P
V	Common-mode input	N/ 1 <5 m)/	D- 50.0	25°C	0 to 4	-0.3 to 4.2		0 to 4	-0.3 to 4.2		.,
VICR	voltage range	V _{IO} ≤5 mV	$R_S = 50 \Omega$	Full range	0 to 3.5			0 to 3.5			V
		I _{OH} = -100 μA		25°C		4.95			4.95		
Vон	High-level output Voltage	Jan. 250 A		25°C		4.875			4.875		V
1	voltage	I _{OH} = -250 μA		Full range	4.5			4.5			
1		$V_{IC} = 2.5 V,$	$I_{OL} = 50 \mu A$	25°C		12			12		
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C		120			120		mV
		VIC = 2.5 V,	10L = 300 μΑ	Full range			500			500	
	Large-signal	V _{IC} = 2.5 V,	$R_L = 10 \text{ k}\Omega^{\ddagger}$	25°C	6	12		6	12		
AVD	differential	$V_0 = 2.5 \text{ V},$ $V_0 = 1 \text{ V to 4 V}$		Full range	3			3			V/mV
	voltage amplification		$R_L = 1 M\Omega^{\ddagger}$	25°C		800			800		
ri(d)	Differential input resistance			25°C		1012			1012		Ω
r _{i(c)}	Common-mode input resistance			25°C		1012			1012		Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz,		25°C		5			5		pF
z _O	Closed-loop output impedance	f = 7 kHz,	A _V = 1	25°C		200			200		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 2.7 \text{ V},$ $R_S = 50 \Omega$	V _O = 2.5 V,	25°C Full range	70 70	83		70 70	83		dB
	Supply voltage			25°C	80	95		80	95		
ksvr	rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 4.4 \text{ V to 8 V},$ No load	$V_{IC} = V_{DD}/2$,	Full range	80	90		80	90		dB
	Supply current	V _O = 2.5 V,	29	25°C		13	25		13	25	
IDD			No load								μΑ

[†] Full range for the TLV2211C is 0°C to 70°C. Full range for the TLV2211I is – 40°C to 85°C.

NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

[‡]Referenced to 1.5 V

operating characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	DADAMETED	TEST CONDITIONS		- +	Т	LV2211	С	Т	LV2211	I	UNIT
	PARAMETER	TEST COND	IIIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII
		Va 45V4025V	B. 40 kgt	25°C	0.01	0.025		0.01	0.025		
SR	Slew rate at unity gain	$V_O = 1.5 \text{ V to } 3.5 \text{ V},$ $C_L = 100 \text{ pF}^{\ddagger}$	$RL = 10 \text{ K}\Omega + 10 \text{ K}\Omega$	Full range	0.005			0.005			V/μs
	Equivalent input noise	f = 10 Hz		25°C		72			72		nV/√ Hz
Vn	voltage	f = 1 kHz		25°C		21			21		nv/∀HZ
V	Peak-to-peak equivalent	f = 0.1 Hz to 1 Hz f = 0.1 Hz to 10 Hz		25°C		600			600		nV
VN(PP)	input noise voltage			25°C		800			800		ΠV
In	Equivalent input noise current			25°C		0.6			0.6		fA/√Hz
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		65			65		kHz
ВОМ	Maximum output-swing bandwidth	$V_{O(PP)} = 2 \text{ V},$ $R_{L} = 10 \text{ k}\Omega^{\ddagger},$	$A_V = 1,$ $C_L = 100 \text{ pF}^{\ddagger}$	25°C		7			7		kHz
φm	Phase margin at unity gain	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	C _L = 100 pF [‡]	25°C		56°			56°		
	Gain margin			25°C		22			22		dB

[†] Full range is –40°C to 85°C. ‡ Referenced to 1.5 V

electrical characteristics at V_{DD} = 3 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TES	ST CONDITIONS		T	LINUT		
	PARAMETER	123	ST CONDITIONS		MIN	TYP	MAX	UNIT
VIO	Input offset voltage	,, ., .,				0.47		mV
IIO	Input offset current	$V_{DD\pm} = \pm 1.5 \text{ V},$ $R_S = 50 \Omega$	$V_O = 0$,	$V_{IC} = 0$,		0.5	60	pA
I _{IB}	Input bias current	11/5 = 30 32				1	60	pA
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	$R_S = 50 \Omega$			-0.3 to 2.2		٧
,,	LP ob level entent valle or	$I_{OH} = -100 \mu A$				2.94		
VOH	High-level output voltage	$I_{OH} = -200 \mu A$				2.85		V
	Law lavel autout valtage	$V_{IC} = 0$,	I _{OL} = 50 μA			15		\/
VOL	Low-level output voltage	$V_{IC} = 0$,	I _{OL} = 500 μA			150		mV
	Large-signal differential			$R_L = 10 \text{ k}\Omega^{\dagger}$		7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
AVD	voltage amplification	$V_{IC} = 1.5 \text{ V},$ $V_{O} = 1 \text{ V to } 2 \text{ V}$ $R_{L} = 1 \text{ M}\Omega^{\dagger}$		600		V/mV		
r _{i(d)}	Differential input resistance			•		1012		Ω
r _{i(c)}	Common-mode input resistance					1012		Ω
Ci(c)	Common-mode input capacitance	f = 10 kHz				5		pF
z _O	Closed-loop output impedance	f = 7 kHz,	A _V = 1			200		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 1.7 \text{ V},$	$V_{O} = 1.5 V$,	$R_S = 50 \Omega$		83		dB
k _{SVR}	Supply voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	$V_{DD} = 2.7 \text{ V to 8 V},$	$V_{IC} = V_{DD}/2,$	No load		95	·	dB
I_{DD}	Supply current	$V_0 = 1.5 V$,	No load			11		μΑ

[†]Referenced to 1.5 V

TLV2211, TLV2211Y Advanced LinCMOS™ RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS SLOS156E - MAY 1996 - REVISED SEPTEMBER 2006

electrical characteristics at V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

PARAMETER			CT CONDITIONS		TI	LV2211Y	,	
	PARAMETER	153	ST CONDITIONS		MIN	TYP	MAX	UNIT
VIO	Input offset voltage					0.45		mV
lio	Input offset current	$V_{DD} \pm = \pm 2.5 \text{ V},$ $R_{S} = 50 \Omega$	$V_{IC} = 0,$	$V_O = 0$,		0.5	60	рА
I _{IB}	Input bias current	115 - 00 12				1	60	pА
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	$R_S = 50 \Omega$			-0.3 to 4.2		V
V	High lavel autout valtage	$I_{OH} = -100 \mu A$				4.95		V
VOH	High-level output voltage	$I_{OH} = -250 \mu A$				4.875		V
V	Laurianal autoritualtana	V _{IC} = 2.5 V,	$I_{OL} = 50 \mu A$			12		\/
VOL	Low-level output voltage	V _{IC} = 2.5 V,	$I_{OL} = 500 \mu A$			120		mV
	Large-signal differential	V 05V	V- 4.V/+- 4.V/	$R_L = 10 \text{ k}\Omega^{\dagger}$		12		\//\/
AVD	voltage amplification	$V_{IC} = 2.5 \text{ V},$	$V_O = 1 V \text{ to } 4 V$	$R_L = 1 M\Omega^{\dagger}$		800		V/mV
r _{i(d)}	Differential input resistance			-		1012		Ω
ri(c)	Common-mode input resistance					1012		Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz				5		рF
z _O	Closed-loop output impedance	f = 7 kHz,	A _V = 1			200		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 2.7 \text{ V},$	V _O = 2.5 V,	$R_S = 50 \Omega$		83		dB
ksvr	Supply voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	$V_{DD} = 4.4 \text{ V to 8 V},$	$V_{IC} = V_{DD}/2$,	No load		95		dB
I_{DD}	Supply current	V _O = 2.5 V,	No load			13	·	μΑ

[†] Referenced to 1.5 V

Table of Graphs

			FIGURE
V _{IO}	Input offset voltage	Distribution vs Common-mode input voltage	3, 4 5, 6
ανιο	Input offset voltage temperature coefficient	Distribution	7, 8
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	9
VI	Input voltage	vs Supply voltage vs Free-air temperature	10 11
Vон	High-level output voltage	vs High-level output current	12, 15
V _{OL}	Low-level output voltage	vs Low-level output current	13, 14, 16
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	17
IOS	Short-circuit output current	vs Supply voltage vs Free-air temperature	18 19
VO	Output voltage	vs Differential input voltage	20, 21
A _{VD}	Differential voltage amplification	vs Load resistance vs Frequency vs Free-air temperature	22 23, 24 25, 26
z _O	Output impedance	vs Frequency	27, 28
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	29 30
k _{SVR}	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	31, 32 33
I _{DD}	Supply current	vs Supply voltage	34
SR	Slew rate	vs Load capacitance vs Free-air temperature	35 36
VO	Large-signal pulse response	vs Time	37, 38, 39, 40
VO	Small-signal pulse response	vs Time	41, 42, 43, 44
V _n	Equivalent input noise voltage	vs Frequency	45, 46
	Noise voltage (referred to input)	Over a 10-second period	47
THD + N	Total harmonic distortion plus noise	vs Frequency	48
	Gain-bandwidth product	vs Free-air temperature vs Supply voltage	49 50
φm	Phase margin	vs Frequency vs Load capacitance	23, 24 51
	Gain margin	vs Load capacitance	52
B ₁	Unity-gain bandwidth	vs Load capacitance	53

DISTRIBUTION OF TLV2211 INPUT OFFSET VOLTAGE 30 376 Amplifiers From 1 Wafer Lot VDD = ±1.5 V TA = 25°C 376 Amplifiers From 1 Wafer Lot TA = 25°C 376 Amplifiers From 1 Wafer Lot TA = 25°C 377 Amplifiers From 1 Wafer Lot The state of the

Figure 3

V_{IO} - Input Offset Voltage - mV

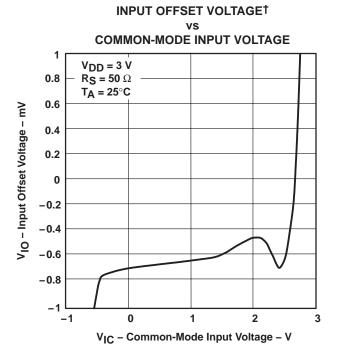


Figure 5

DISTRIBUTION OF TLV2211 INPUT OFFSET VOLTAGE

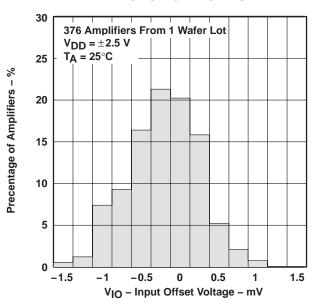


Figure 4

INPUT OFFSET VOLTAGE† vs COMMON-MODE INPUT VOLTAGE

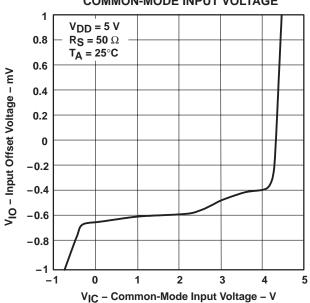


Figure 6

[†] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

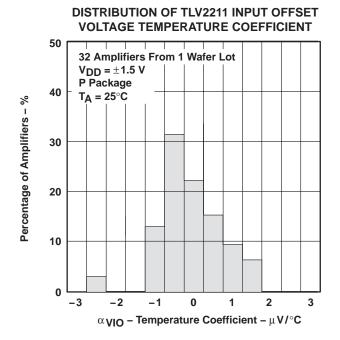
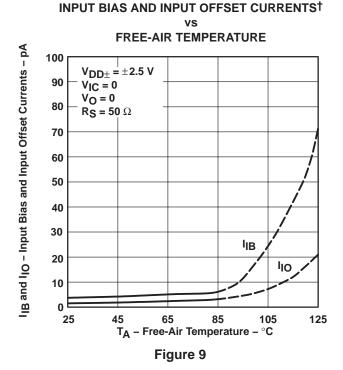
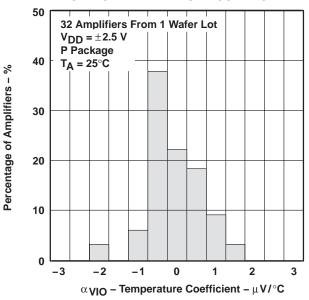
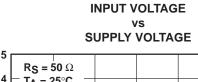
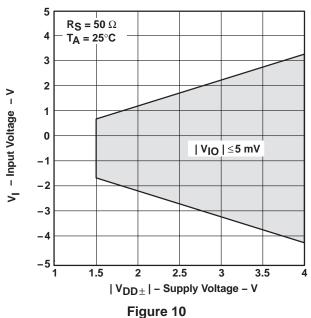
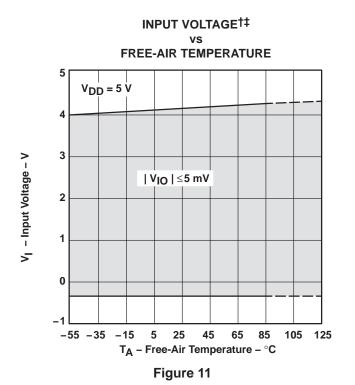
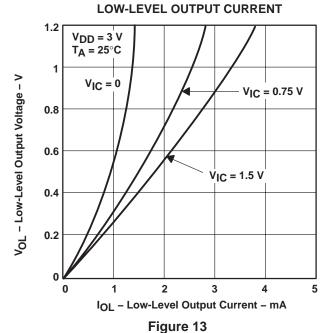



Figure 7

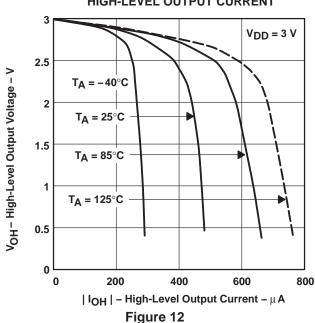
DISTRIBUTION OF TLV2211 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

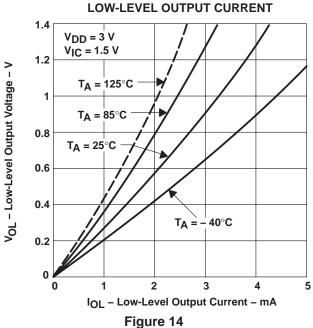





Figure 8

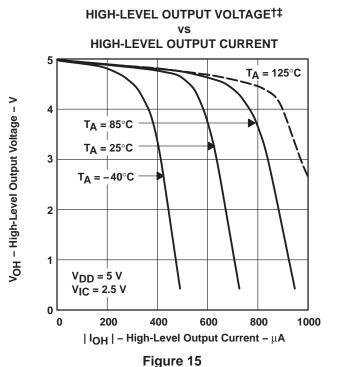


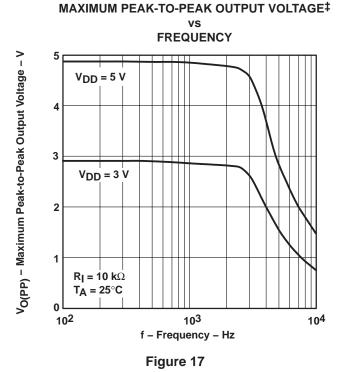
†Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



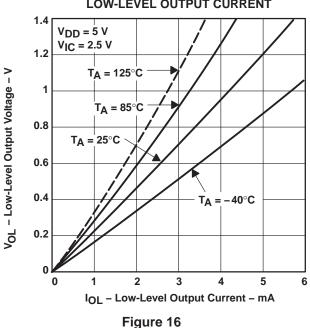

LOW-LEVEL OUTPUT VOLTAGE‡

HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT


LOW-LEVEL OUTPUT VOLTAGE†‡ vs


[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.



. igaio io

LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT

SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE

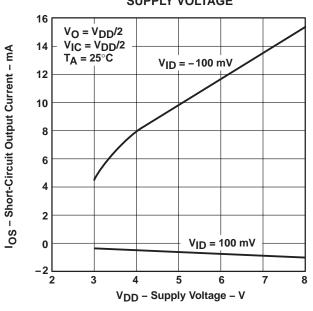
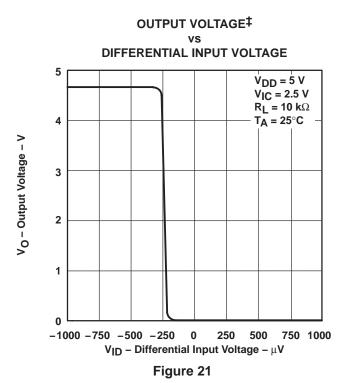
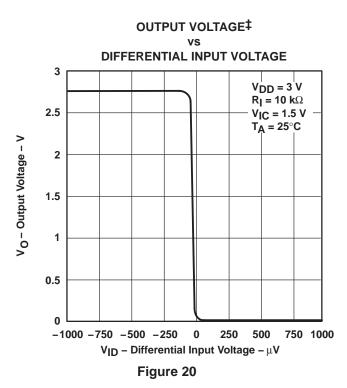


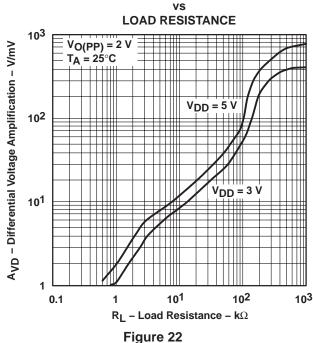
Figure 18

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.



TYPICAL CHARACTERISTICS


SHORT-CIRCUIT OUTPUT CURRENT^{†‡} FREE-AIR TEMPERATURE 14 $V_{DD} = 5 V$ $V_{IC} = 2.5 V$ IOS - Short-Circuit Output Current - mA 12 $V_0 = 2.5 \text{ V}$ 10 $V_{ID} = -100 \text{ mV}$ 8 2 $V_{ID} = 100 \text{ mV}$ 0 _ -75 -50 -25 25 50 75 100 125 T_A - Free-Air Temperature - °C

DIFFERENTIAL VOLTAGE AMPLIFICATION‡

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN[†]

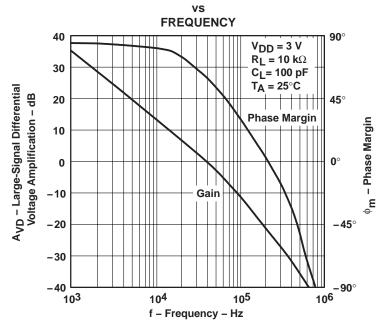


Figure 23

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN†

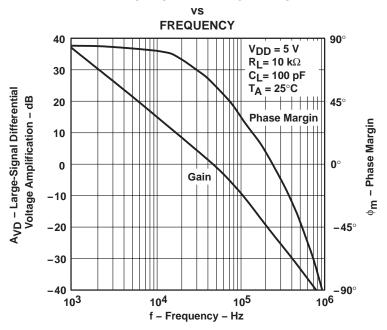
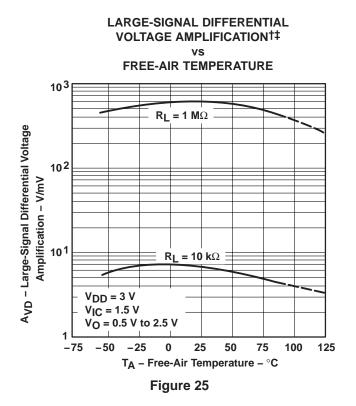



Figure 24

 \dagger For all curves where $V_{DD} = 5$ V, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3$ V, all loads are referenced to 1.5 V.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡
vs

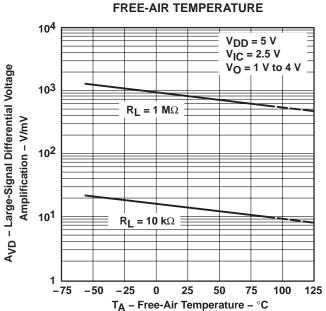
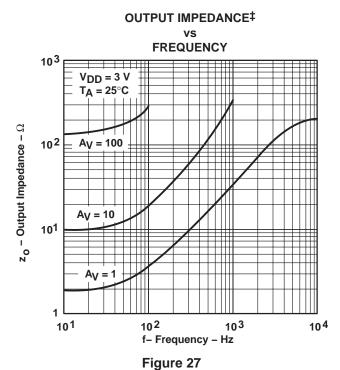
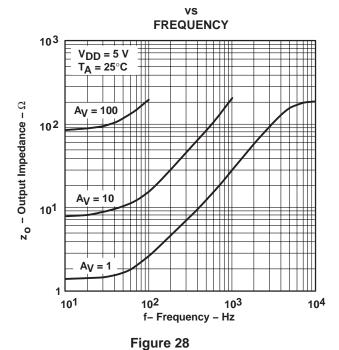
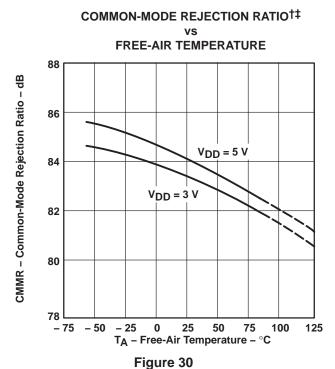
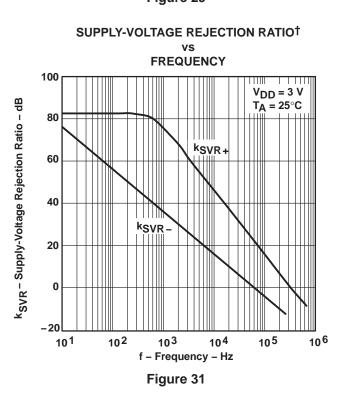
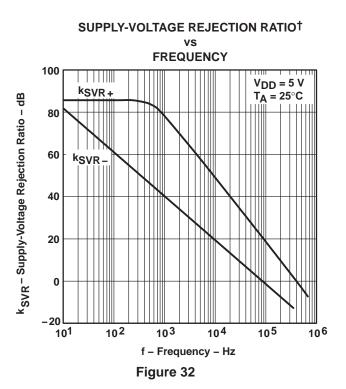




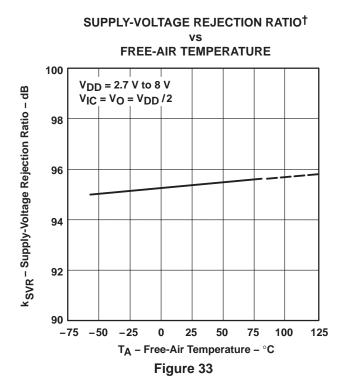
Figure 26

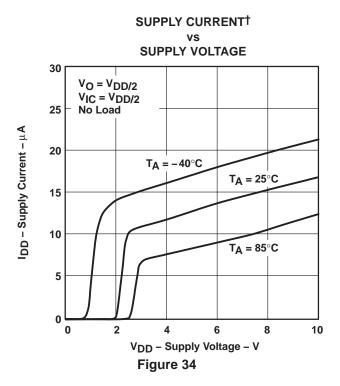


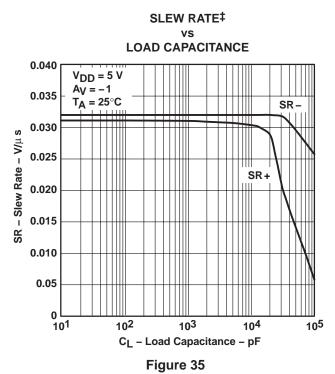

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

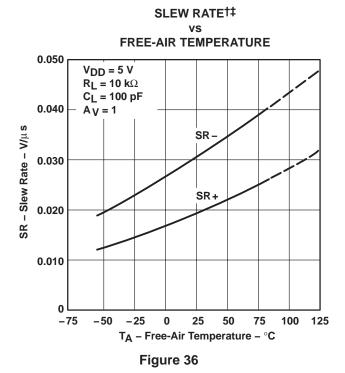

[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

COMMON-MODE REJECTION RATIO† **FREQUENCY** 100 $T_{\Delta} = 25^{\circ}C$ CMRR - Common-Mode Rejection Ratio - dB $V_{DD} = 5 V$ $V_0 = 2.5 V$ 80 $V_{DD} = 3 V$ 60 $V_0 = 1.5 \text{ V}$ 40 20 101 102 103 104 105 f - Frequency - Hz Figure 29






[†] For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.


[‡] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

INVERTING LARGE-SIGNAL PULSE RESPONSE† 3 $V_{DD} = 3 V$ $R_L = 10 \text{ k}\Omega$ $C_L = 100 pF$ 2.5 $A_{V}^{-} = -1$ $T_A = 25^{\circ}C$ Vo - Output Voltage - V 2 1.5 0.5 50 100 150 200 250 300 350 400 450 500 t – Time – μ s

Figure 37

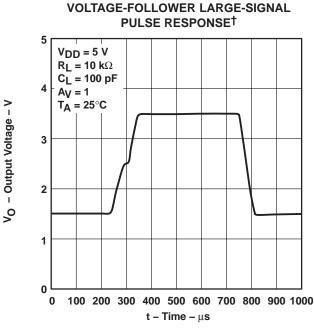


Figure 39

INVERTING LARGE-SIGNAL PULSE RESPONSE[†]

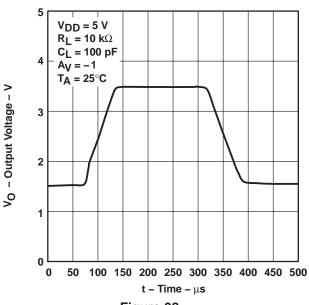
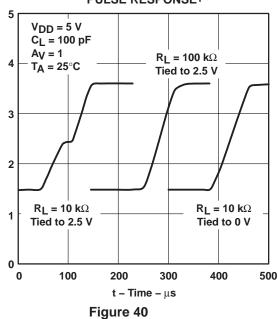
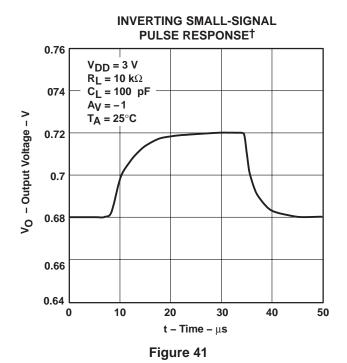
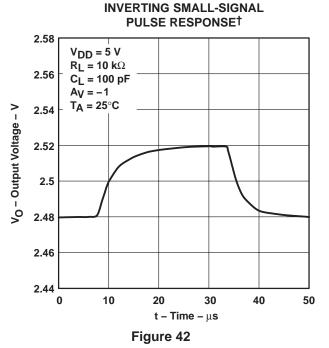



Figure 38


VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE[†]



† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

Vo - Output Voltage - V

OLTAGE FOLLOWED SMALL SIG

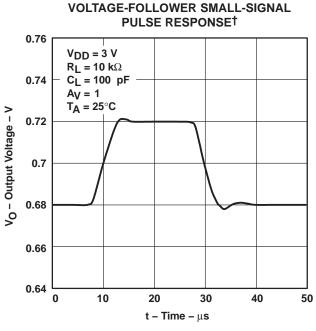
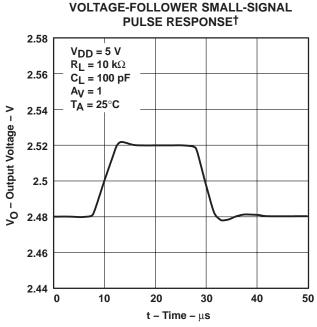
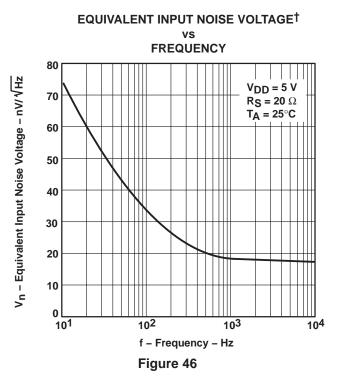
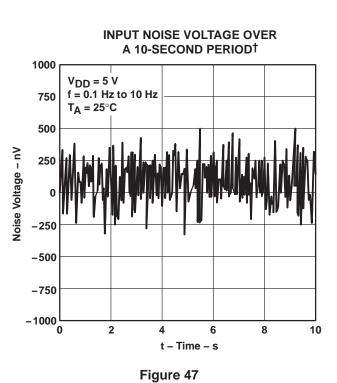
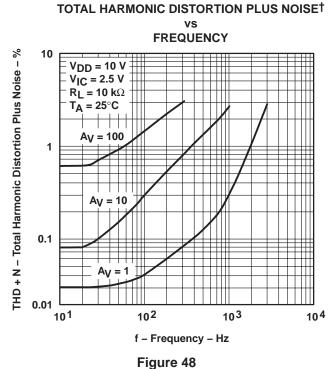


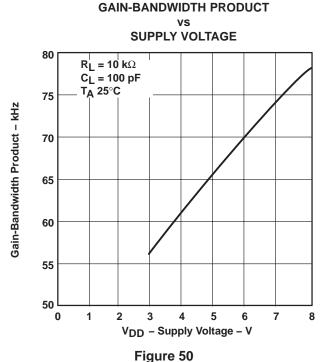
Figure 43

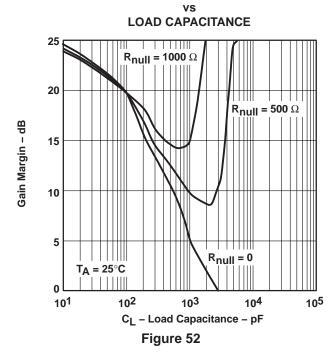

Figure 44

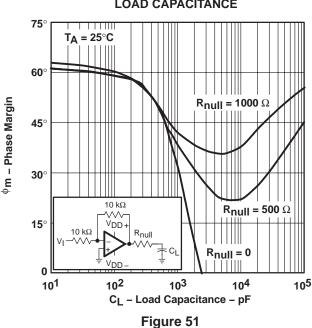

 † For all curves where $V_{DD} = 5$ V, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3$ V, all loads are referenced to 1.5 V.

EQUIVALENT INPUT NOISE VOLTAGE[†] **FREQUENCY** 80 V_n – Equivalent Input Noise Voltage – nV/ √Hz $V_{DD} = 3 V$ $R_S = 20 \Omega$ 70 $T_A = 25^{\circ}C$ 60 50 40 30 20 10 0 102 103 101 104 f - Frequency - Hz Figure 45






† For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.


GAIN-BANDWIDTH PRODUCT†‡ FREE-AIR TEMPERATURE 80 $V_{DD} = 5 V$ f = 10 kHz $R_L = 10 \text{ k}\Omega$ 75 Gain-Bandwidth Product - kHz $C_L = 100 pF$ 70 65 60 55 50 -75 -50 -25 0 25 50 75 100 125 T_A - Free-Air Temperature - °C Figure 49

GAIN MARGIN

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

UNITY-GAIN BANDWIDTH vs

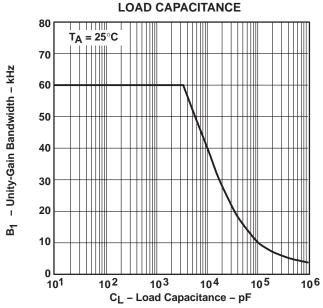


Figure 53

APPLICATION INFORMATION

driving large capacitive loads

The TLV2211 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figures 51 and 52 illustrate its ability to drive loads up to 600 pF while maintaining good gain and phase margins $(R_{null} = 0)$.

A smaller series resistor (R_{null}) at the output of the device (see Figure 54) improves the gain and phase margins when driving large capacitive loads. Figures 51 and 52 show the effects of adding series resistances of 500 Ω and 1000 Ω . The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used.

$$\Delta \phi_{m1} = \tan^{-1} \left(2 \times \pi \times \text{UGBW} \times R_{\text{null}} \times C_{\text{L}} \right)$$
 (1)

Where

 $\Delta \phi_{m1}$ = improvement in phase margin

UGBW = unity-gain bandwidth frequency

R_{null} = output series resistance

C_I = load capacitance

APPLICATION INFORMATION

driving large capacitive loads (continued)

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 54). To use equation 1, UGBW must be approximated from Figure 54.

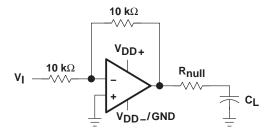


Figure 54. Series-Resistance Circuit

driving heavy dc loads

The TLV2211 is designed to provide better sinking and sourcing output currents than earlier CMOS rail-to-rail output devices. This device is specified to sink 500 μ A and source 250 μ A at V_{DD} = 3 V and V_{DD} = 5 V at a maximum quiescent I_{DD} of 25 μ A. This provides a greater than 90% power efficiency.

When driving heavy dc loads, such as 10 k Ω , the positive edge can experience some distortion under slewing conditions. This condition can be seen in Figure 39. This condition is affected by three factors:

- Where the load is referenced. When the load is referenced to either rail, this condition does not occur. The distortion occurs only when the output signal swings through the point where the load is referenced. Figure 40 illustrates two 10-k Ω load conditions. The first load condition shows the distortion seen for a 10-k Ω load tied to 2.5 V. The third load condition shows no distortion for a 10-k Ω load tied to 0 V.
- Load resistance. As the load resistance increases, the distortion seen on the output decreases. Figure 40 illustrates the difference seen on the output for a 10-k Ω load and a 100-k Ω load with both tied to 2.5 V.
- Input signal edge rate. Faster input edge rates for a step input result in more distortion than with slower input edge rates.

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 6) and subcircuit in Figure 54 are generated using the TLV2211 typical electrical and operating characteristics at $T_A = 25^{\circ}C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

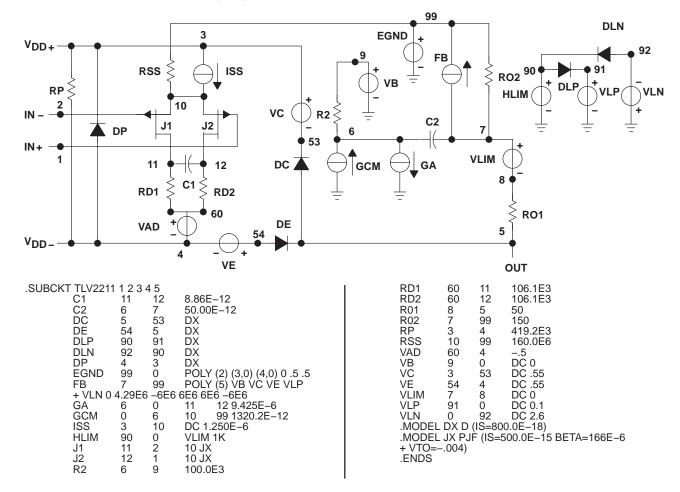


Figure 55. Boyle Macromodel and Subcircuit

PSpice and Parts are trademark of MicroSim Corporation.

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
TLV2211CDBVR	Obsolete	Production	SOT-23 (DBV) 5	-	-	Call TI	Call TI	0 to 70	VACC
TLV2211CDBVT	Obsolete	Production	SOT-23 (DBV) 5	-	-	Call TI	Call TI	0 to 70	VACC
TLV2211IDBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VACI
TLV2211IDBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VACI
TLV2211IDBVRG4	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	-	Call TI	Call TI	-40 to 85	
TLV2211IDBVT	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VACI
TLV2211IDBVT.A	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	VACI
TLV2211IDBVTG4	Active	Production	SOT-23 (DBV) 5	250 SMALL T&R	-	Call TI	Call TI	-40 to 85	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

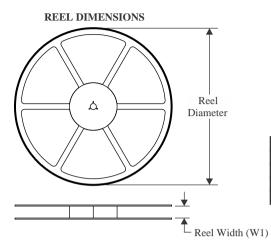
⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

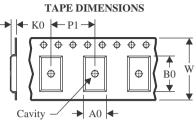
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

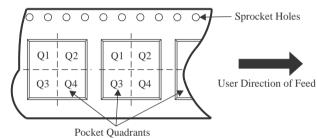
PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025

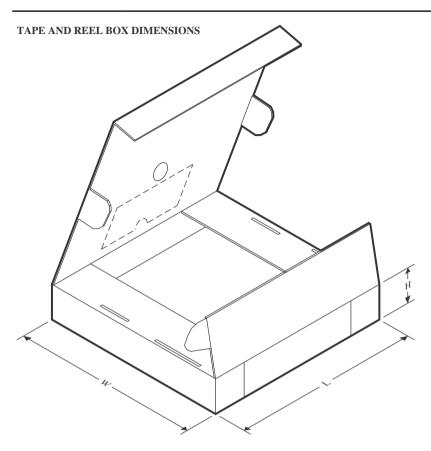

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jan-2025


TAPE AND REEL INFORMATION

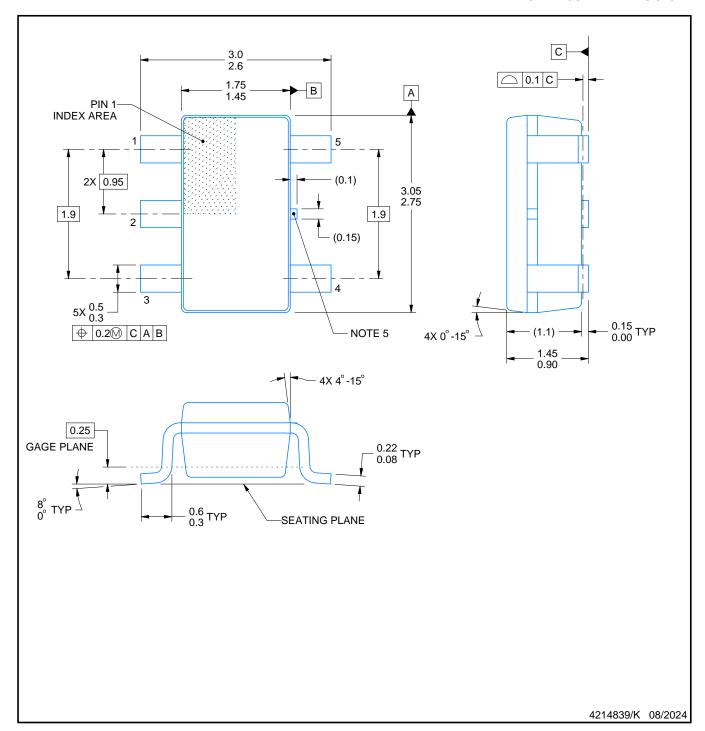
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2211IDBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TLV2211IDBVT	SOT-23	DBV	5	250	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3

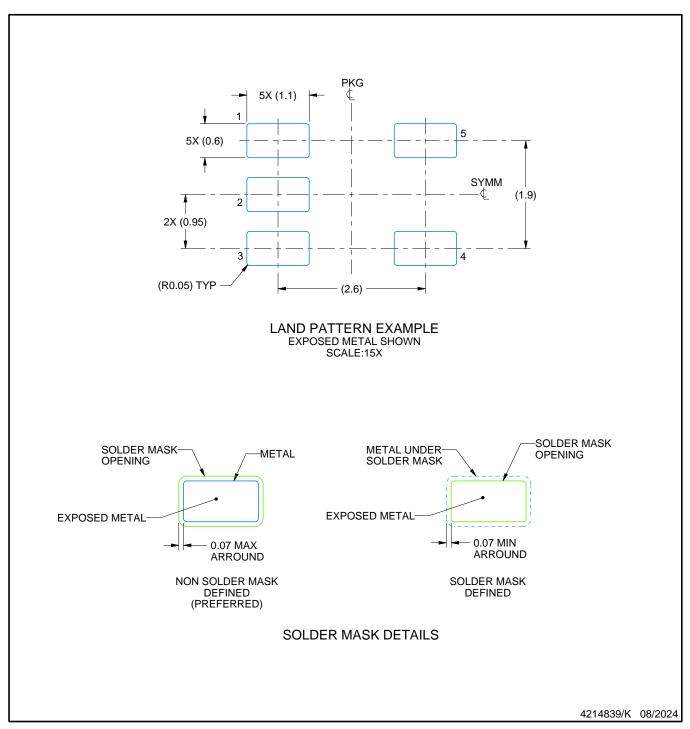
www.ti.com 14-Jan-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2211IDBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TLV2211IDBVT	SOT-23	DBV	5	250	180.0	180.0	18.0

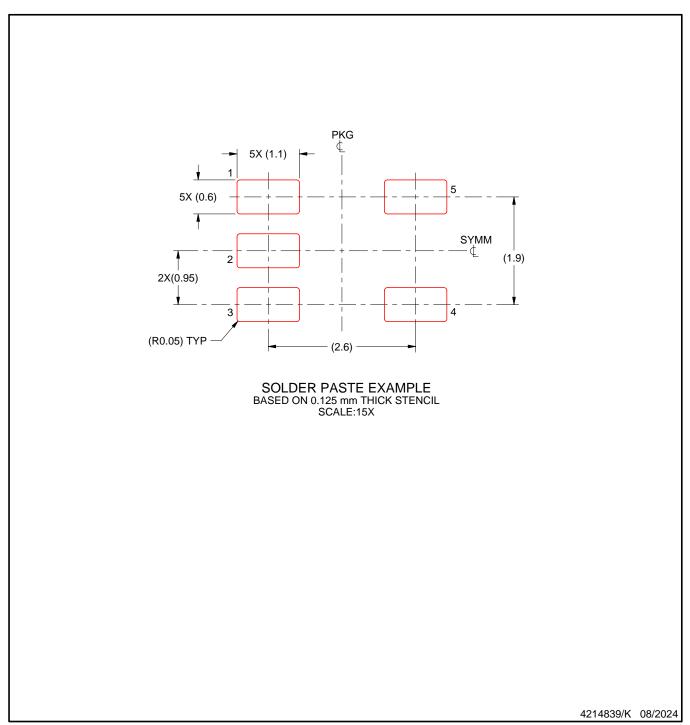
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025