

TX7316 Three-Level, 16-Channel or Five-Level, 8-Channel Transmitter With 2.4-A Pulser, T/R Switch, and Integrated Transmit Beamformer

1 Features

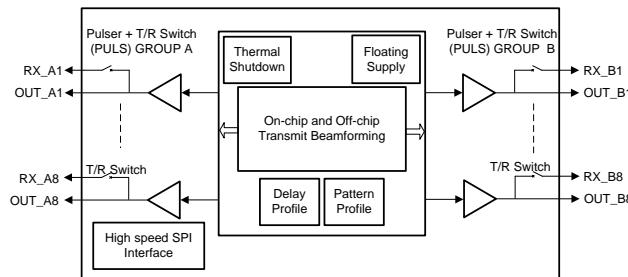
- Transmitter supports:
 - 16-channel 3-level or 8-channel 5-level pulser and active transmit/receive (T/R) switch
 - Very low power on-chip beamforming mode (5-level mode):
 - In receive-only mode: 17 mW
 - In transmit-receive mode: 598 mW
 - In CW mode (0.6-A mode): 1.97 W
 - In global power-down mode: 4.3 mW
- 3-level, 5-level pulser:
 - Maximum output voltage: ± 100 V
 - Minimum output voltage: ± 1 V
 - Maximum output current: 2.4 A to 0.6 A
 - Maximum clamp current: 1 A to 0.25 A (in 3-level mode)
 - Maximum clamp current: 2 A to 0.5 A (in 5-level mode)
 - Second harmonic of -45 dBc at 5 MHz
 - CW mode jitter: 100 fs measured from 100 Hz to 20 kHz
 - CW mode close-in phase noise: -154 dBc/Hz at 1 kHz offset for 5 MHz signal
 - Supports 4.8-A mode in 5-level mode
 - -3 -dB Bandwidth with $1\text{-k}\Omega \parallel 240\text{-pF}$ load
 - 20 MHz (For ± 100 -V supply in 2.4-A mode)
 - 36 MHz (For ± 100 -V supply in 4.8-A mode)
 - 25 MHz (For ± 70 -V supply in 2.4-A mode)
- Active transmit/receive (T/R) switch with:
 - ON/OFF control signal
 - Turnon resistance of $12\ \Omega$
 - Bandwidth: 50 MHz
 - HD2: -50 dBc
 - Turnon time: $0.5\ \mu\text{s}$
 - Turnoff time: $1.75\ \mu\text{s}$
 - Transient glitch: $50\ \text{mV}_{\text{PP}}$
- Off-chip beam former with:
 - Jitter cleaning using synchronization feature
 - Maximum synchronization clock frequency: 200 MHz
- On-chip beam former with:
 - Delay resolution: one beamformer clock period, minimum 5 ns

- Maximum delay: 2^{13} beamformer clock period
- Maximum beamformer clock speed: 200 MHz
- On-chip RAM to store
 - 16 Delay profiles
 - 48/28 pattern-profiles for 3- or 5-level mode
- High-speed (100 MHz maximum) 1.8-V and 2.5-V CMOS serial programming interface
- Automatic thermal shutdown
- No specific power sequencing requirement in 3-level mode
- Small package: NFBGA-216 (15 mm \times 10 mm) with 0.8-mm pitch

2 Applications

- Ultrasound imaging system
- Piezoelectric driver
- In-probe ultrasound imaging

3 Description


The TX7316 is a highly integrated, high-performance transmitter solution for ultrasound imaging system. The device has total 16 pulser circuits (PULS), 16 transmit/receive (T/R) switches, and supports both on-chip and off-chip beamformer (TxBF). The device also integrates on-chip floating power supplies that reduce the number of required high voltage power supplies.

Device Information⁽¹⁾

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
TX7316	NFBGA (216)	15.0 mm \times 10.0 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Block Diagram

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

4 Revision History

Changes from Revision A (March 2019) to Revision B	Page
---	-------------

• Changed <i>Feature</i> : In CW mode: 2.98 W To: In CW mode (0.6-A mode): 1.97 W.....	1
• Changed <i>Feature</i> : Second harmonic of –40 dBc at 5 MHz To: Second harmonic of –45 dBc at 5 MHz	1
• Added <i>Feature</i> : 36 MHz (For $\pm 100\text{-V}$ supply in 4.8-A mode).....	1
• Changed <i>Feature</i> : Turnoff time: 1.6 μs To: Turnoff time: 1.75 μs	1

Changes from Original (May 2019) to Revision A	Page
---	-------------

• Changed the document status From: <i>Advanced Information</i> To: <i>Production data</i>	1
• Changed from Pulsar to Pulser across the document.....	1
• Changed the values of <i>CW</i> and <i>global power-down</i> modes	1
• Changed the supply voltage value in <i>–3-dB Bandwidth with $1-k\Omega \parallel 240\text{-pF}$ load</i> feature.	1

5 Description (continued)

The TX7316 (referred to as device in this data sheet) has a pulser circuit that generates three-level high voltage pulses (up to ± 100 V) that can be used to excite multiple channels of an ultrasound transducer. The device supports total 8 outputs for 5-level mode and 16 outputs for 3-level mode. The maximum output current is configurable from 2.4 A to 0.6 A.

A T/R switch under OFF state protects the receiver circuit by providing high isolation between the high-voltage transmitter and the low-voltage receiver when the pulser is generating high-voltage pulses. When the transducer is receiving echo signals, the T/R switch turns ON and connects the transducer to the receiver. The ON/OFF operation of the T/R switch is either controlled by an external pin or controlled by on-chip beamforming engine in the device. The T/R switch offers $12\text{-}\Omega$ impedance in the ON state.

Ultrasound transmission relies on the excitation of multiple transducer elements with the delay profile of the excitation across the different elements defining the direction of the transmission. Such an operation is referred to as transmit beamforming. The TX7316 supports staggered pulsing of the different channels, allowing for transmit beamforming. The device supports both off-chip and on-chip beamforming operation.

In the off-chip beamformer mode, the output transition of each pulser and TR switch ON/OFF operation is controlled by external control pins. To eliminate the effect of jitter from the external control signals, the device supports a synchronization feature. When the synchronization feature is enabled, the external control signals are latched using a low-jitter beamformer clock signal.

In the on-chip beamformer mode, the delay profile for the pulsing of the different channels is stored within the device. The device supports a transmit beamformer delay resolution of one beamformer clock period and a maximum delay of 2^{13} beamformer clock periods. An internal pattern generator generates the output pulse patterns based on pattern profiles stored in a profile RAM. Up to 16 beamforming profiles and 48/28 pattern profiles for 3/5-level mode can be stored in the profile RAM. On-chip beamforming mode reduces the number of control signals that must be routed from the FPGA to the device.

TX7316 is available in a 15-mm \times 10-mm 216-pin NFBGA package (ZCX package) and is specified for operation from 0°C to 70°C.

6 Device and Documentation Support

6.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

6.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community*. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

6.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

6.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

6.5 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

7 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

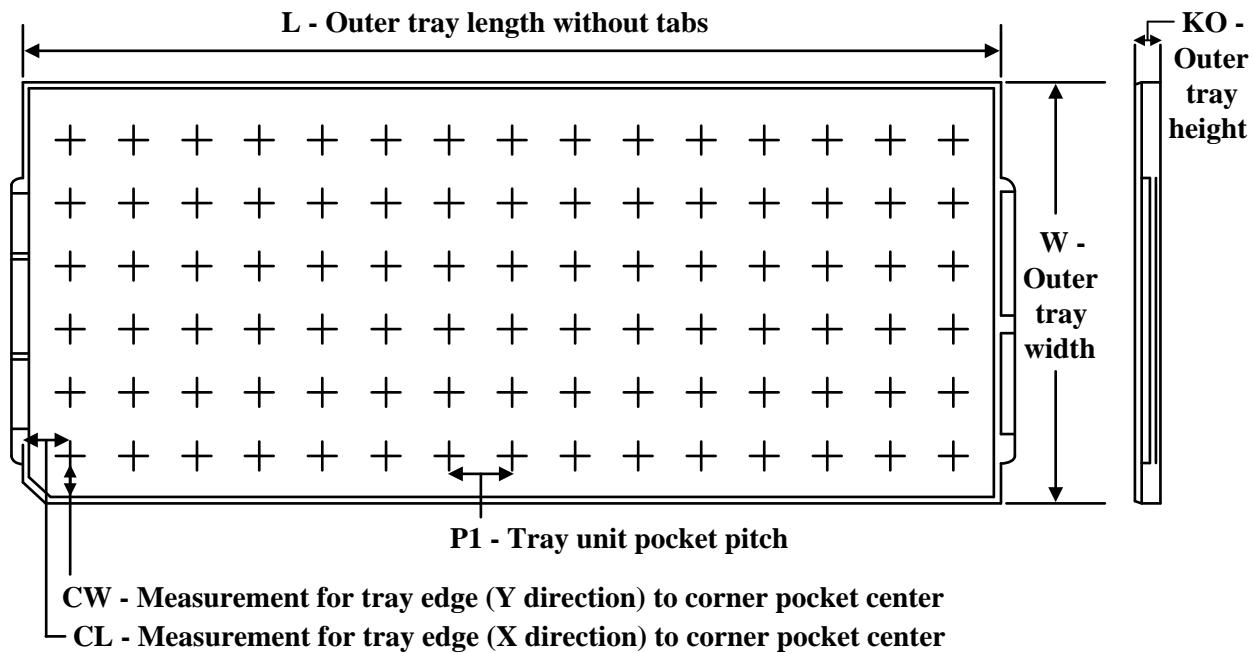
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TX7316ZCX	Active	Production	NFBGA (ZCX) 216	136 JEDEC TRAY (5+1)	Yes	SNAGCU	Level-3-260C-168 HR	0 to 70	TX7316

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TRAY

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	KO (µm)	P1 (mm)	CL (mm)	CW (mm)
TX7316ZCX	ZCX	NFBGA	216	136	8 X 17	150	315	135.9	7620	18.1	12.7	11.95

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025