

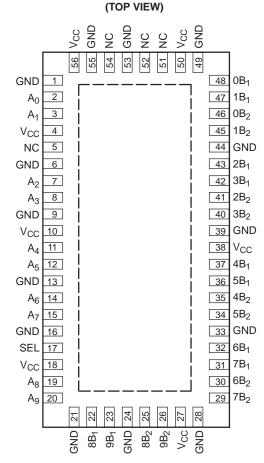
5-CHANNEL DIFFERENTIAL 10:20 MULTIPLEXER SWITCH FOR DVI/HDMI APPLICATIONS

Check for Samples: TS3DV520

FEATURES

- Compatible With HDMI v1.2a (Type A) DVI 1.0 High-Speed Digital Interface
 - Wide Bandwidth of Over 1.65 Gbps (Bandwidth 2.4 Gbps Typ)
 - 165-MHz Speed Operation
 - Serial Data Stream at 10x Pixel Clock Rate
 - Supports All Video Formats up to 1080p and SXGA (1280 x 1024 at 75 Hz)
 - Total Raw Capacity 4.95 Gbps (Single Link)
 - HDCP Compatible
- Low Crosstalk (X_{TALK} = -41 dB Typ)
- Low Bit-to-Bit Skew (t_{sk(o)} = 0.1 ns Max)
- Low and Flat ON-State Resistance $(r_{on} = 6 \Omega \text{ Max}, r_{on(flat)} = 0.5 \Omega \text{ Typ})$
- Low Input/Output Capacitance (C_{ON} = 7.8 pF Typ)
- Rail-to-Rail Switching on Data I/O Ports (0 to 5 V)
- V_{CC} Operating Range From 3 V to 3.6 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS


- DVI/HDMI Signal Switching
- Differential DVI, HDMI Signal Multiplexing for Audio/Video Receivers and High-Definition Televisions (HDTVs)
- 10/100/1000 Base-T Signal Switching
- Hub and Router Signal Switching

DESCRIPTION/ORDERING INFORMATION

The TS3DV520 is a 20-bit to 10-bit multiplexer/demultiplexer digital video switch with a single select (SEL) input. SEL controls the data path of the multiplexer/demultiplexer. The device provides five differential channels for digital video signal switching. This device can also be used to replace mechanical relays in LAN applications and allows for signals to be routed from a 10/100/1000 Base-T transceiver to the RJ-45 connectors in laptops or docking stations.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TQFN PACKAGE

NC - No internal connection

This device provides low and flat ON-state resistance (r_{on}) and excellent ON-state resistance match. Low input/output capacitance, high bandwidth, low skew, and low crosstalk among channels make this device suitable for various digital video applications, such as DVI and HDMI.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

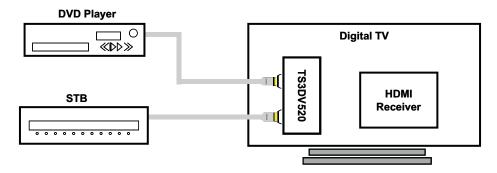
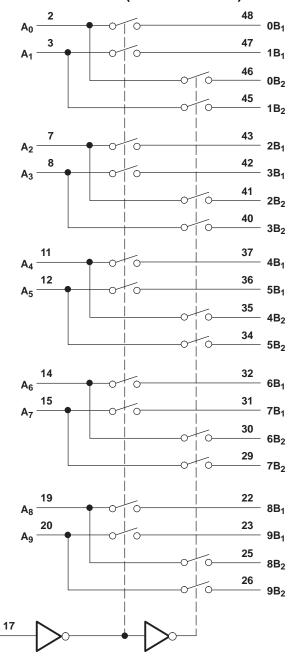


Table 1. ORDERING INFORMATION(1)

T _A	PACKAGE (2)		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	TQFN	Tape and reel	TS3DV520RHUR	SD520

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

FUNCTION TABLE


INPUT SEL	INPUT/OUTPUT An	FUNCTION					
L	nB ₁	$A_n = nB_1$	nB ₂ high-impedance mode				
Н	nB_2	$A_n = nB_2$	nB ₁ high-impedance mode				

PIN DESCRIPTION

NAME	DESCRIPTION
A _n	Data I/O
nB _m	Data I/O
SEL	Select input

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
V_{IN}	Control input voltage range (2) (3)		-0.5	7	V
V _{I/O}	Switch I/O voltage range ^{(2) (3) (4)}		-0.5	7	V
I_{IK}	Control input clamp current	V _{IN} < 0		-50	mA
$I_{I/OK}$	I/O port clamp current	V _{I/O} < 0		-50	mA
$I_{I/O}$	ON-state switch current ⁽⁵⁾			±128	mA
	Continuous current through V_{CC} or GND			±100	mA
θ_{JA}	Package thermal impedance (6)			31.8	°C/W
T _{stg}	Storage temperature range		-65	150	°C

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltages are with respect to ground, unless otherwise specified.
- The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- V_{I} and V_{O} are used to denote specific conditions for $V_{I/O}$.
- $I_{\rm l}$ and $I_{\rm O}$ are used to denote specific conditions for $I_{\rm l/O}$. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage	3	3.6	V
V_{IH}	High-level control input voltage (SEL)	2	5.5	V
V_{IL}	Low-level control input voltage (SEL)	0	8.0	V
V _{I/O}	Input/output voltage	0	5.5	V
T _A	Operating free-air temperature	-40	85	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics(1)

for high-frequency switching over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted)

PARA	PARAMETER		TEST CO	NDITIONS		MIN	TYP (2)	MAX	UNIT
V _{IK}	SEL	$V_{CC} = 3.6 \text{ V},$	$I_{IN} = -18 \text{ mA}$				-0.7	-1.2	V
I _{IH}	SEL	$V_{CC} = 3.6 \text{ V},$	$V_{IN} = V_{CC}$					±1	μΑ
I _{IL}	SEL	$V_{CC} = 3.6 \text{ V},$	V _{IN} = GND					±1	μΑ
I _{off}		V _{CC} = 0,	$V_O = 0 \text{ to } 3.6 \text{ V},$	V _I = 0				1	μA
Icc		V _{CC} = 3.6 V,	$I_{I/O} = 0,$	Switch ON or OFF			250	500	μΑ
C _{IN}	SEL	f = 1 MHz,	$V_{IN} = 0$				2	2.5	pF
C _{OFF}	B port	$V_I = 0$,	f = 1 MHz,	Outputs open,	Switch OFF		2.5	3	pF
C _{ON}		$V_I = 0$,	f = 1 MHz,	Outputs open,	Switch ON		7.8	8.5	pF
r _{on}		V _{CC} = 3 V,	$1.5 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}},$	I _O = -40 mA			3.5	6	Ω
r _{on(flat)} (3))	V _{CC} = 3 V,	$V_I = 1.5 \text{ V} \text{ and } V_{CC}$	$I_O = -40 \text{ mA}$			0.5		Ω
Δr_{on} (4)		$V_{CC} = 3 V$,	$1.5 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}},$	$I_O = -40 \text{ mA}$			0.4	1	Ω

- V_I , V_O , I_I , and I_O refer to I/O pins. V_{IN} refers to the control inputs. All typical values are at $V_{CC}=3.3~V$ (unless otherwise noted), $T_A=25^{\circ}C$. $r_{on(flat)}$ is the difference of r_{on} in a given channel at specified voltages.
- (4) Δr_{on} is the difference of r_{on} from center (A₄, A₅) ports to any other port.

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, R_L = 200 Ω , C_L = 10 pF (unless otherwise noted) (see Figure 4 and Figure 5)

, , , , , , , , , , , , , , , , , , , ,	<u>(</u>					
PARAMETER	PARAMETER FROM TO (OUTPUT)		MIN	TYP ⁽¹⁾	MAX	UNIT
t_{pd} ⁽²⁾	A or B	B or A		0.25		ns
t _{PZH} , t _{PZL}	SEL	A or B	0.5		15	ns
t _{PHZ} , t _{PLZ}	SEL	A or B	0.5		9	ns
t _{sk(o)} (3)	A or B	B or A		0.05	0.1	ns
t _{sk(p)} (4)				0.05	0.1	ns

- (1) All typical values are at $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}\text{C}$.
- The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
- Output skew between center port (A₄ to A₅) to any other port
- Skew between opposite transitions of the same output in a given device |t_{PHL} t_{PLH}|

Dynamic Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted)

PARAMETER		TEST C	CONDITIONS	TYP (1)	UNIT
X _{TALK}	$R_L = 100 \Omega$,	f = 250 MHz,	See Figure 7	-41	dB
O _{IRR}	$R_L = 100 \Omega$,	f = 250 MHz,	See Figure 8	-39	dB
BW	$R_L = 100 \Omega$,	See Figure 6		1.2	GHz

(1) All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

Product Folder Link(s): TS3DV520

OPERATING CHARACTERISTICS

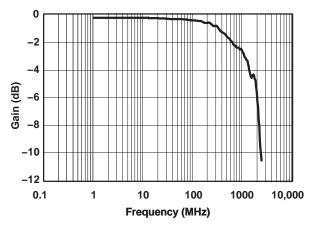


Figure 1. Gain/Phase vs Frequency

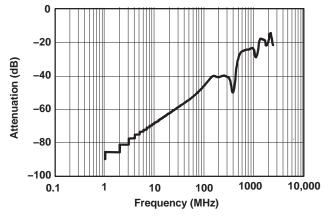
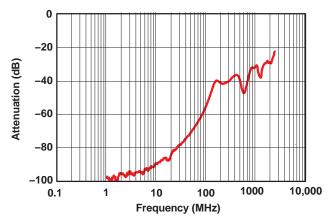
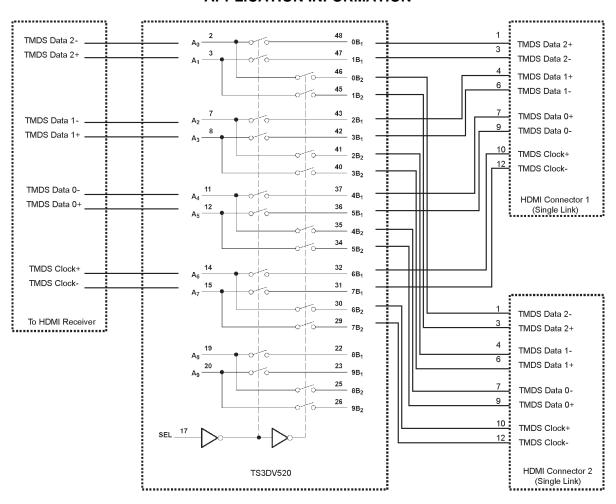
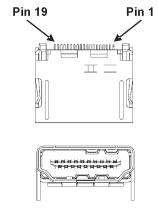


Figure 2. OFF Isolation vs Frequency

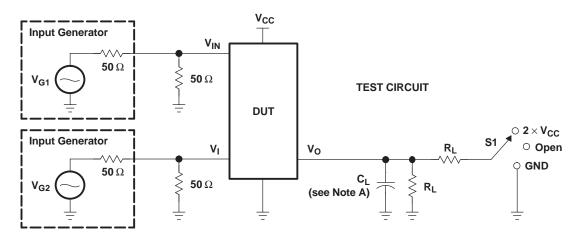



Figure 3. Crosstalk vs Frequency

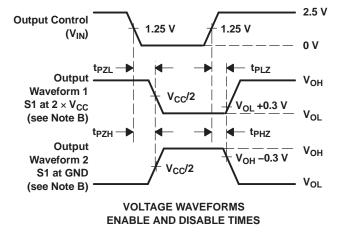

Figure 4. ron and Vo vs V1

APPLICATION INFORMATION

Typical HDMI Connector

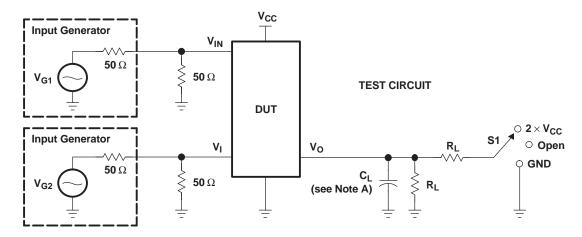


The TS3DV520 can be used to switch between two digital video ports.

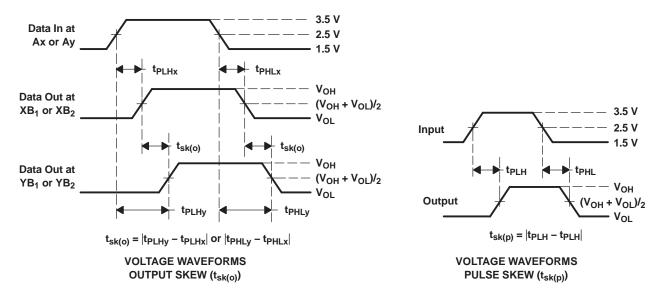

Pin	Signal Assignment
1	TMDS Data2+
2	TMDS Data2 Shield
3	TMDS Data 2-
4	TMDS Data1+
5	TMDS Data1 Shield
6	TMDS Data 1-
7	TMDS Data0+
8	TMDS Data0 Shield
9	TMDS Data 0-
10	TMDS Clock+
11	TMDS Clock Shield
12	TMDS Clock-
13	CEC
14	Reserved (N.C. on device)
15	SCL
16	SDA
17	DDC/CEC Ground
18	+5V Power
19	Hot Plug Detect

PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)

TEST	V _{CC}	S1	R _L	VI	CL	V_{Δ}
t _{PLZ} /t _{PZL}	3.3 V \pm 0.3 V	2×V _{CC}	200 Ω	GND	10 pF	0.3 V
t _{PHZ} /t _{PZH}	3.3 V \pm 0.3 V	GND	200 Ω	v _{cc}	10 pF	0.3 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .


Figure 5. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (Skew)

TEST	V _{CC}	S1	R_L	VI	C_L	$oldsymbol{V}_\Delta$
t _{sk(o)}	3.3 V \pm 0.3 V	Open	200 Ω	V _{CC} or GND	10 pF	
t _{sk(p)}	3.3 V \pm 0.3 V	Open	200 Ω	V _{CC} or GND	10 pF	

NOTES: A. C_L includes probe and jig capacitance.

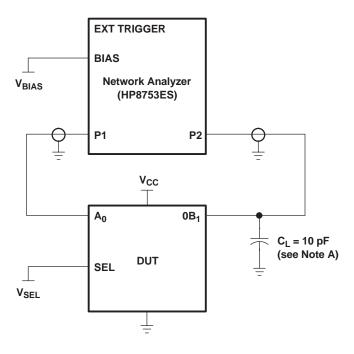

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2.5 \text{ ns.}$
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 6. Test Circuit and Voltage Waveforms

Copyright © 2005–2009, Texas Instruments Incorporated

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_L includes probe and jig capacitance.

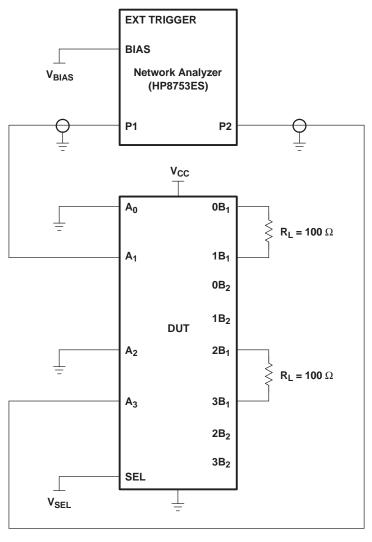
Figure 7. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{SEL}=0$ and A_0 is the input, the output is measured at $0B_1$. All unused analog I/O ports are left open.

HP8753ES setup

Average = 4

RBW = 3 kHz


 $V_{BIAS} = 0.35 V$

ST = 2 s

P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. A 50- Ω termination resistor is needed to match the loading of the network analyzer.

Figure 8. Test Circuit for Crosstalk (X_{TALK})

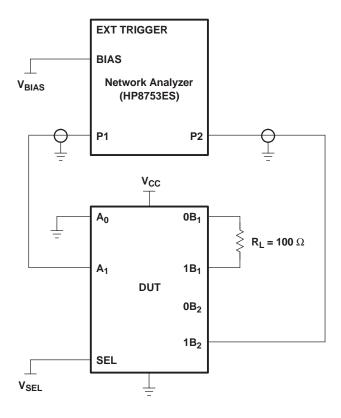
Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{SEL}=0$ and A_0 is the input, the output is measured at $1B_1$. All unused analog input (A) ports are connected to GND, and output (B) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup

Average = 4

RBW = 3 kHz

 $V_{BIAS} = 0.35 V$


ST = 2 s

P1 = 0 dBM

Copyright © 2005–2009, Texas Instruments Incorporated

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. A $50-\Omega$ termination resistor is needed to match the loading of the network analyzer.

Figure 9. Test Circuit for OFF Isolation (OIRR)

OFF isolation is measured at the output of the OFF channel. For example, when $V_{SEL} = V_{CC}$ and A_0 is the input, the output is measured at $0B_2$. All unused analog input (A) ports are left open, and output (B) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup

Average = 4

RBW = 3 kHz

 $V_{BIAS} = 0.35 \text{ V}$

ST = 2

P1 = 0 dBM

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TS3DV520ERHUR	Active	Production	WQFN (RHU) 56	2000 LARGE T&R	Yes	NIPDAU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	SD520E
TS3DV520ERHUR.B	Active	Production	WQFN (RHU) 56	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SD520E
TS3DV520ERHURG4	Active	Production	WQFN (RHU) 56	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SD520E
TS3DV520RHUR	Active	Production	WQFN (RHU) 56	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SD520
TS3DV520RHUR.B	Active	Production	WQFN (RHU) 56	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	SD520

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

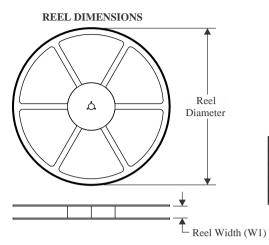
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

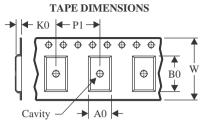
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

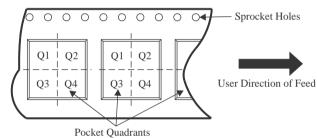
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

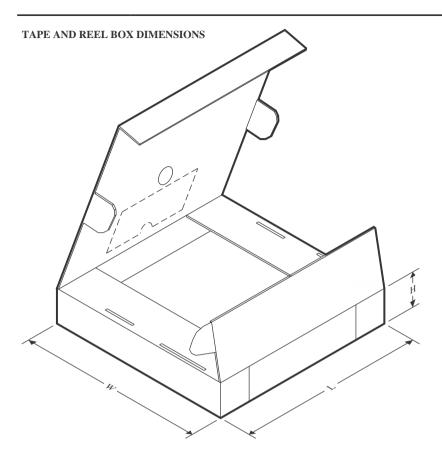
PACKAGE MATERIALS INFORMATION

www.ti.com 25-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

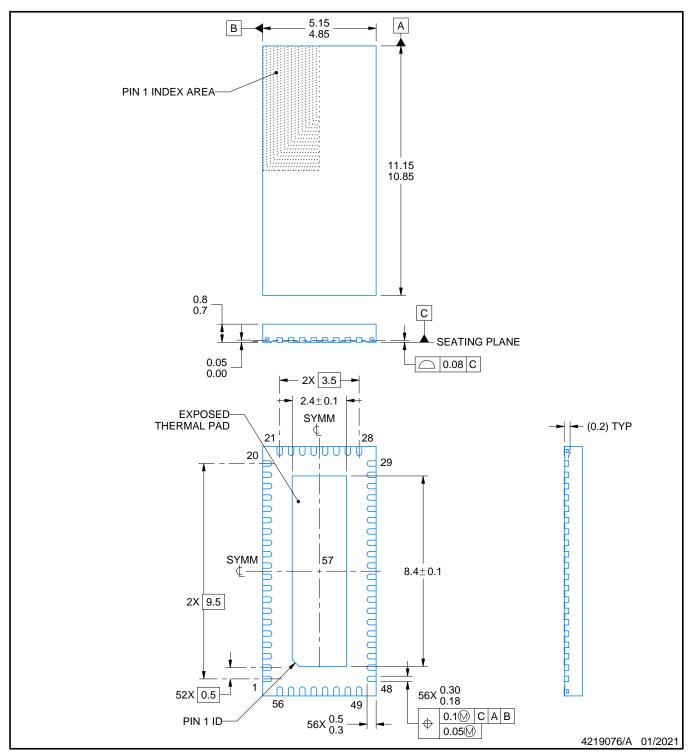


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3DV520ERHUR	WQFN	RHU	56	2000	330.0	24.4	5.3	11.3	1.0	8.0	24.0	Q1
TS3DV520RHUR	WQFN	RHU	56	2000	330.0	24.4	5.3	11.3	1.0	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

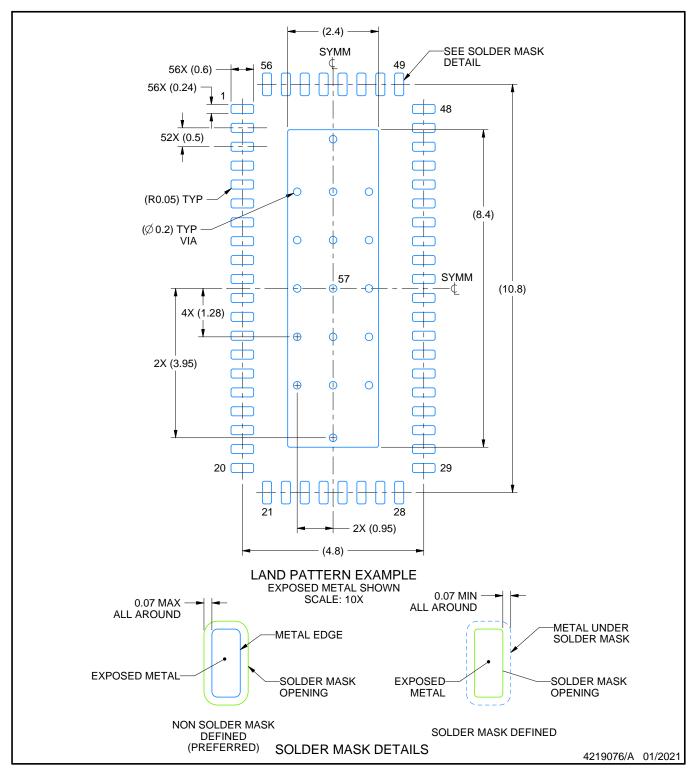
www.ti.com 25-Jul-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3DV520ERHUR	WQFN	RHU	56	2000	367.0	367.0	45.0
TS3DV520RHUR	WQFN	RHU	56	2000	346.0	346.0	35.0

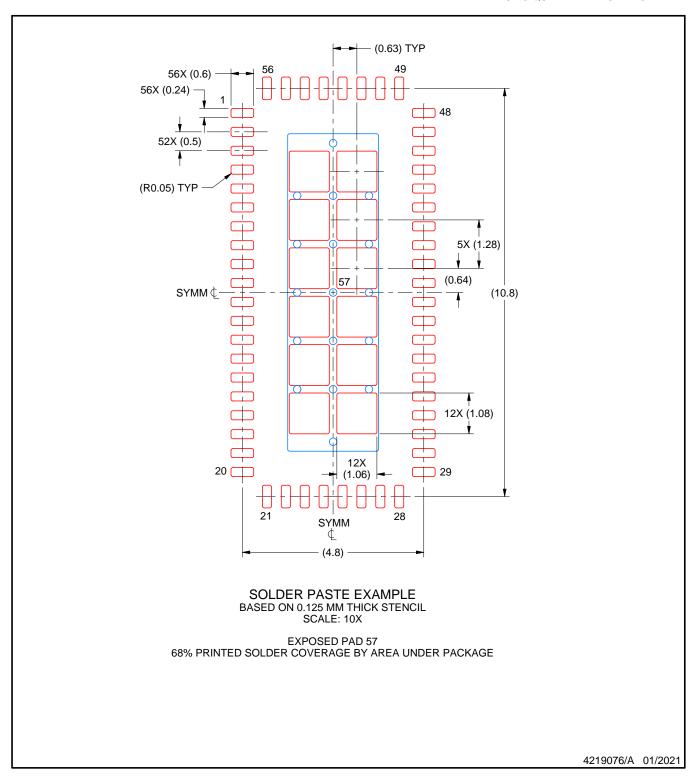
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025