

## TPS22961 3.5-V, 6-A, Ultra-low Resistance Load Switch

### 1 Features

- Integrated Single Channel Load Switch
- V<sub>BIAS</sub> Voltage Range: 3 V to 5.5 V
- Input Voltage Range: 0.8 V to 3.5 V
- Ultra low R<sub>ON</sub> Resistance
  - R<sub>ON</sub> = 4.4 mΩ at V<sub>IN</sub> = 1.05 V (V<sub>BIAS</sub> = 5 V)
- 6A Maximum Continuous Switch Current
- Low Quiescent Current < 1 μA (max)
- Low Control Input Threshold Enables use of 1.2-V/1.8-V/2.5-V/3.3-V Logic
- Controlled Slew Rate
  - t<sub>R</sub> = 4.2 μs at V<sub>IN</sub> = 1.05 V (V<sub>BIAS</sub> = 5 V)
- Quick Output Discharge (QOD)
- SON 8-terminal Package with Thermal Pad
- ESD Performance Tested per JESD 22
  - 2-kV HBM and 1-kV CDM

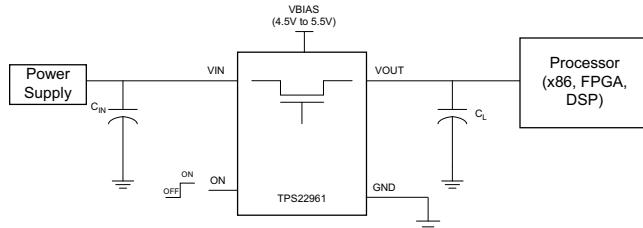
### 2 Applications

- Ultrabook™/Notebooks
- Desktops
- Servers
- Set-top Boxes
- Telecom Systems
- Tablet PC

### 3 Description

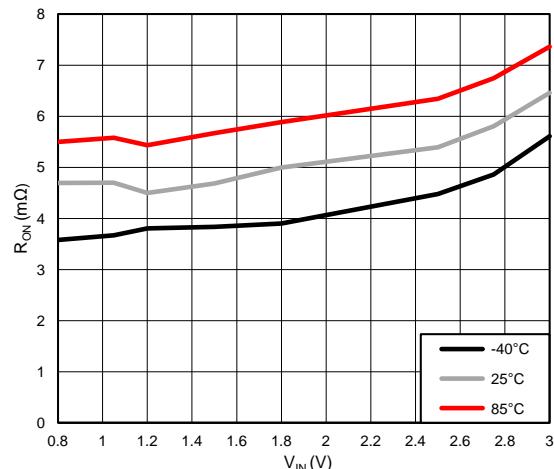
The TPS22961 is a small, ultra-low R<sub>ON</sub> single channel load switch with controlled turn on. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.8 V to 3.5 V and supports a maximum continuous current of 6 A.

The combination of ultra-low R<sub>ON</sub> and high current capability of the device makes it ideal for driving processor rails with very tight voltage dropout tolerances. Quick rise time of the device allows for power rails to come up quickly when the device is enabled, thereby reducing response time for power distribution. The switch can be independently controlled via the ON terminal, which is capable of interfacing directly with low-voltage control signals originating from microcontrollers or low voltage discrete logic. The device further reduces the total solution size by integrating a 260 Ω pull-down transistor for quick output discharge (QOD) when the switch is turned off.


The TPS22961 is available in a small, space-saving 3 mm x 3 mm 8-SON package (DNY) with integrated thermal pad allowing for high power dissipation. The device is characterized for operation over the free-air temperature range of -40°C to 85°C.

### Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE  | BODY SIZE         |
|-------------|----------|-------------------|
| TPS22961    | WSON (8) | 3.00 mm x 3.00 mm |


(1) For all available packages, see the orderable addendum at the end of the datasheet.

### 4 Simplified Schematic



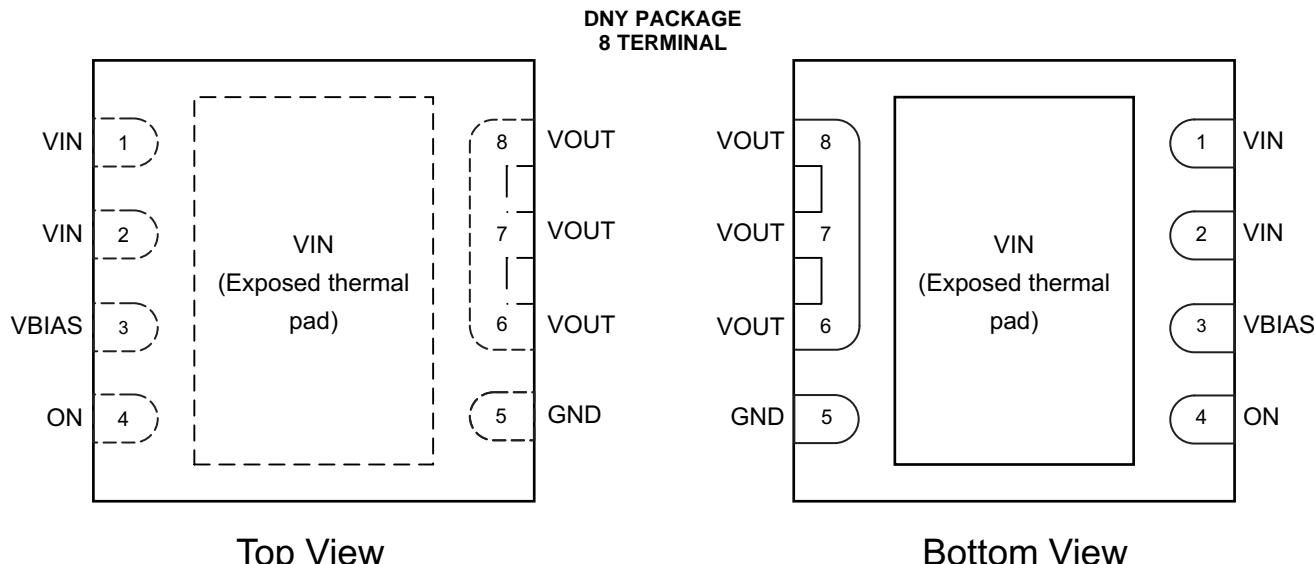
Typical Application: driving high current core rails for a processor

### R<sub>ON</sub> vs V<sub>IN</sub> (V<sub>BIAS</sub> = 5 V, I<sub>OUT</sub> = -200 mA)



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

## Table of Contents


|          |                                                |           |                    |                                             |           |
|----------|------------------------------------------------|-----------|--------------------|---------------------------------------------|-----------|
| <b>1</b> | <b>Features</b>                                | <b>1</b>  | 8.1                | Overview                                    | 12        |
| <b>2</b> | <b>Applications</b>                            | <b>1</b>  | 8.2                | Functional Block Diagram                    | 12        |
| <b>3</b> | <b>Description</b>                             | <b>1</b>  | 8.3                | Feature Description                         | 13        |
| <b>4</b> | <b>Simplified Schematic</b>                    | <b>1</b>  | <b>9</b>           | <b>Applications and Implementation</b>      | <b>14</b> |
| <b>5</b> | <b>Revision History</b>                        | <b>2</b>  | 9.1                | Application Information                     | 14        |
| <b>6</b> | <b>Terminal Configuration and Functions</b>    | <b>3</b>  | 9.2                | Typical Application                         | 14        |
| <b>7</b> | <b>Specifications</b>                          | <b>3</b>  | <b>10</b>          | <b>Power Supply Recommendations</b>         | <b>18</b> |
| 7.1      | Absolute Maximum Ratings                       | 3         | <b>11</b>          | <b>Layout</b>                               | <b>19</b> |
| 7.2      | Handling Ratings                               | 4         | 11.1               | Layout Guidelines                           | 19        |
| 7.3      | Recommended Operating Conditions               | 4         | 11.2               | Layout Example                              | 19        |
| 7.4      | Thermal Information                            | 4         | <b>12</b>          | <b>Device and Documentation Support</b>     | <b>20</b> |
| 7.5      | Electrical Characteristics, $V_{BIAS} = 5.0$ V | 5         | 12.1               | Trademarks                                  | 20        |
| 7.6      | Electrical Characteristics, $V_{BIAS} = 3.0$ V | 5         | 12.2               | Electrostatic Discharge Caution             | 20        |
| 7.7      | Switching Characteristics                      | 6         | 12.3               | Glossary                                    | 20        |
| 7.8      | Typical Characteristics                        | 8         | <b>13</b>          | <b>Mechanical, Packaging, and Orderable</b> | <b>20</b> |
| <b>8</b> | <b>Detailed Description</b>                    | <b>12</b> | <b>Information</b> |                                             |           |

## 5 Revision History

| Changes from Revision A (February 2014) to Revision B | Page |
|-------------------------------------------------------|------|
| • Fixed caption error in Filtered Output curve.       | 18   |

| Changes from Original (February 2014) to Revision A | Page |
|-----------------------------------------------------|------|
| • Initial release of full version.                  | 1    |

## 6 Terminal Configuration and Functions



### Pin Functions

| PIN   |                     | I/O | DESCRIPTION                                                                                                                                            |
|-------|---------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME  | NO.                 |     |                                                                                                                                                        |
| VIN   | 1, 2                | I   | Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See <a href="#">Detailed Description</a> section for more information.  |
| VIN   | Exposed thermal Pad | I   | Switch input. Place ceramic bypass capacitor(s) between this terminal and GND. See <a href="#">Detailed Description</a> section for more information.  |
| VBIAS | 3                   | I   | Bias voltage. Power supply to the device.                                                                                                              |
| ON    | 4                   | I   | Active high switch control input. Do not leave floating.                                                                                               |
| GND   | 5                   | –   | Ground.                                                                                                                                                |
| VOUT  | 6, 7, 8             | O   | Switch output. Place ceramic bypass capacitor(s) between this terminal and GND. See <a href="#">Detailed Description</a> section for more information. |

## 7 Specifications

### 7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|            |                                                                   | MIN  | MAX | UNIT         |
|------------|-------------------------------------------------------------------|------|-----|--------------|
| $V_{IN}$   | Input voltage range                                               | –0.3 | 4   | V            |
| $V_{BIAS}$ | Bias voltage range                                                | –0.3 | 6   | V            |
| $V_{OUT}$  | Output voltage range                                              | –0.3 | 4   | V            |
| $V_{ON}$   | ON pin voltage range                                              | –0.3 | 6   | V            |
| $I_{MAX}$  | Maximum Continuous Switch Current                                 |      | 6   | A            |
| $I_{PLS}$  | Maximum Pulsed Switch Current, pulse < 300 $\mu$ s, 2% duty cycle |      | 8   | A            |
| $T_A$      | Operating free-air temperature range                              | –40  | 85  | $^{\circ}$ C |
| $T_J$      | Maximum junction temperature                                      |      | 125 | $^{\circ}$ C |

(1) Stresses beyond those listed under **Absolute Maximum Ratings** may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under **Recommended Operating Conditions**. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

## 7.2 Handling Ratings

|                          |                                                | MIN | MAX | UNIT |
|--------------------------|------------------------------------------------|-----|-----|------|
| $T_{STG}$                | Storage temperature range                      | -65 | 150 | °C   |
| $T_{LEAD}$               | Maximum lead temperature (10-s soldering time) |     | 300 | °C   |
| $V_{ESD}$ <sup>(1)</sup> | Human-Body Model (HBM) <sup>(2)</sup>          |     | 2   | kV   |
|                          | Charged-Device Model (CDM) <sup>(3)</sup>      |     | 1   | kV   |

- (1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in to the device.
- (2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

## 7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

|              |                        | MIN                       | MAX               | UNIT |   |
|--------------|------------------------|---------------------------|-------------------|------|---|
| $V_{IN}$     | Input voltage range    | 0.8                       | $V_{BIAS} - 1.95$ | V    |   |
| $V_{BIAS}$   | Bias voltage range     | 3                         | 5.5               | V    |   |
| $V_{ON}$     | ON voltage range       | 0                         | 5.5               | V    |   |
| $V_{OUT}$    | Output voltage range   |                           | $V_{IN}$          | V    |   |
| $V_{IH, ON}$ | High-level voltage, ON | $V_{BIAS} = 3$ V to 5.5 V | 1.2               | 5.5  | V |
| $V_{IL, ON}$ | Low-level voltage, ON  | $V_{BIAS} = 3$ V to 5.5 V | 0                 | 0.5  | V |
| $C_{IN}$     | Input Capacitor        | 1 <sup>(1)</sup>          |                   | μF   |   |

- (1) Refer to [Detailed Description](#) section.

## 7.4 Thermal Information

| THERMAL METRIC <sup>(1)</sup> | TPS22961                                     | UNIT |
|-------------------------------|----------------------------------------------|------|
|                               | DNY                                          |      |
|                               | 8 PINS                                       |      |
| $\theta_{JA}$                 | Junction-to-ambient thermal resistance       | 44.6 |
| $\theta_{JCtop}$              | Junction-to-case (top) thermal resistance    | 44.4 |
| $\theta_{JB}$                 | Junction-to-board thermal resistance         | 17.6 |
| $\Psi_{JT}$                   | Junction-to-top characterization parameter   | 0.4  |
| $\Psi_{JB}$                   | Junction-to-board characterization parameter | 17.4 |
| $\theta_{JCbot}$              | Junction-to-case (bottom) thermal resistance | 1.1  |

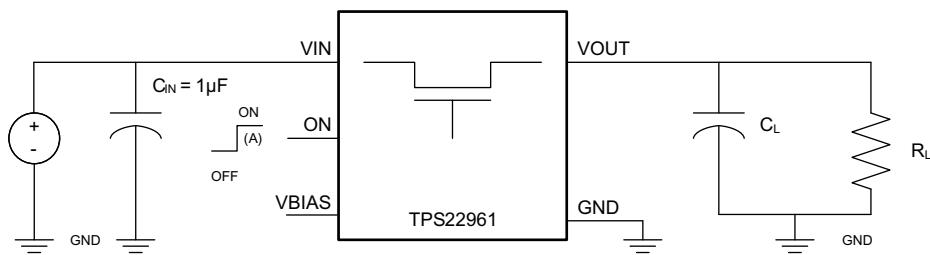
- (1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).

## 7.5 Electrical Characteristics, $V_{BIAS} = 5.0\text{ V}$

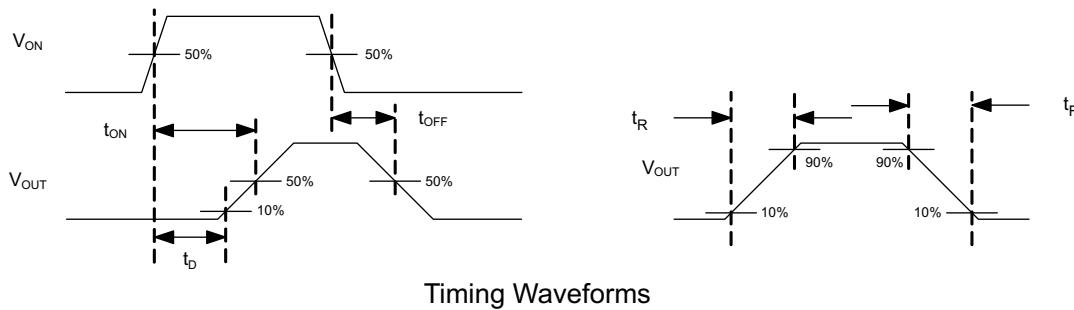
Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  $-40^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$  (full) and  $V_{BIAS} = 5.0\text{ V}$ . Typical values are for  $T_A = 25^\circ\text{C}$  (unless otherwise noted).

| PARAMETER                          | TEST CONDITIONS                                                      | $T_A$                    | MIN    | TYP | MAX | UNIT             |
|------------------------------------|----------------------------------------------------------------------|--------------------------|--------|-----|-----|------------------|
| <b>POWER SUPPLIES AND CURRENTS</b> |                                                                      |                          |        |     |     |                  |
| $I_Q, V_{BIAS}$                    | $I_{OUT} = 0, V_{IN} = 3\text{ V}, V_{ON} = V_{BIAS} = 5.0\text{ V}$ | Full                     | 0.6    | 1   | 1   | $\mu\text{A}$    |
| $I_{SD, V_{BIAS}}$                 | $V_{ON} = 0\text{ V}, V_{OUT} = 0\text{ V}$                          | Full                     | 0.6    | 1   | 1   | $\mu\text{A}$    |
| $I_{SD, V_{IN}}$                   | $V_{ON} = 0\text{ V}, V_{OUT} = 0\text{ V}$                          | Full                     | 0.0009 | 0.1 | 0.1 | $\mu\text{A}$    |
|                                    |                                                                      |                          | 0.0008 | 0.1 | 0.1 |                  |
|                                    |                                                                      |                          | 0.0007 | 0.1 | 0.1 |                  |
|                                    |                                                                      |                          | 0.0007 | 0.1 | 0.1 |                  |
|                                    |                                                                      |                          | 0.0006 | 0.1 | 0.1 |                  |
| $I_{ON}$                           | $V_{ON} = 5.5\text{ V}$                                              | Full                     |        | 0.1 | 0.1 | $\mu\text{A}$    |
| <b>RESISTANCE CHARACTERISTICS</b>  |                                                                      |                          |        |     |     |                  |
| $R_{ON}$                           | $I_{OUT} = -200\text{ mA}, V_{BIAS} = 5.0\text{ V}$                  | $V_{IN} = 3.0\text{ V}$  | 25°C   | 6.5 | 8   | $\text{m}\Omega$ |
|                                    |                                                                      |                          | Full   |     | 8.8 |                  |
|                                    |                                                                      | $V_{IN} = 2.5\text{ V}$  | 25°C   | 5.3 | 6.3 | $\text{m}\Omega$ |
|                                    |                                                                      |                          | Full   |     | 7.2 |                  |
|                                    |                                                                      | $V_{IN} = 2.0\text{ V}$  | 25°C   | 4.8 | 5.8 | $\text{m}\Omega$ |
|                                    |                                                                      |                          | Full   |     | 6.7 |                  |
|                                    |                                                                      | $V_{IN} = 1.05\text{ V}$ | 25°C   | 4.4 | 5.3 | $\text{m}\Omega$ |
|                                    |                                                                      |                          | Full   |     | 6.2 |                  |
|                                    |                                                                      | $V_{IN} = 0.8\text{ V}$  | 25°C   | 4.3 | 5.3 | $\text{m}\Omega$ |
|                                    |                                                                      |                          | Full   |     | 6.1 |                  |
| $R_{PD}$                           | $V_{IN} = 5.0\text{ V}, V_{ON} = 0\text{ V}, V_{OUT} = 1\text{ V}$   | Full                     | 260    | 300 | 300 | $\Omega$         |

## 7.6 Electrical Characteristics, $V_{BIAS} = 3.0\text{ V}$


Unless otherwise noted, the specification in the following table applies over the operating ambient temperature  $-40^\circ\text{C} \leq T_A \leq 85^\circ\text{C}$  (full) and  $V_{BIAS} = 3.0\text{ V}$ . Typical values are for  $T_A = 25^\circ\text{C}$  unless otherwise noted.

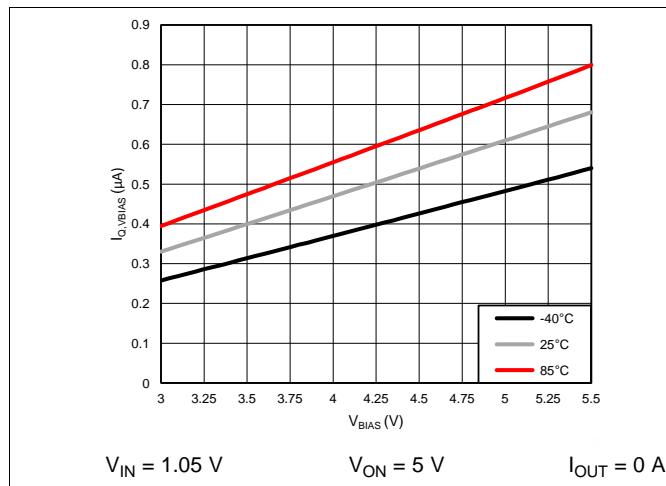
| PARAMETER                          | TEST CONDITIONS                                                      | $T_A$                    | MIN    | TYP | MAX | UNIT             |
|------------------------------------|----------------------------------------------------------------------|--------------------------|--------|-----|-----|------------------|
| <b>POWER SUPPLIES AND CURRENTS</b> |                                                                      |                          |        |     |     |                  |
| $I_Q, V_{BIAS}$                    | $I_{OUT} = 0, V_{IN} = 1\text{ V}, V_{ON} = V_{BIAS} = 3.0\text{ V}$ | Full                     | 0.3    | 1   | 1   | $\mu\text{A}$    |
| $I_{SD, V_{BIAS}}$                 | $V_{ON} = 0\text{ V}, V_{OUT} = 0\text{ V}$                          | Full                     | 0.3    | 1   | 1   | $\mu\text{A}$    |
| $I_{SD, V_{IN}}$                   | $V_{ON} = 0\text{ V}, V_{OUT} = 0\text{ V}$                          | Full                     | 0.001  | 0.1 | 0.1 | $\mu\text{A}$    |
|                                    |                                                                      |                          | 0.0008 | 0.1 | 0.1 |                  |
| $I_{ON}$                           | $V_{ON} = 5.5\text{ V}$                                              | Full                     |        | 0.1 | 0.1 | $\mu\text{A}$    |
| <b>RESISTANCE CHARACTERISTICS</b>  |                                                                      |                          |        |     |     |                  |
| $R_{ON}$                           | $I_{OUT} = -200\text{ mA}, V_{BIAS} = 3.0\text{ V}$                  | $V_{IN} = 1.05\text{ V}$ | 25°C   | 6.7 | 8.4 | $\text{m}\Omega$ |
|                                    |                                                                      |                          | Full   |     | 9.2 |                  |
|                                    |                                                                      | $V_{IN} = 0.8\text{ V}$  | 25°C   | 5.8 | 7.0 | $\text{m}\Omega$ |
|                                    |                                                                      |                          | Full   |     | 7.9 |                  |
| $R_{PD}$                           | $V_{IN} = 3\text{ V}, V_{ON} = 0\text{ V}, V_{OUT} = 1\text{ V}$     | Full                     | 260    | 300 | 300 | $\Omega$         |


## 7.7 Switching Characteristics

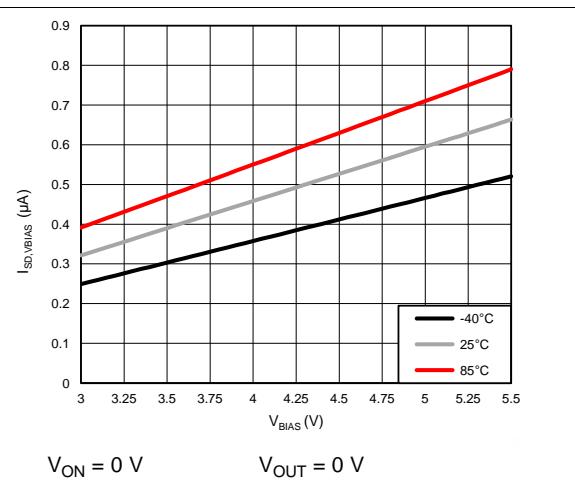
Refer to the timing test circuit in [Figure 1](#) (unless otherwise noted) for references to external components used for the test condition in the switching characteristics table.

| PARAMETER                                                                                                                                                                           | TEST CONDITION                                                                                                                                                                                                                                                                     | MIN   | TYP           | MAX  | UNIT          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|------|---------------|
| <b><math>V_{IN} = 2.5 \text{ V}</math>, <math>V_{ON} = V_{BIAS} = 5 \text{ V}</math>, <math>T_A = 25^\circ\text{C}</math> (unless otherwise noted)</b>                              |                                                                                                                                                                                                                                                                                    |       |               |      |               |
| $t_{ON}$                                                                                                                                                                            | $R_L = 10 \Omega$ , $C_L = 0.1 \mu\text{F}$                                                                                                                                                                                                                                        | 10.0  | $\mu\text{s}$ |      |               |
| $t_{OFF}$                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    | 3.5   |               |      |               |
| $t_R$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 6.3   |               |      |               |
| $t_F$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 2.0   |               |      |               |
| $t_D$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 8.1   |               |      |               |
| <b><math>V_{IN} = 1.05 \text{ V}</math>, <math>V_{ON} = V_{BIAS} = 5 \text{ V}</math>, <math>T_A = 25^\circ\text{C}</math> (unless otherwise noted)</b>                             |                                                                                                                                                                                                                                                                                    |       |               |      |               |
| $t_{ON}$                                                                                                                                                                            | $L = 2.2 \mu\text{H}$ (DCR = $0.33 \Omega$ ),<br>$C = 2 \times 22 \mu\text{F}$<br>(Refer to <a href="#">Typical Application</a><br><a href="#">Powering Rails Sensitive to Ringing</a><br><a href="#">and Overvoltage due to Fast Rise</a><br><a href="#">Time and Figure 31</a> ) | 8.1   | 11.3          | 17.3 | $\mu\text{s}$ |
| $t_{OFF}$                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    | 13700 |               |      |               |
| $t_R$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 5     | 9.5           | 12.5 |               |
| $t_F$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 44200 |               |      |               |
| $t_D$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 6.7   | 9.3           | 12.5 |               |
| <b><math>V_{IN} = 0.8 \text{ V}</math>, <math>V_{ON} = V_{BIAS} = 5 \text{ V}</math>, <math>T_A = 25^\circ\text{C}</math> (unless otherwise noted)</b>                              |                                                                                                                                                                                                                                                                                    |       |               |      |               |
| $t_{ON}$                                                                                                                                                                            | $R_L = 10 \Omega$ , $C_L = 0.1 \mu\text{F}$                                                                                                                                                                                                                                        | 9.7   | $\mu\text{s}$ |      |               |
| $t_{OFF}$                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    | 6.0   |               |      |               |
| $t_R$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 3.2   |               |      |               |
| $t_F$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 1.8   |               |      |               |
| $t_D$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 8.1   |               |      |               |
| <b><math>V_{IN} = 1.05 \text{ V}</math>, <math>V_{ON} = 5 \text{ V}</math>, <math>V_{BIAS} = 3.0 \text{ V}</math>, <math>T_A = 25^\circ\text{C}</math> (unless otherwise noted)</b> |                                                                                                                                                                                                                                                                                    |       |               |      |               |
| $t_{ON}$                                                                                                                                                                            | $R_L = 10 \Omega$ , $C_L = 0.1 \mu\text{F}$                                                                                                                                                                                                                                        | 19.1  | $\mu\text{s}$ |      |               |
| $t_{OFF}$                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    | 4.7   |               |      |               |
| $t_R$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 9.0   |               |      |               |
| $t_F$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 2.0   |               |      |               |
| $t_D$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 15.6  |               |      |               |
| <b><math>V_{IN} = 0.8 \text{ V}</math>, <math>V_{ON} = 5 \text{ V}</math>, <math>V_{BIAS} = 3.0 \text{ V}</math>, <math>T_A = 25^\circ\text{C}</math> (unless otherwise noted)</b>  |                                                                                                                                                                                                                                                                                    |       |               |      |               |
| $t_{ON}$                                                                                                                                                                            | $R_L = 10 \Omega$ , $C_L = 0.1 \mu\text{F}$                                                                                                                                                                                                                                        | 19.0  | $\mu\text{s}$ |      |               |
| $t_{OFF}$                                                                                                                                                                           |                                                                                                                                                                                                                                                                                    | 5.4   |               |      |               |
| $t_R$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 7.0   |               |      |               |
| $t_F$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 1.9   |               |      |               |
| $t_D$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | 15.7  |               |      |               |

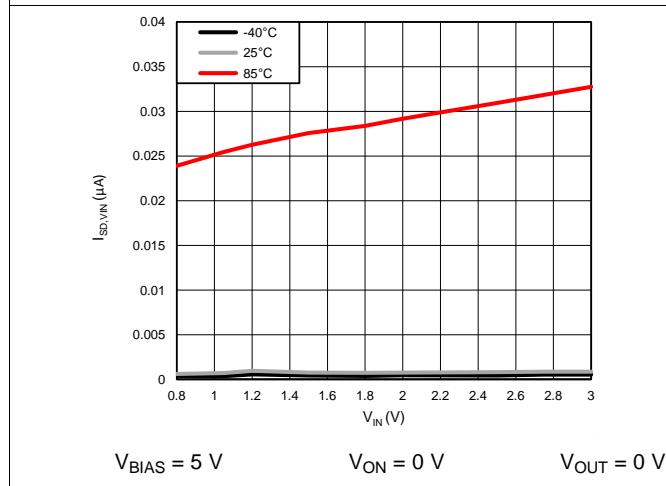



Timing Test Circuit

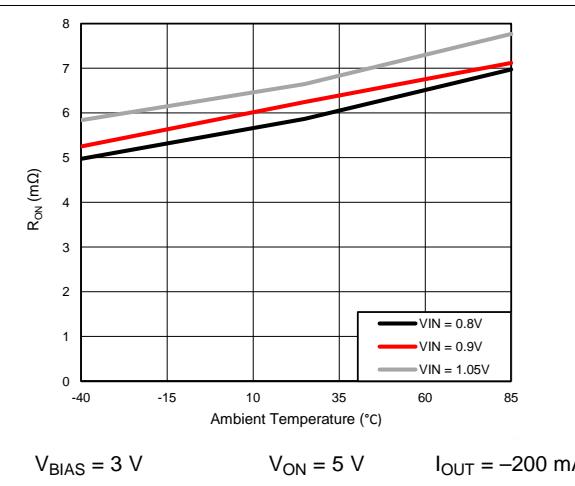



(A) Rise and fall times of the control signal is 100ns.

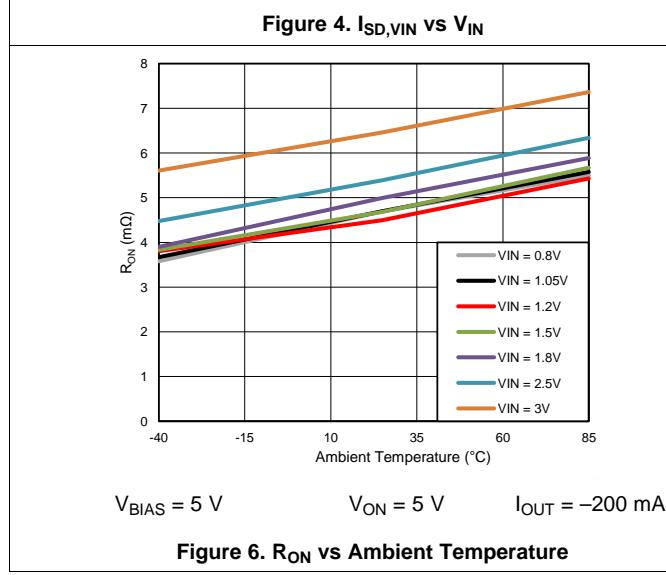
**Figure 1. Switching Characteristics Measurement Setup and Definitions**


## 7.8 Typical Characteristics

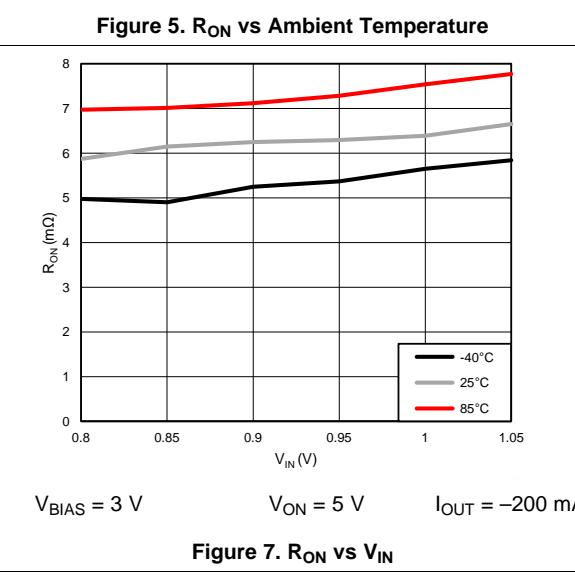



**Figure 2.  $I_{Q,VBIAS}$  vs  $V_{BIAS}$**



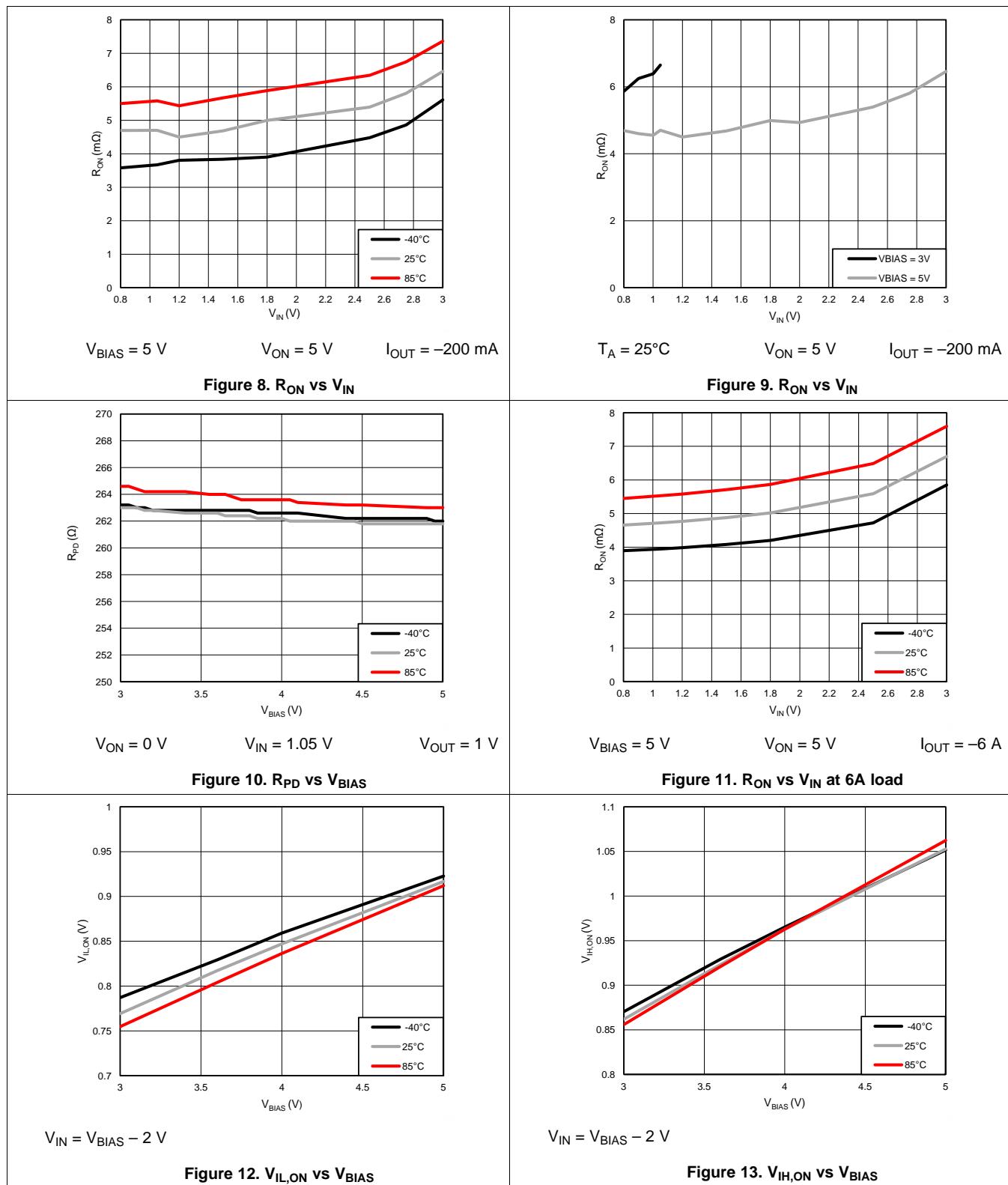

**Figure 3.  $I_{SD,VBIAS}$  vs  $V_{BIAS}$**

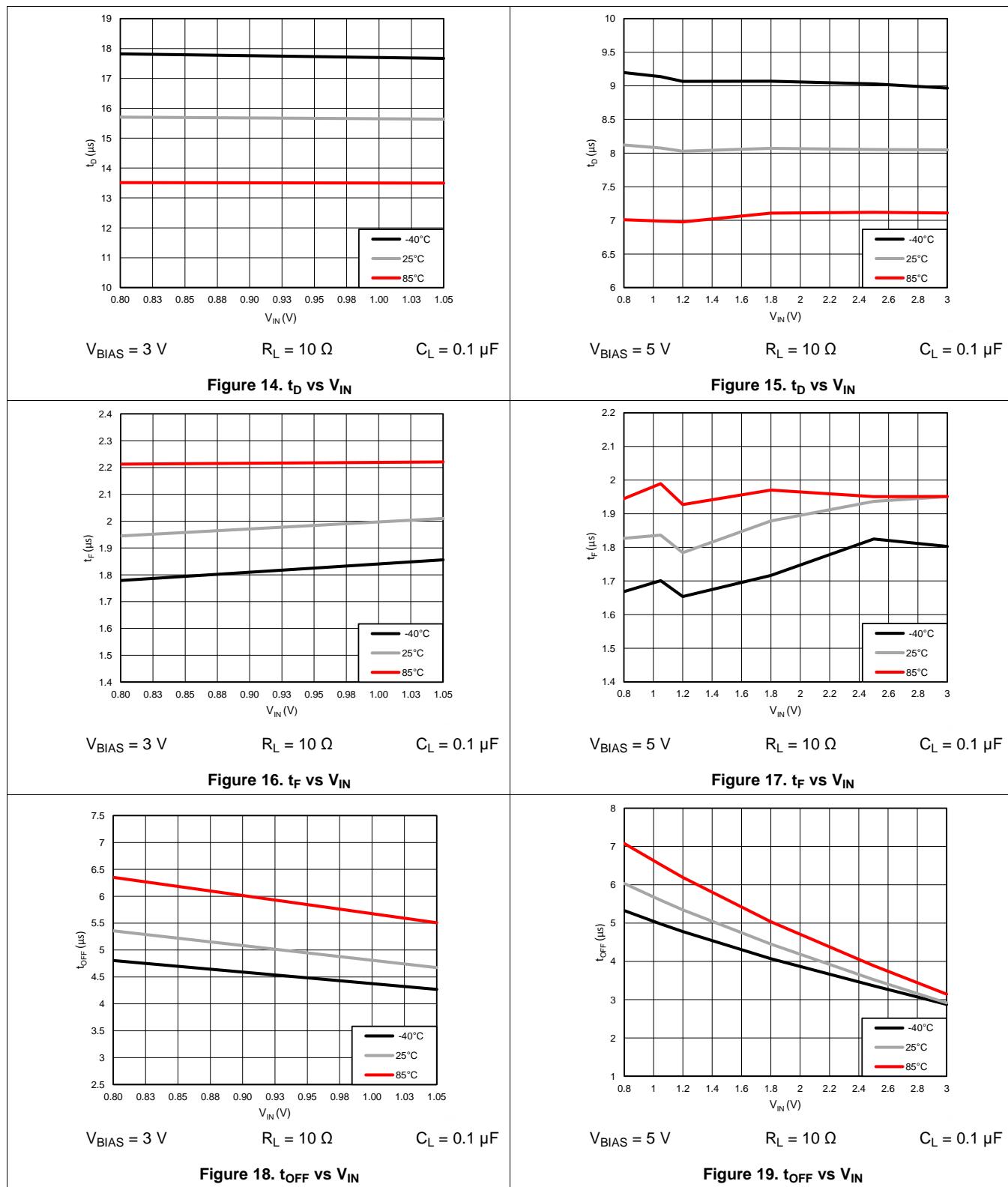


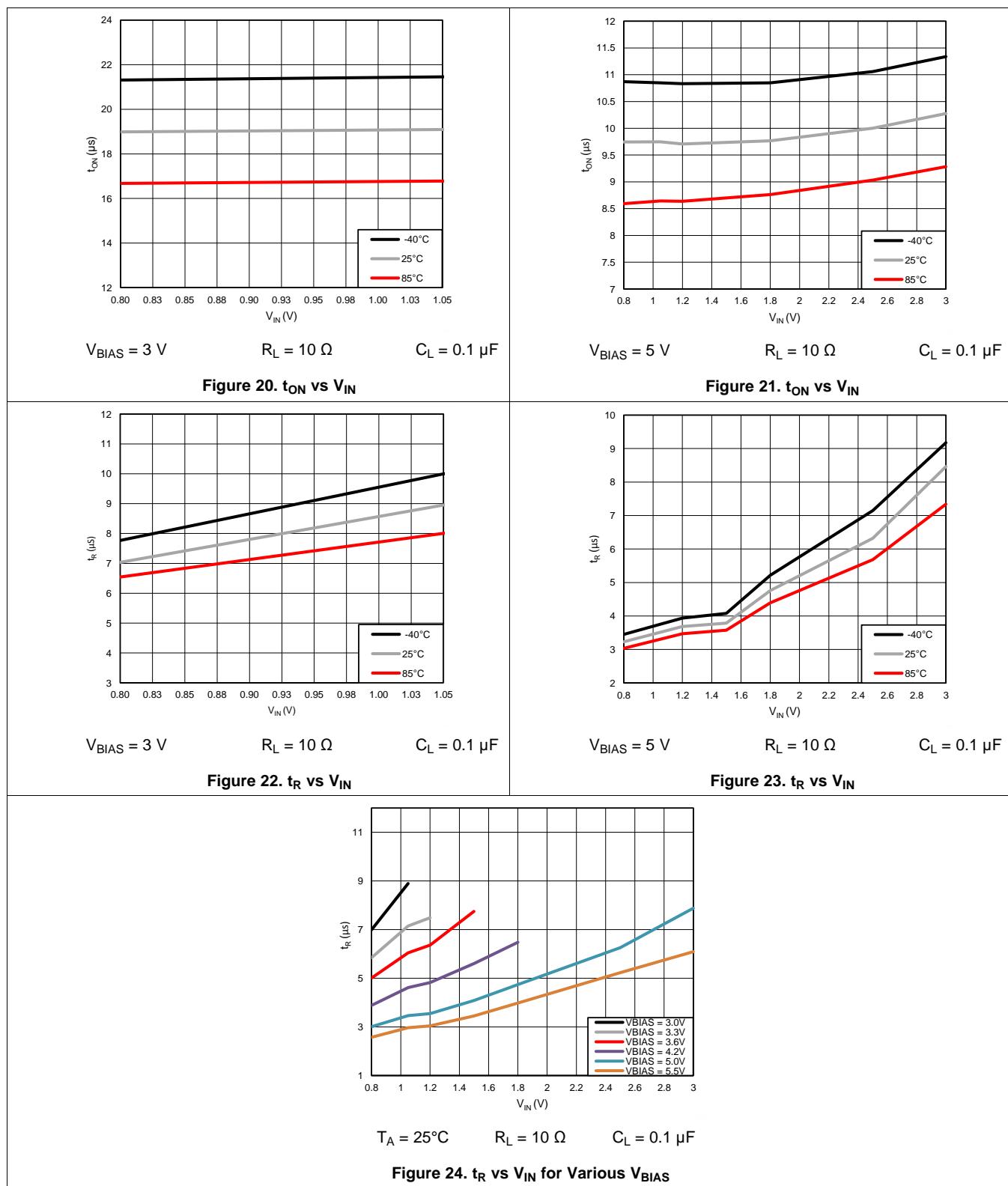

**Figure 4.  $I_{SD,VIN}$  vs  $V_{IN}$**



**Figure 5.  $R_{ON}$  vs Ambient Temperature**





**Figure 6.  $R_{ON}$  vs Ambient Temperature**



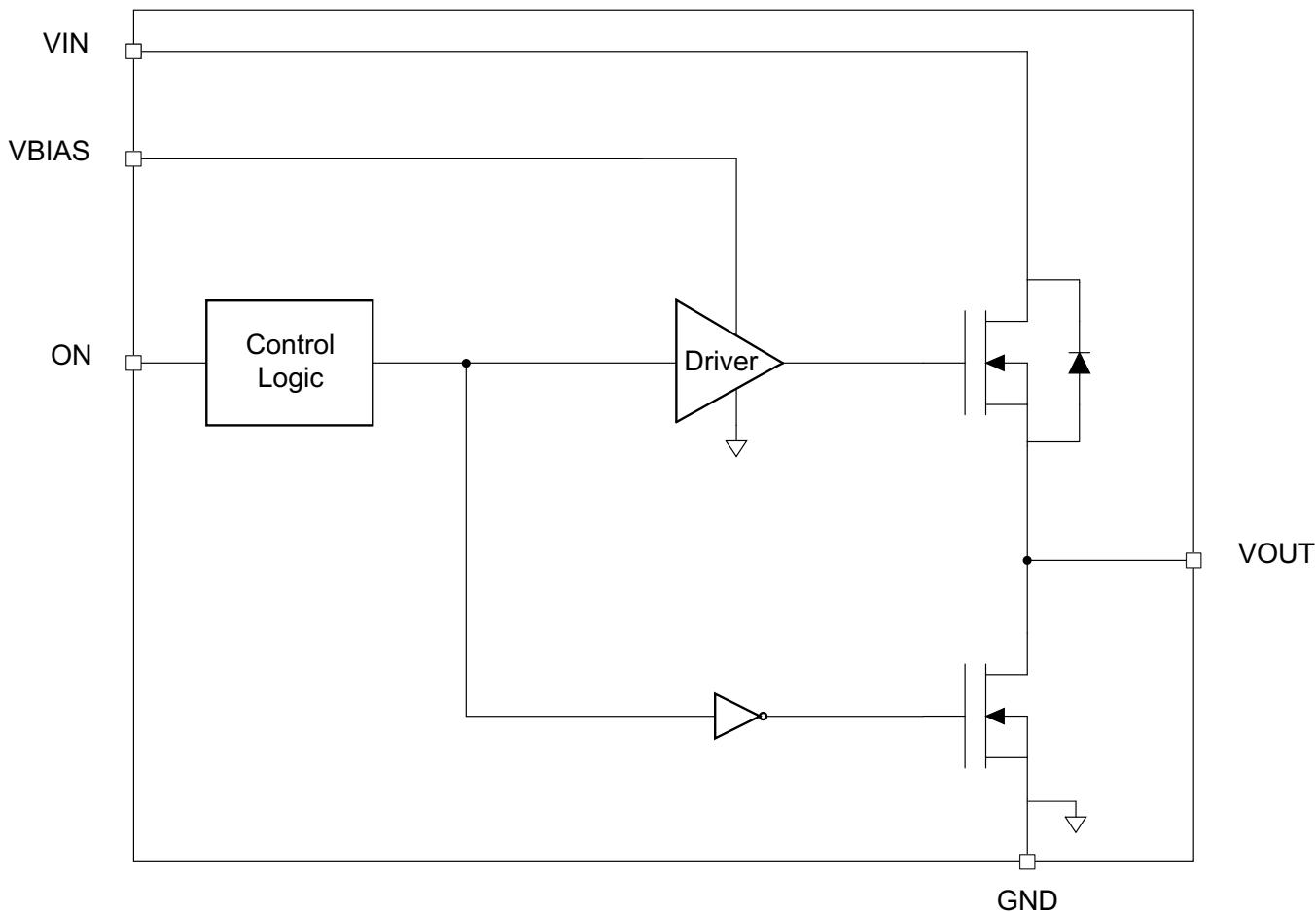

**Figure 7.  $R_{ON}$  vs  $V_{IN}$**

## Typical Characteristics (continued)



**Typical Characteristics (continued)**


**Typical Characteristics (continued)**



## 8 Detailed Description

### 8.1 Overview

The device is a 3.5 V, 6 A load switch in a 8-terminal SON package. To reduce voltage drop for low voltage and high current rails, the device implements an ultra-low resistance N-channel MOSFET which reduces the drop out voltage through the device at very high currents.

The device has a controlled, yet quick, fixed slew rate for applications that require quick turn-on response. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, and output discharge FET eliminates the need for any external components, which reduces solution size and BOM count.

### 8.2 Functional Block Diagram



## 8.3 Feature Description

### 8.3.1 On/off Control

The ON terminal controls the state of the load switch, and asserting the terminal high (active high) enables the switch. The ON terminal is compatible with standard GPIO logic threshold and can be used with any microcontroller or discrete logic with 1.2 V or higher GPIO voltage. This terminal cannot be left floating and must be tied either high or low for proper functionality.

### 8.3.2 Input Capacitor ( $C_{IN}$ )

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1  $\mu$ F ceramic capacitor,  $C_{IN}$ , placed close to the terminals, is usually sufficient. Higher values of  $C_{IN}$  can be used to further reduce the voltage drop in high-current application. When switching heavy loads, it is recommended to have an input capacitor 10 times higher than the output capacitor to avoid excessive voltage drop.

### 8.3.3 Output Capacitor ( $C_L$ )

Due to the integrated body diode in the NMOS switch, a  $C_{IN}$  greater than  $C_L$  is highly recommended. A  $C_L$  greater than  $C_{IN}$  can cause  $V_{OUT}$  to exceed  $V_{IN}$  when the system supply is removed. This could result in current flow through the body diode from VOUTT to VIN. A  $C_{IN}$  to  $C_L$  ratio of 10 to 1 is recommended for minimizing  $V_{IN}$  dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause a  $V_{IN}$  dip upon turn-on due to inrush currents.

### 8.3.4 $V_{IN}$ and $V_{BIAS}$ Voltage Range

For optimal  $R_{ON}$  performance, make sure  $V_{IN} \leq (V_{BIAS} - 1.95 \text{ V})$ . For example, in order to have  $V_{IN} = 3.5\text{V}$ ,  $V_{BIAS}$  must be 5.5 V. The device will still be functional if  $V_{IN} > (V_{BIAS} - 1.95 \text{ V})$  but it will exhibit  $R_{ON}$  greater than what is listed in the [Electrical Characteristics,  \$V\_{BIAS} = 5.0 \text{ V}\$](#)  table. See [Figure 25](#) for an example of a typical device. Notice the increasing  $R_{ON}$  as  $V_{IN}$  increases. Be sure to never exceed the maximum voltage rating for  $V_{IN}$  and  $V_{BIAS}$ .

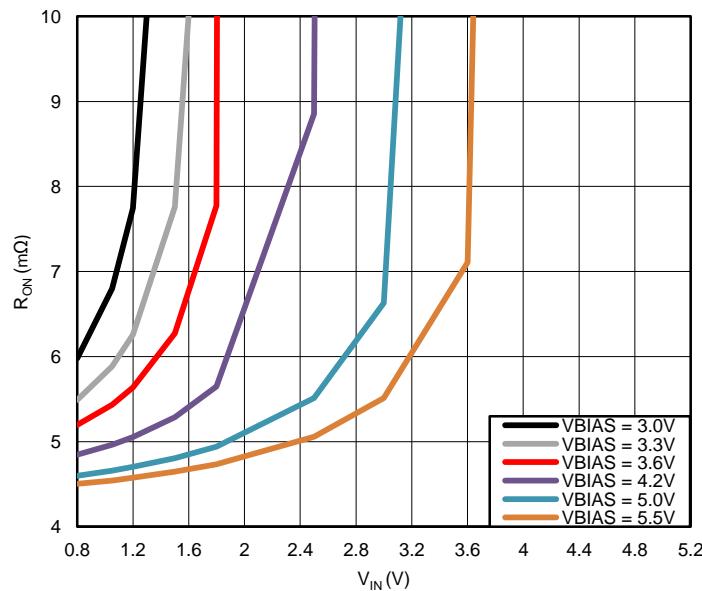



Figure 25.  $R_{ON}$  vs  $V_{IN}$  ( $V_{IN} > V_{BIAS}$ )

## 9 Applications and Implementation

### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 9.1 Application Information

This section will highlight some of the design considerations when implementing this device in various applications. A PSPICE model for this device is also available in the product page of this device on [www.ti.com](http://www.ti.com) for further aid.

### 9.2 Typical Application

#### 9.2.1 Typical Application Powering a Downstream Module

This application demonstrates how the TPS22961 can be used to power downstream modules.

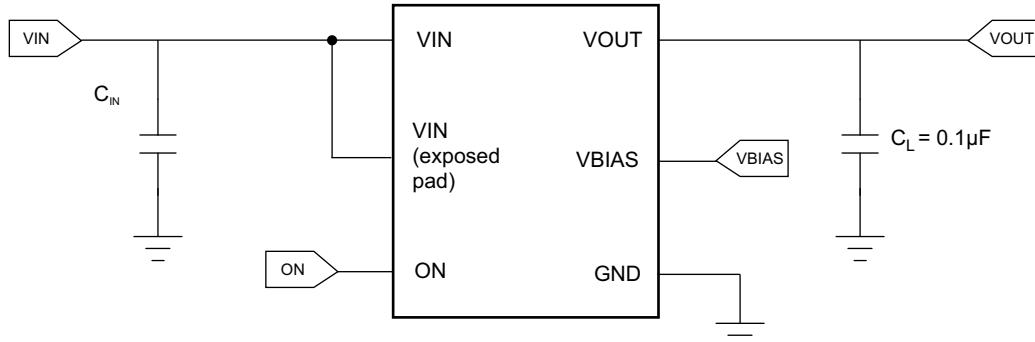



Figure 26. Typical Application Schematic for Powering a Downstream Module

#### 9.2.1.1 Design Requirements

For this design example, use the following as the input parameters.

Table 1. Design Parameters

| DESIGN PARAMETER  | EXAMPLE VALUE |
|-------------------|---------------|
| V <sub>IN</sub>   | 1.05 V        |
| V <sub>BIAS</sub> | 5.0 V         |
| Load current      | 6 A           |

#### 9.2.1.2 Detailed Design Procedure

To begin the design process, the designer needs to know the following:

- VIN voltage
- VBIAS voltage
- Load current

### 9.2.1.2.1 VIN to VOUT Voltage Drop

The VIN to VOUT voltage drop in the device is determined by the  $R_{ON}$  of the device and the load current. The  $R_{ON}$  of the device depends upon the  $V_{IN}$  and  $V_{BIAS}$  conditions of the device. Refer to the  $R_{ON}$  specification of the device in the Electrical Characteristics table of this datasheet. Once the  $R_{ON}$  of the device is determined based upon the  $V_{IN}$  and  $V_{BIAS}$  conditions, use [Equation 1](#) to calculate the VIN to VOUT voltage drop:

$$\Delta V = I_{LOAD} \times R_{ON} \quad (1)$$

where

- $\Delta V$  = voltage drop from VIN to VOUT
- $I_{LOAD}$  = load current
- $R_{ON}$  = On-resistance of the device for a specific  $V_{IN}$  and  $V_{BIAS}$  combination

An appropriate  $I_{LOAD}$  must be chosen such that the  $I_{MAX}$  specification of the device is not violated.

### 9.2.1.2.2 Inrush Current

To determine how much inrush current will be caused by the  $C_L$  capacitor, use [Equation 2](#):

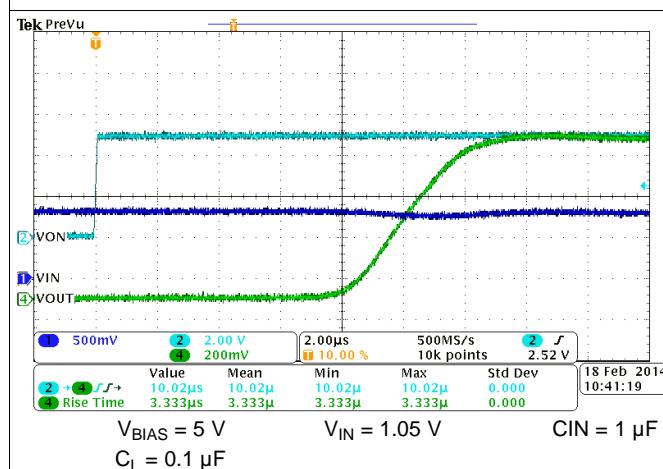
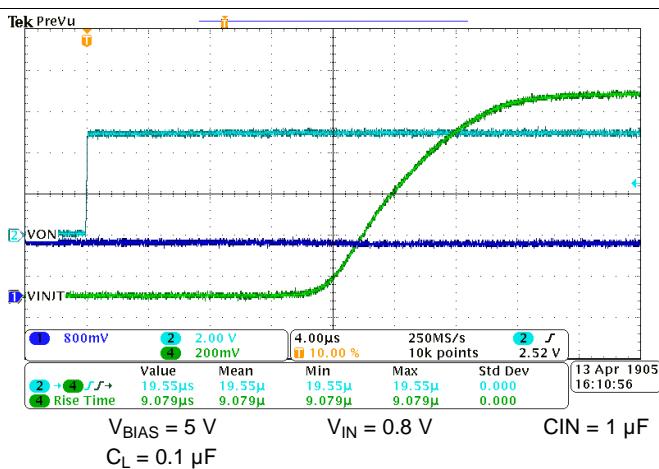
$$I_{INRUSH} = C_L \times \frac{dV_{OUT}}{dt} \quad (2)$$

where

- $I_{INRUSH}$  = amount of inrush caused by  $C_L$
- $C_L$  = capacitance on VOUT
- $dt$  = time it takes for change in  $V_{OUT}$  during the ramp up of VOUT when the device is enabled
- $dV_{OUT}$  = change in  $V_{OUT}$  during the ramp up of VOUT when the device is enabled

An appropriate  $C_L$  value should be placed on VOUT such that the  $I_{MAX}$  and  $I_{PLS}$  specifications of the device are not violated.

### 9.2.1.2.3 Thermal Considerations




The maximum IC junction temperature should be restricted to 125°C under normal operating conditions. To calculate the maximum allowable dissipation,  $P_{D(max)}$  for a given output current and ambient temperature, use [Equation 3](#).

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{R_{\theta JA}} \quad (3)$$

where

- $P_{D(max)}$  = maximum allowable power dissipation
- $T_{J(max)}$  = maximum allowable junction temperature (125°C for the TPS22961)
- $T_A$  = ambient temperature of the device
- $\Theta_{JA}$  = junction to air thermal impedance. See [Thermal Information](#) section. This parameter is highly dependent upon board layout.

### 9.2.1.3 Application Curves



## 9.2.2 Typical Application Powering Rails Sensitive to Ringing and Overvoltage due to Fast Rise Time

This application demonstrates how the TPS22961 can be used to power rails sensitive to ringing and overvoltage that can often happen due to fast rise times.

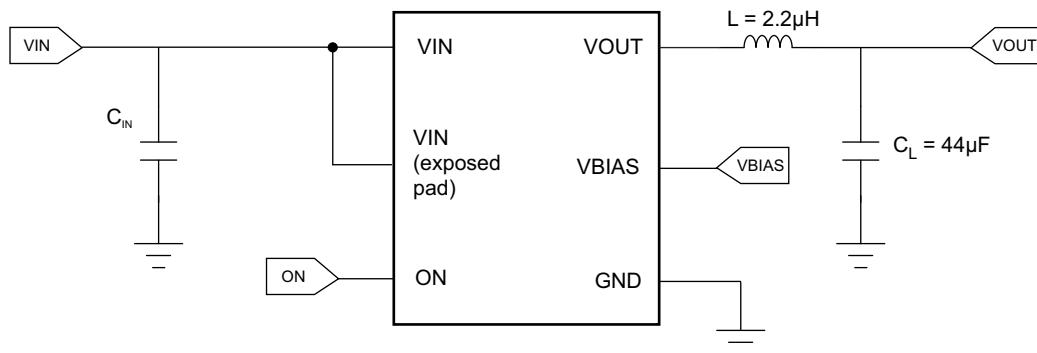



Figure 31. Typical Application Schematic for Powering Rails Sensitive to Ringing

### 9.2.2.1 Design Requirements

For this design example, use the following as the input parameters.

Table 2. Design Parameters

| DESIGN PARAMETER                             | EXAMPLE VALUE |
|----------------------------------------------|---------------|
| V <sub>IN</sub>                              | 1.05 V        |
| V <sub>BIAS</sub>                            | 5.0 V         |
| Acceptable percent overshoot ( $\rho$ )      | 3.2%          |
| Maximum settling time (t <sub>SETTLE</sub> ) | 40 $\mu$ s    |

### 9.2.2.2 Detailed Design Procedure

To begin the design process, the designer needs to know the following:

- VIN voltage
- VBIAS voltage
- Acceptable percent overshoot
- Maximum allowed settling time for the power rail

#### 9.2.2.2.1 Picking Proper Inductor and Capacitor to Meet Voltage Overshoot Requirements

To determine the value of L and C<sub>L</sub> in the circuit, the damping factor associated with the acceptable percent overshoot must be calculated. To calculate the damping factor ( $\epsilon$ ), use [Equation 4](#).

$$\epsilon = \frac{-\ln \rho}{\sqrt{\pi^2 + (\ln \rho)^2}} \quad (4)$$

where

- $\epsilon$  = damping factor of the LC filter
- $\rho$  = allowable percent overshoot for the power rail

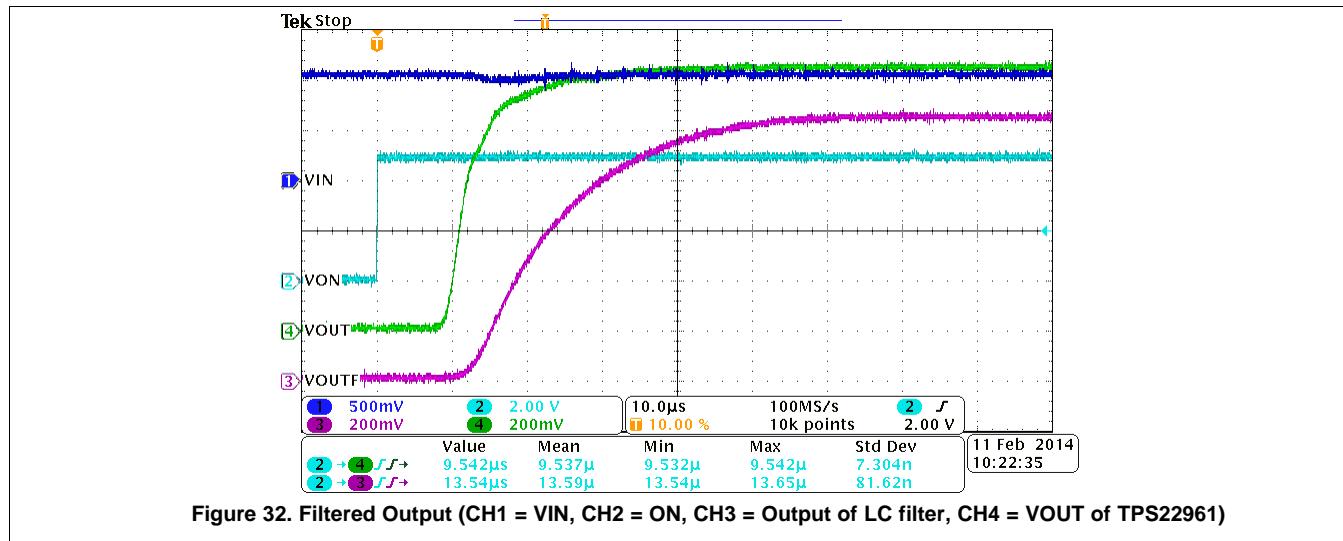
Use the damping factor calculated in [Equation 4](#) to determine the inductance (L), the DCR of the inductor ( $R_{DCR}$ ), and capacitance ( $C_L$ ) to achieve the percent overshoot. This will be an iterative process to determine the optimal combination of L and  $C_L$  with standard value components available. Use [Equation 5](#) to determine the combination of L,  $R_{DCR}$ , and  $C_L$  that is needed to satisfy damping factor calculated from [Equation 4](#).

$$\varepsilon = \frac{R_{DCR}}{2} \times \sqrt{\frac{C_L}{L}} \quad (5)$$

where

- $\varepsilon$  = damping factor of the LC filter
- $R_{DCR}$  = DCR of the inductor
- $C_L$  = the capacitance of the filter
- L = the inductor of the filter

To determine the setting time (within 5% of steady state value) of the filter, use [Equation 6](#).


$$t_{SETTLE} \approx \frac{3 \times \sqrt{L \times C_L}}{\varepsilon} \quad (6)$$

where

- $t_{SETTLE}$  = settling time of filter to within 5% of steady state value
- $\varepsilon$  = damping factor of the LC filter
- $C_L$  = the capacitance of the filter
- L = the inductor of the filter

The combination of damping factor ( $\varepsilon$ ) and filter settling time ( $t_{SETTLE}$ ) will bound the values for L,  $R_{DCR}$ , and  $C_L$  that can be used to meet the design constraints in [Table 2](#).

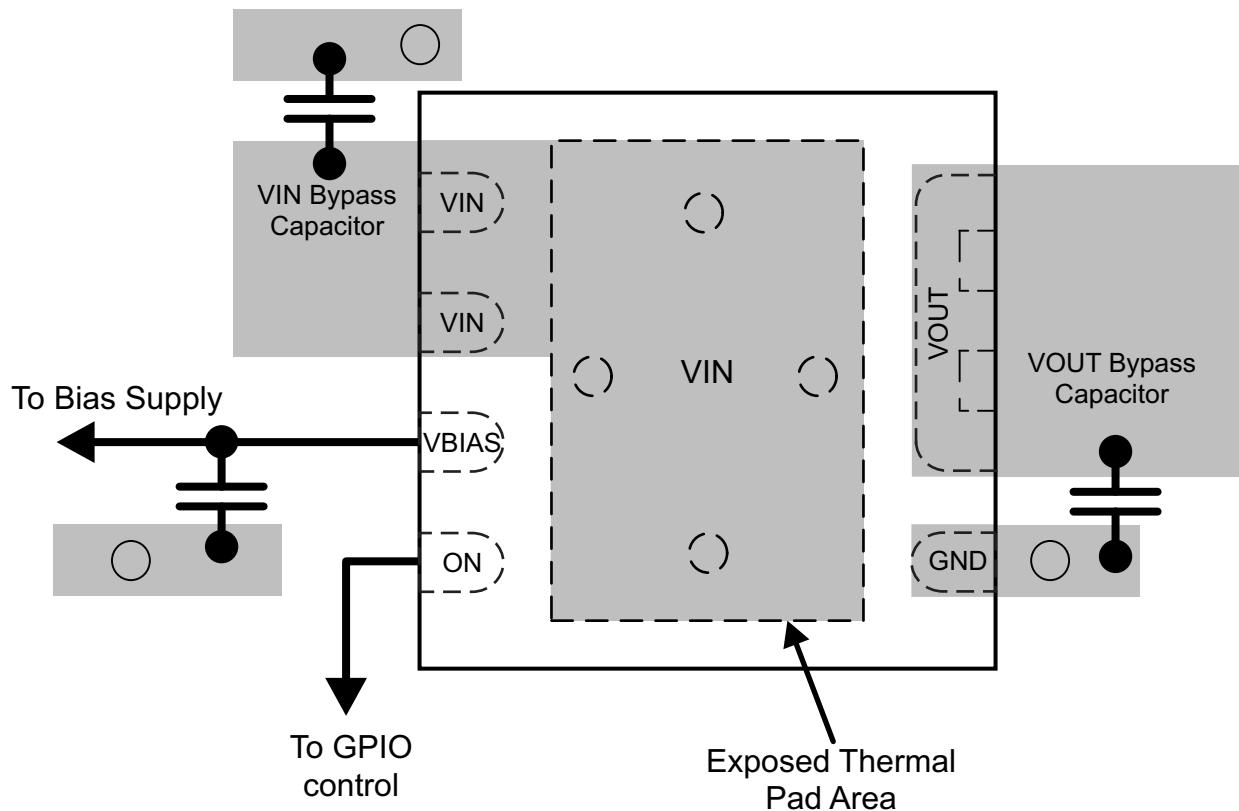
### 9.2.2.3 Application Curves



## 10 Power Supply Recommendations

The device is designed to operate from a  $V_{BIAS}$  range of 3 V to 5.5 V and VIN range of 0.8 V to 3.5 V. This supply must be well regulated and placed as close to the TPS22961 as possible. If the supply is located more than a few inches from the device terminals, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic, tantalum, or ceramic capacitor of 10  $\mu$ F may be sufficient.

## 11 Layout


### 11.1 Layout Guidelines

- VIN and VOUT traces should be as short and wide as possible to accommodate for high current.
- Use vias under the exposed thermal pad for thermal relief for high current operation.
- The VIN terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 1- $\mu$ F ceramic with X5R or X7R dielectric. This capacitor should be placed as close to the device terminals as possible.
- The VOUT terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is one-tenth of the VIN bypass capacitor of X5R or X7R dielectric rating. This capacitor should be placed as close to the device terminals as possible.
- The VBIAS terminal should be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is 0.1- $\mu$ F ceramic with X5R or X7R dielectric.

### 11.2 Layout Example

○ VIA to Power Ground Plane

○ VIA to VIN Plane



**Figure 33. Recommended Board Layout**

## 12 Device and Documentation Support

### 12.1 Trademarks

Ultrabook is a trademark of Intel.

### 12.2 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 12.3 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

## 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

**PACKAGING INFORMATION**

| Orderable part number | Status<br>(1) | Material type<br>(2) | Package   Pins | Package qty   Carrier | RoHS<br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6) |
|-----------------------|---------------|----------------------|----------------|-----------------------|-------------|--------------------------------------|-----------------------------------|--------------|---------------------|
| TPS22961DNYR          | Active        | Production           | WSON (DNY)   8 | 3000   LARGE T&R      | Yes         | Call TI   Nipdau                     | Level-2-260C-1 YEAR               | -40 to 85    | 961A1               |
| TPS22961DNYT          | Active        | Production           | WSON (DNY)   8 | 250   SMALL T&R       | Yes         | Call TI   Nipdau                     | Level-2-260C-1 YEAR               | -40 to 85    | 961A1               |

<sup>(1)</sup> **Status:** For more details on status, see our [product life cycle](#).

<sup>(2)</sup> **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

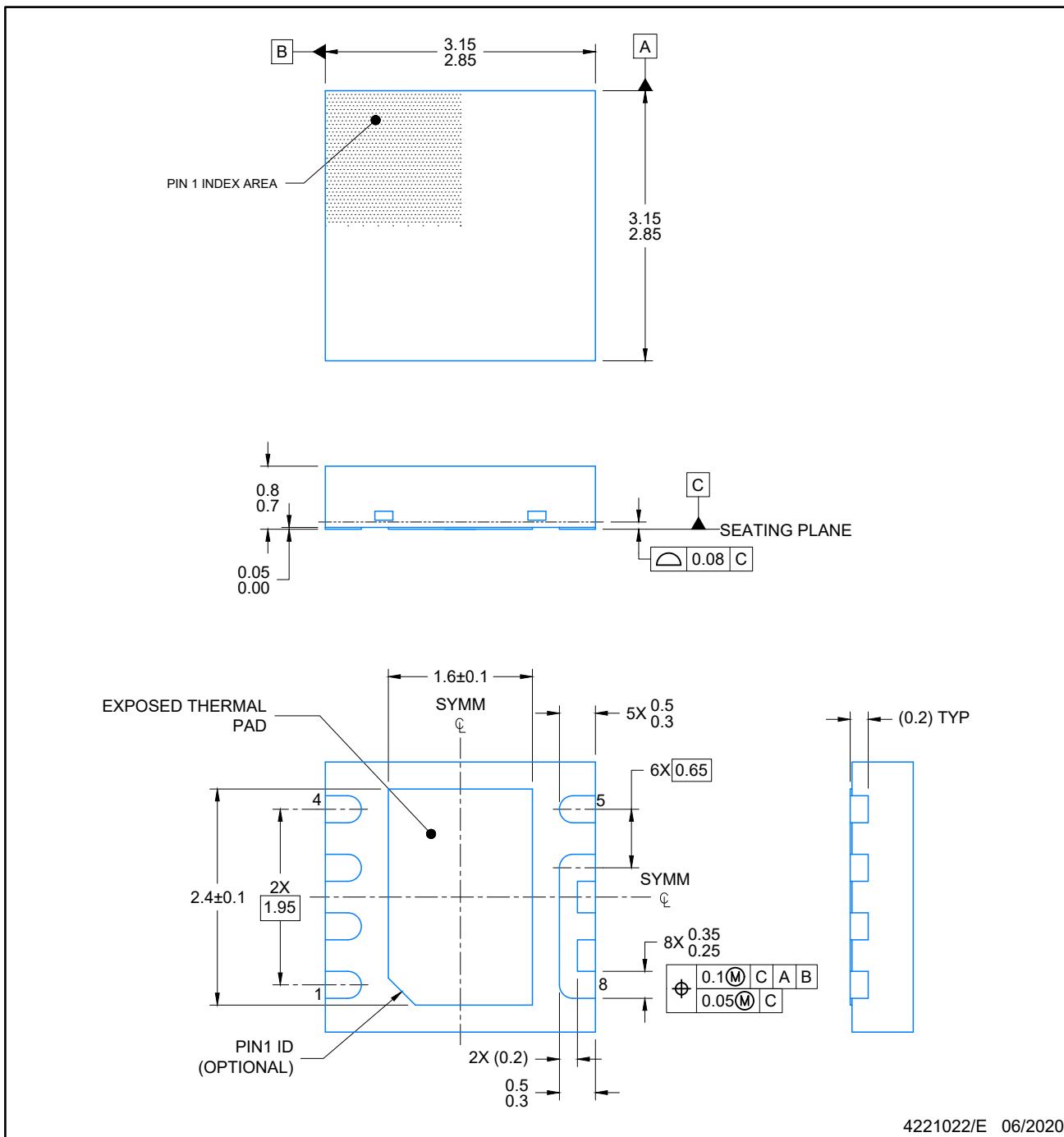
<sup>(3)</sup> **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

<sup>(4)</sup> **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## PACKAGE OUTLINE

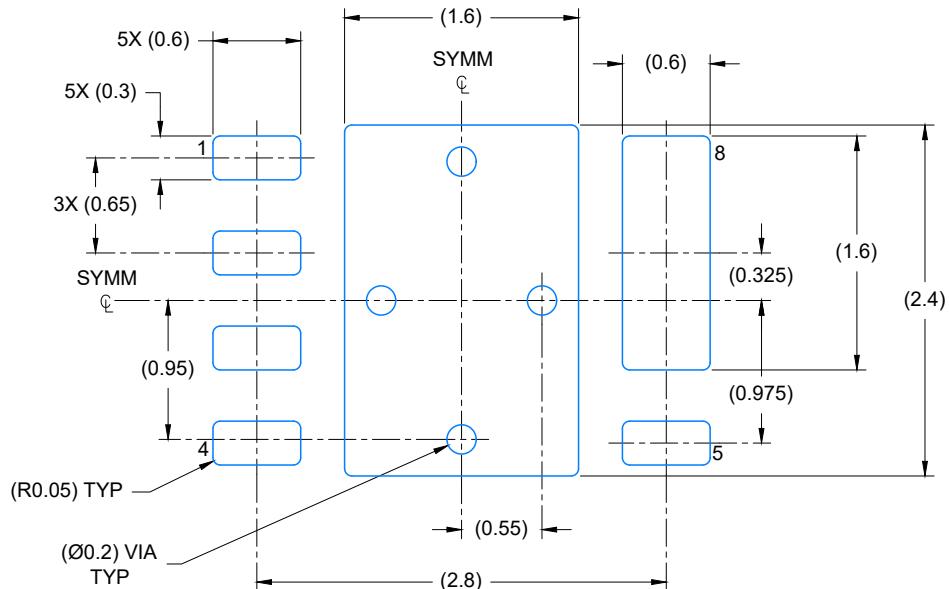
## WSON - 0.8 mm max height

## PLASTIC QUAD FLATPACK- NO LEAD

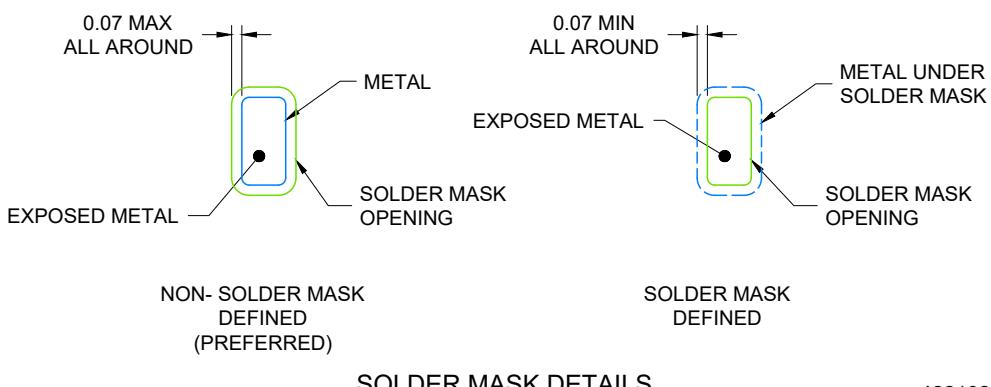


4221022/E 06/2020

## NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

# EXAMPLE BOARD LAYOUT


WSON - 0.8 mm max height

DNY0008A

PLASTIC QUAD FLATPACK- NO LEAD



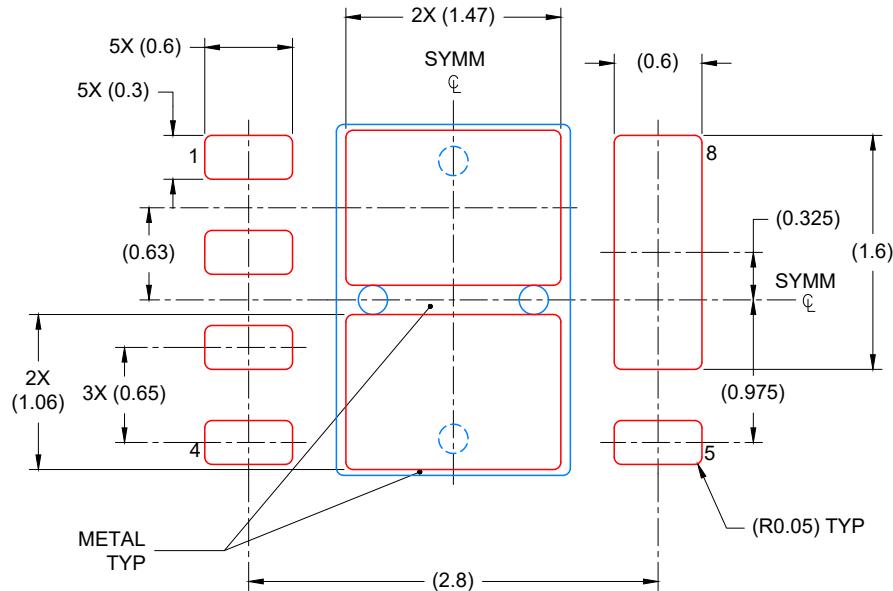
LAND PATTERN EXAMPLE  
SCALE: 20X



SOLDER MASK DETAILS

4221022/E 06/2020

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 ([www.ti.com/lit/slua271](http://www.ti.com/lit/slua271)).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

# EXAMPLE STENCIL DESIGN

DNY0008A

WSON - 0.8 mm max height

PLASTIC QUAD FLATPACK- NO LEAD



SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL

EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X

4221022/E 06/2020

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025