
TPS3809L30-EP, TPS3809K33-EP, TPS3809I50-EP 3-PIN SUPPLY VOLTAGE SUPERVISORS

SGLS369A-AUGUST 2006-REVISED NOVEMBER 2006

FEATURES

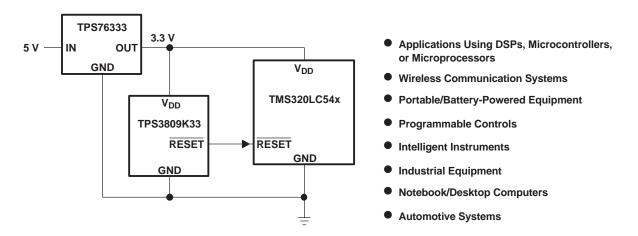
- Controlled Baseline
 - One Assembly Site
 - One Test Site
 - One Fabrication Site
- Extended Temperature Performance of –55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- 3-Pin SOT-23 Package
- Supply Current of 9 μA (Typical)
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- Precision Supply Voltage Monitor
 2.5 V, 3 V, 3.3 V, 5 V
- Power-On Reset Generator With Fixed Delay Time of 200 ms
- Pin-for-Pin Compatible With MAX 809

DESCRIPTION

The TPS3809 family of supervisory circuits provides circuit initialization and timing supervision, primarily for DSPs and processor-based systems.

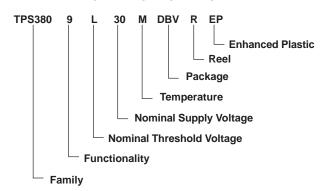
During power-on, $\overline{\text{RESET}}$ is asserted when the supply voltage V_{DD} becomes higher than 1.1 V. Thereafter, the supervisory circuit monitors V_{DD} and keeps $\overline{\text{RESET}}$ active as long as V_{DD} remains below the threshold voltage V_{IT} . An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time, $t_{d(typ)} = 200$ ms, starts after V_{DD} has risen above the V_{IT} . When the supply voltage drops below the V_{IT} , the output becomes active (low) again. No external components are required. All the devices of this family have a fixed-sense V_{IT} set by an internal voltage divider.


The product spectrum is designed for supply voltages of 2.5 V, 3 V, 3.3 V, and 5 V. The circuits are available in a 3-pin SOT-23 package. The TPS3809 devices are characterized for operation over a temperature range of –55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TYPICAL APPLICATIONS

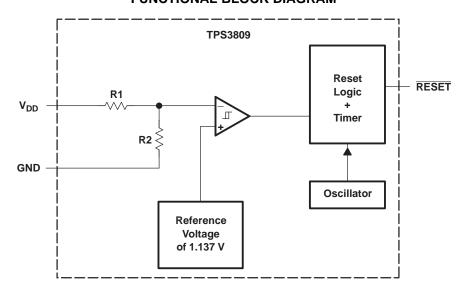
AVAILABLE OPTIONS

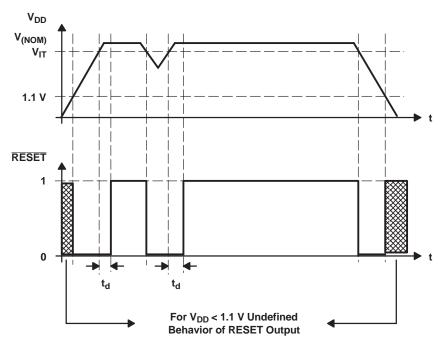

T _A	DEVICE NAME	DEVICE NAME THRESHOLD VOLTAGE			
	TPS3809L30MDBVREP(1)	2.64 V	PLYM		
–55°C to 125°C	TPS3809K33MDBVREP ⁽¹⁾	2.93 V	PLZM		
	TPS3809I50MDBVREP ⁽¹⁾	4.55 V	PMAM		

(1) The DBVR passive indicates tape and reel of 3000 parts.

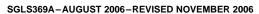
FUNCTION/TRUTH TABLE

$V_{DD} > V_{IT}$	RESET
0	L
1	Н


ORDERING INFORMATION



SGLS369A-AUGUST 2006-REVISED NOVEMBER 2006


FUNCTIONAL BLOCK DIAGRAM

TIMING DIAGRAM

TPS3809L30-EP, TPS3809K33-EP, TPS3809I50-EP 3-PIN SUPPLY VOLTAGE SUPERVISORS

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
	Supply voltors (2)	V_{DD}		7	V
	Supply voltage ⁽²⁾	All other pins	-0.3	7	V
I_{OL}	Maximum low output current			5	mA
I _{OH}	Maximum high output current			-5	mA
I_{IK}	Input clamp current	$V_I < 0 \text{ or } V_I > V_{DD}$		±20	mA
I_{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{DD}$		±20	mA
	Continuous total power dissipation		See Dis	ssipation	Rating Table
T_A	Operating free-air temperature range		-55	125	°C
T _{stg}	Storage temperature range		-65	150	°C
	Soldering temperature			260	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Dissipation Ratings

PACKAGE	POWER RATING		T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	437 mW	3.5 mW/°C	280 mW	227 mW

Recommended Operating Conditions

		MIN	MAX	UNIT
V_{DD}	Supply voltage	2	6	٧
T_A	Operating free-air temperature	- 55	125	°C

⁽²⁾ All voltage values are with respect to GND. For reliable operation the device should not be operated at 7 V for more than t = 1000h continuously.

TPS3809L30-EP, TPS3809K33-EP, TPS3809I50-EP 3-PIN SUPPLY VOLTAGE SUPERVISORS

SGLS369A-AUGUST 2006-REVISED NOVEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

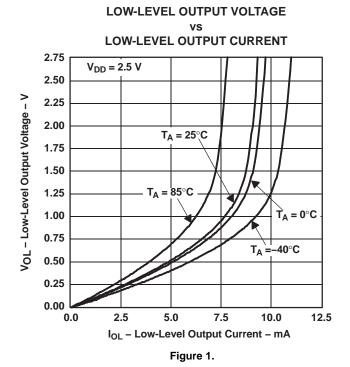
	PARAMET	ER		TEST CONDITIONS	3	MIN	TY P	MAX	UNIT	
			$V_{DD} = 2.5 \text{ V to 6 V},$	$I_{OH} = -500 \ \mu A$		V _{DD} - 0.2				
.,	High lavel autout v	alta aa	$V_{DD} = 3.3 \text{ V},$	I _{OH} = -2 mA		V _{DD} - 0.4			\ <i>/</i>	
V _{OH}	V _{OH} High-level output voltage		V _{DD} = 6 V,	$I_{OH} = -4 \text{ mA}$		V _{DD} - 0.4			V	
			V _{DD} = 6 V,	$I_{OH} = -4 \text{ mA},$	T _A = 125°C	V _{DD} - 0.5				
			$V_{DD} = 2 V \text{ to } 6 V,$	$I_{OL} = 500 \mu A$				0.2		
V_{OL}	Low-level output vo	oltage	$V_{DD} = 3.3 \text{ V},$	$I_{OL} = 2 \text{ mA}$				0.4	V	
			V _{DD} = 6 V,	I _{OL} = 4 mA				0.4		
	Power-up reset vol	tage ⁽¹⁾	$V_{DD} \ge 1.1 V$,	I _{OL} = 50 μA				0.2	V	
		TPS3809L30				2.58	2.6 4	2.7		
V_{IT-}	Negative-going input threshold voltage (2)	TPS3809K33				2.87	2.9	2.99	V	
	Voltago	TPS3809I50				4.45	4.5 5	4.65		
		TPS3809L30					35			
V_{hys}	Hysteresis	TPS3809K33					40		mV	
		TPS3809I50					60			
	Supply current		V _{DD} = 2 V,	Output unconnect	ed		9	12	^	
I _{DD}	Supply current		$V_{DD} = 6 V$,	Output unconnect	ed		20	25	μΑ	
C_{i}	Input capacitance	·	$V_I = 0 V \text{ to } V_{DD}$	·	·		5		pF	

Timing Requirements

 R_L = 1 M Ω , C_L = 50 pF, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
t _w	Pulse width at V _{DD}	$V_{DD} = V_{IT-} + 0.2 \text{ V}, V_{DD} = V_{IT-} - 0.2 \text{ V}$	3		μs

Switching Characteristics


 $R_L = 1 \text{ M}\Omega$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$

	PARAMETE	≣R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _d	Delay time		$V_{DD} \ge V_{IT-} + 0.2 \text{ V},$ See timing diagram	120	200	280	ms
t _{PHL}	Propagation (delay) time, high- to low-level output	V _{DD} to RESET delay	$V_{IL} = V_{IT-} - 0.2 \text{ V},$ $V_{IH} = V_{IT-} + 0.2 \text{ V}$		1		ms

 ⁽¹⁾ The lowest supply voltage at which RESET becomes active. t_r, V_{DD} ≥ 15 μs/V.
 (2) To ensure best stability of the threshold voltage, a bypass capacitor (0.1-μF ceramic) should be placed near the supply terminals.

TYPICAL CHARACTERISTICS

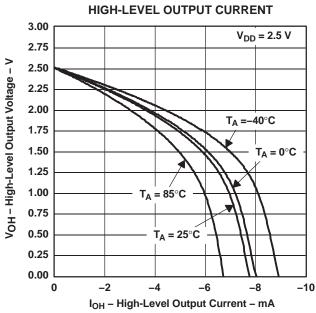
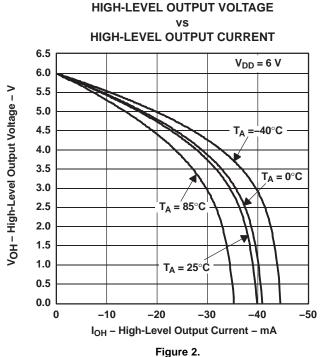



Figure 3.

NORMALIZED INPUT THRESHOLD VOLTAGE vs

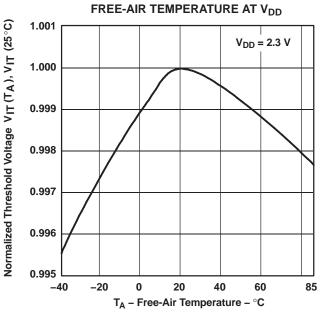


Figure 4.

SGLS369A-AUGUST 2006-REVISED NOVEMBER 2006

TYPICAL CHARACTERISTICS (continued)

MINIMUM PULSE DURATION AT V_{DD} vs

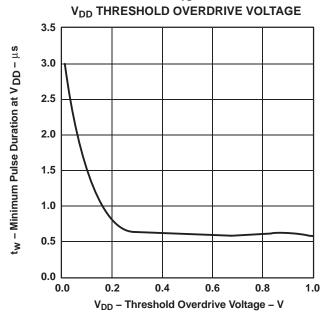


Figure 5.

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS3809I50MDBVREP	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PMAM
TPS3809I50MDBVREP.A	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PMAM
TPS3809K33MDBVREP	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PLZM
TPS3809K33MDBVREP.A	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PLZM
TPS3809L30MDBVREP	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PLYM
TPS3809L30MDBVREP.A	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PLYM
V62/06636-01XE	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PLYM
V62/06636-02XE	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PLZM
V62/06636-03XE	Active	Production	SOT-23 (DBV) 3	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	PMAM

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

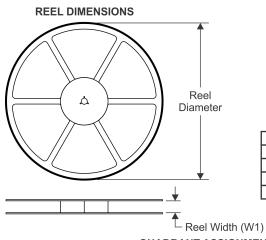
www.ti.com 11-Nov-2025

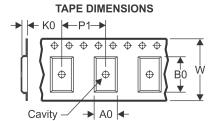
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS3809-EP:

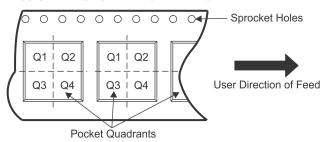
Automotive: TPS3809-Q1


NOTE: Qualified Version Definitions:

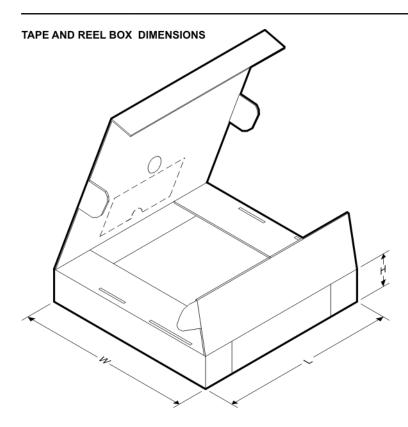

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 22-Dec-2016


TAPE AND REEL INFORMATION

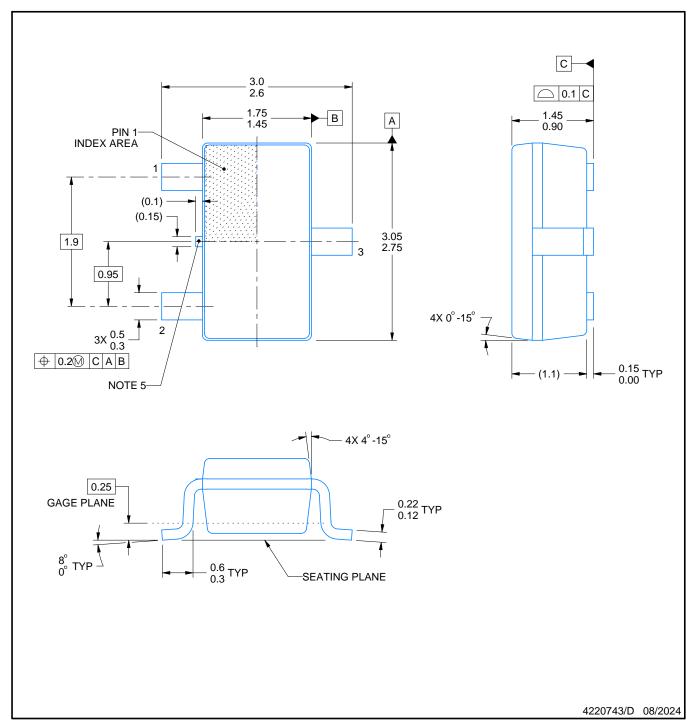
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3809I50MDBVREP	SOT-23	DBV	3	3000	180.0	9.0	3.3	3.2	1.47	4.0	8.0	Q3
TPS3809K33MDBVREP	SOT-23	DBV	3	3000	180.0	9.0	3.3	3.2	1.47	4.0	8.0	Q3
TPS3809L30MDBVREP	SOT-23	DBV	3	3000	180.0	9.0	3.3	3.2	1.47	4.0	8.0	Q3

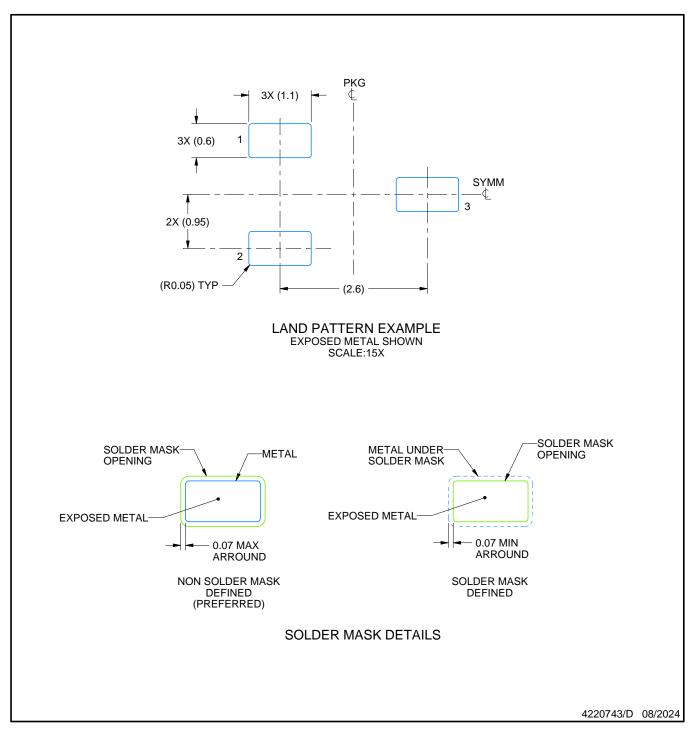
www.ti.com 22-Dec-2016



*All dimensions are nominal

7 III GITTIOTIOTOTIO GITO TIOTITICA										
Device	Device Package Type		Device Package Type Package Drawing Pins		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS3809I50MDBVREP	SOT-23	DBV	3	3000	182.0	182.0	20.0			
TPS3809K33MDBVREP	SOT-23	DBV	3	3000	182.0	182.0	20.0			
TPS3809L30MDBVREP	SOT-23	DBV	3	3000	182.0	182.0	20.0			

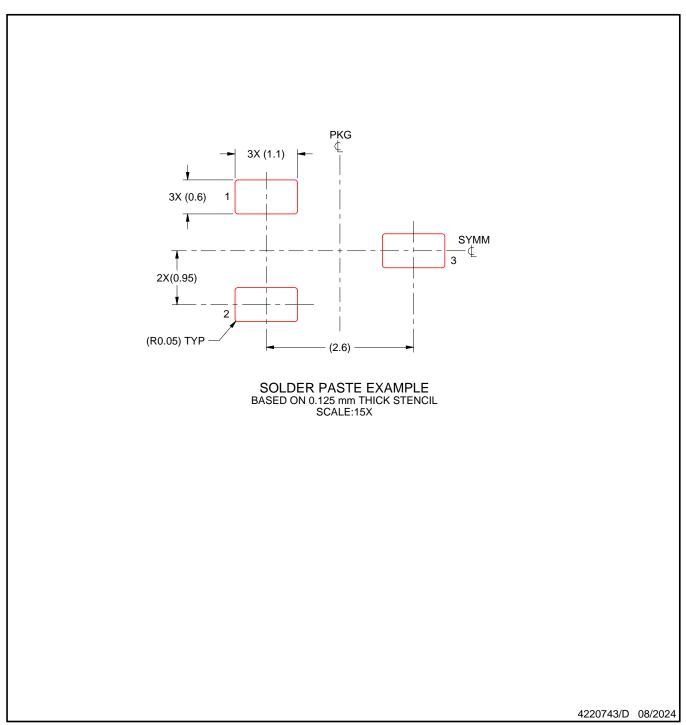
SMALL OUTLINE TRANSISTOR


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Refernce JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025