Enabling System on Module and Industrial PC Connectivity With Level Translation

Atul Patel

The ability to apply machine learning and artificial intelligence algorithms at the edge of computing and electronic system environments is more important today than ever before. Processing videos, images, audio, and other sensor data and then acting on that data at the edge enables higher performance more resilient systems. Bringing processing to the edge is enabling applications to take advantage of technologies such as real-time machine vision, audio transcription, video analytics and many others. One key enabling technology for bringing processing to the edge are System on Modules (SoMs) or Computer of Module (CoMs) Industrial Personal Computers (IPC). SoMs and CoMs are part of a broader category of computing platforms known as single board computers. Systems designers can leverage SoM and CoM modules to implement high performance embedded computing solutions. SoMs are essentially entire computer systems that are built in credit card sized or smaller form factor modules. The small size and low power dissipation of SoMs enables systems designers to bring processing power closer to the edge without having to sacrifice system form factors, processing density, or power budgets. SoMs are extremely popular within industrial applications spaces given the wide selection of SoM and CoM module offerings the market provides. What makes SoMs and CoMs especially versatile is the wide array of system interfaces that are supported by them. The large assortment of I/O (Input/Output) interface types enables SoMs to communicate with many different types of external peripheral devices that are likely to be used in an end application (see Figure 1).



Figure 1. Common SoM and Industrial PC I/O Interfaces

Reference www.ti.com

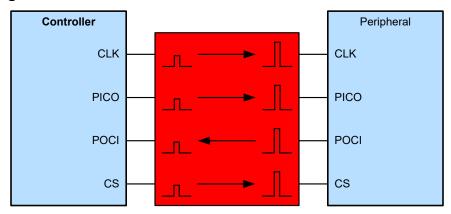

As the core processor devices that make up the SoM move down the silicon process curve, their core voltages also scale downward in order keep power dissipation reasonable while keeping heat dissipation manageable. The lower core voltages of SoM components also limits the I/O voltage that the SoM interfaces can operate at. The lower I/O voltages of new SoMs and CoMs presents a design challenge to design engineers who often need to interface these modules with peripheral devices operating at higher I/O voltages. One solution that system designers can use to resolve I/O level mismatches between SoM and peripheral device I/Os is to use I/O level shifter devices. Integrated I/O level translation solutions are available in a wide assortment of I/O types, bit widths, data rate ranges, current drive capabilities, and package options. Figure 1 shows common interfaces that are supported by mainstream SoMs while Table 1 shows recommended level translation solutions for level shifting between the different SoM and peripheral device I/O types. Texas Instruments' portfolio of level shifter devices contains many different types of level translation functions that collectively is able to address almost any application requirement. Tl's level translation portfolio includes Auto Directional, Direction Controlled, and Fixed Direction level translators in Industrial, Automotive and Enhanced ratings. The sections below provide level translation recommendations for the most common interface types such as SPI, I2C, and UART. For more information on Tl's level translation devices, see the level translation landing page on ti.com.

Table 1. Recommended Translator by Interface

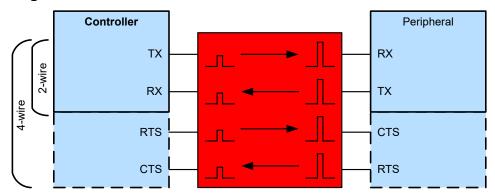
	Translat			
Interface	Up to 3.6 V	Up to 5.5 V	Small Package Option	
FET Replacement	2N7001T	SN74LXC1T45 / TXU0101	DPW, DTQ	
1 Bit GPIO/Clock Signal	SN74AXC1T45	SN74LXC1T45 / TXU0101	DTQ	
2 Bit GPIO	SN74AXC2T245	SN74LXC2T45 / TXU0102	DTM	
2-Pin JTAG/UART	SN74AXC2T45	SN74LXC2T45 / TXU0202	DTM	
I2C/MDIO/SMBus	TXS0102 / LSF0102	TXS0102 / LSF0102	DQE, DQM	
IC-USB	SN74AVC2T872 / TXS0202	NA	YZP	
4 Bit GPIO	SN74AXC4T245	TXB0104 / TXU0104	BQB, DTR	
UART	SN74AXC4T245	TXB0104 / TXU0204	BQB, DTR	
SPI	SPI SN74AXC4T774 / TXB0104 TXB0104 / TXU0304		BQB, RUT	
JTAG	SN74AXC4T774 / TXB0104	TXB0104 / TXU0304	BQB, RUT	
I2S/PCM	I2S/PCM SN74AXC4T774 / TXB0104 TXB0104 / TXU0204		BQB, RUT	
Quad-SPI	TXB0106 TXB0106		RGY	
SDIO/SD/MMC	TXS0206 / TWL1200	NA	YFP	
8 Bit GPIO/RGMII	SN74AXC8T245	SN74LXC8T245	RJW, RHL	

Translate Voltages for SPI

Example SPI Voltage Translation Block Diagram

See more about this use case in the Logic Minute video Voltage Translation for SPI.

Design Considerations


- Translators enable communication when devices have mismatched logic voltage levels
- Prevent damage to devices that cannot support higher voltage inputs
- Improve data rates over discrete translation solutions
- · Protect controller while peripheral is not connected
- [FAQ] What are the power sequencing requirements for the translation device?
- [FAQ] What should be done with unused I/O pins of the level translator devices?
- Need additional assistance? Ask our engineers a question on the *TI E2E™ Logic Support Forum*

Recommended Parts

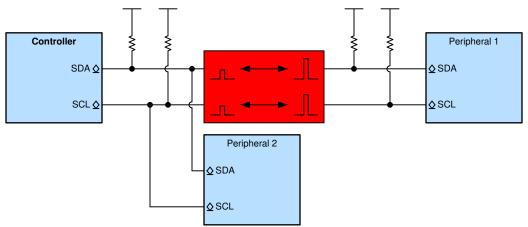
Part Number	AEC-Q100	Voltage Translation Range	Features
TXU0304		441/ 551/	Schmitt-trigger inputs
TXU0304-Q1	✓	1.1 V–5.5 V	Integrated pulldown resistors V_{CC} Isolation and V_{CC} Disconnect
SN74AXC4T774			Direction controlled
SN74AXC4T774-Q1	✓	0.65 V–3.6 V	Glitch-free power supply sequencing V _{CC} Isolation

Translate Voltages for UART

Example UART Voltage Translation Block Diagram

See more about this use case in the Logic Minute video Voltage Translation for UART.

Design Considerations


- Some devices support up to 5 Mbps UART communication; most are limited to 115 kbps or less
- · Translators enable communication when devices have mismatched logic voltage levels
- Prevent damage to devices that cannot support higher voltage inputs
- · Improve data rates over discrete translation solutions
- · Protect controller while peripheral is not connected
- [FAQ] What are the power sequencing requirements for the translation device?
- [FAQ] What should be done with unused I/O pins of the level translator devices?
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum

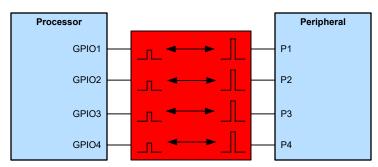
Recommended Parts

Part Number	AEC-Q100	Supported UART Topology	Voltage Translation Range	Features
TXU0204			1.1 V-5.5 V	Schmitt-trigger inputs
TXU0204-Q1	✓	2-wire and 4-wire		Integrated pulldown resistors V _{CC} Isolation and V _{CC} Disconnect
SN74AXC2T245		2-wire	2 wire	
SN74AXC2T245-Q1	✓	Z-wile	0.65 V-3.6 V	Direction controlled Glitch-free power supply sequencing
SN74AXC4T245		2-wire and 4-wire	0.05 V=3.0 V	V _{CC} Isolation
SN74AXC4T245-Q1	✓	Z-wire and 4-wire		

Translate Voltages for I²C

Example of Using Voltage Translation With an I²C Communication Bus

Design Considerations


- Typical data rates can range from 100 kpbs 3.4 Mbps
- Certain I²C modes have minimum rise time requirements that may be violated due to the edge-rate acceleration feature in the TXS family
- · Enable communication when devices have mismatched logic voltage levels.
- Prevent damage to devices that cannot support higher voltage inputs.
- Improve data rates over discrete translation solutions.
- [FAQ] Why are the TXS01xx VIH/VIL specifications so stringent?
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum.

Recommended Parts

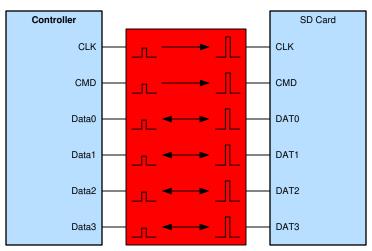
Part Number	AEC-Q100 Qualified	Voltage Translation Range	Features
LSF0102		0.95 V – 5 V	Over-voltage tolerant I/O
LSF0102-Q1	✓	0.93 V = 3 V	Low R _{ON} for less signal distortion
TXS0102			Edge-rate acceleration
TXS0102-Q1	✓	1.65 V – 5.5 V	Supports Partial-Power-Down applications Integrated pull-up resistors

Translate Voltages for GPIO

Example GPIO Voltage Translation Block Diagram

Design Considerations

- Translators enable communication when devices have mismatched logic voltage levels
- · Prevent damage to devices that cannot support higher voltage inputs
- Improve data rates over discrete translation solutions
- · Protect controller while peripheral is not connected
- [FAQ] What are the power sequencing requirements for the translation device?
- [FAQ] What should be done with unused I/O pins of the level translator devices?
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum


Recommended Parts

Part Number	AEC-Q100	Bits	Voltage Translation Range	Features	
SN74LXC8T245		8 1.1 V–5.5 V		Schmitt-trigger inputs	
SN74LXC8T245-Q1	✓		1.1 V–5.5 V	Dynamic pulldowns on I/O V _{CC} Isolation and V _{CC} Disconnect	
TXU0104		4	4		Schmitt-trigger inputs
TXU0104-Q1	✓			1.1 V–5.5 V	Integrated pulldown resistors V _{CC} Isolation and V _{CC} Disconnect
SN74AXC2T45		2 0.65 V-3.6 V			
SN74AXC2T45-Q1	✓		0.65 \ 2.6 \	Direction controlled	
SN74AXC1T45			0.05 V-3.6 V	Glitch-free power supply sequencing V _{CC} Isolation	
SN74AXC1T45-Q1	✓				

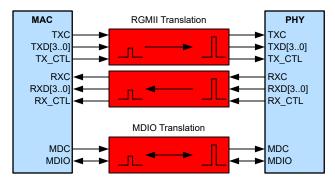
For more devices, browse through the *online parametric tool* where you can choose between the three types of translators.

Translate Voltages for SDIO

Example of Using Voltage Translation With an SD Card Communication Bus

Design Considerations

- · Enable communication when devices have mismatched logic voltage levels
- · Prevent damage to devices that cannot support higher voltage inputs
- · Improve data rates over discrete translation solutions
- · Protect controller while SD Card is not connected
- [FAQ] Are there voltage level translation / level shifter device recommendations for the industry standard interfaces like GPIO, SPI, UART, I2C, MDIO, RGMII, I2S?
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum


Recommended Parts

Part Number	Voltage Translation Range	Maximum Data Rate (Mbps)	Features
TXS02612	1.1 V–3.6 V	120	Enables a single SDIO port to be interfaced with two SDIO peripherals 8-kV System-level (IEC 61000-4-2) ESD protection
TXS0206	1.1 V–3.6 V	60	Auto-bidirectional Integrated EMI Filtering 8-kV System-level (IEC 61000-4-2) ESD protection
TXS0206-29	1.1 V–3.6 V	60	Auto-bidirectional Integrated 2.9 V LDO regulator 8-kV System-level (IEC 61000-4-2) ESD protection
SN74AVCA406	1.2 V-3.6 V	52	MMC, SD, Memory Stick, Smart Media, and XD- Picture Card Voltage Translation Transceiver 15-kV System-level (IEC 61000-4-2) ESD protection

Translate Voltages for RGMII

RGMII is a high-bandwidth data bus protocol with very strict timing considerations. The following device recommendations are provided as a suggested solution as they can support the data rates required for RGMII interfaces; however, because the RGMII specification is defined without consideration for voltage level translation, board-level assessment of key timing parameters and assessment of performance within the system is encouraged.

Example of Using Voltage Translation With RGMII

Design Considerations

- Board layout is critical to the success of RGMII translation; we recommend using signal integrity simulations and prototyping for any design
- · Use active translators for maximum data rate
- Use one device for all TX signals and one for all RX signals to minimize channel-to-channel skew
- See Low Voltage Translation For SPI, UART, RGMII, JTAG Interfaces for details regarding the performance of SN74AXC8T245 in RGMII applications
- Place translators closest to the low-voltage device, if possible, to improve signal integrity
- Consider source-terminating signals if sent over 12 cm (4700 mil) or longer traces
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum

Recommended Parts

Part Number	Automotive Qualified	RGMII Voltage Translation Range	Device Maximum Data Rate (Mbps)		
SN74AXC8T245				Glitch-free power supply sequencing	
SN74AXC8T245-Q1	✓	2.5 V to 3.3 V	' '	Outputs are disabled when either supply is 0 V Active translation architecture	
SN74AVC8T245		1.8 V to 3.3 V	320 Mbps	Active translation architecture	
SN74AVC8T245-Q1	✓	1.0 V 10 3.3 V	320 Mbps	Active translation architecture	

Translate Voltages for MDIO

Management Data Input or Output (MDIO) is a control protocol designed primarily for use with ethernet PHY devices. It typically utilizes an unidirectional 2.5 MHz clock signal (MDC) and bidirectional data bus line (MDIO). For details on the accompanying RGMII translation, see *Translate Voltage for RGMII*.

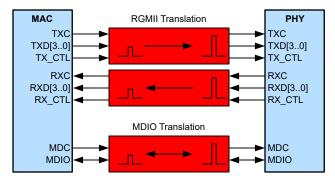


Figure 8. Example MAC to PHY Voltage Translation Block Diagram

See more about auto-bidirectional voltage translation in *Translation Between Communication Modules and System Controllers*

Design Considerations

- Translators enable communication when devices have mismatched logic voltage levels
- Prevent damage to devices that cannot support higher voltage inputs
- Use a fixed-direction translator for the clock (MDC) if higher speeds are required; some newer devices use a clock as high as 50 MHz
- Open-drain compatible translators are required for the data line; although the protocol is not open-drain, pull-up resistors are required on the MDIO signal bus because there are times when the bus is not actively driven
- See answers to our most frequently asked technical questions on [FAQ] Voltage Translators
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum

Recommended Parts

Part Number	AEC-Q100 Qualified	Voltage Translation Range	Features
SN74AXC1T45			Glitch-free power supply sequencing
SN74AXC1T45-Q1	✓	0.65 V – 3.6 V	Outputs are disabled when either supply is 0 V Active translation architecture Up to 500 Mbps for 1.8 V to 3.3 V translation
TXS0102			Auto-bidirectional
TXS0102-Q1	✓	1.65 V – 5.5 V	Open-drain compatible Integrated pull-up resistors

Translate Voltages for a SIM Card

Subscriber Identity Modules, commonly called SIM cards, are used to store secure information in mobile devices for use in communications. This type of voltage translation applies to SIM, USIM, and UICC.

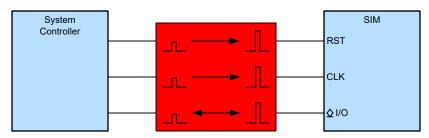


Figure 9. Example SIM Card Voltage Translation Block Diagram

Design Considerations

Design Considerations

- · Clock signals can be up to 5 MHz
- · Translators enable communication when devices have mismatched logic voltage levels
- Prevent damage to devices that cannot support higher voltage inputs
- · Improve data rates over discrete translation solutions
- · Protect controller while peripheral is not connected
- [FAQ] How does a slow or floating input affect a CMOS device?
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum

Table 2. Recommended Faits					
		Su	Supported Card Types		
Part Number	Automotive Qualified	Class A 5 V	Class B 3 V	Class C 1.8 V	Features
TXS0104E		✓	✓	✓	Auto-bidirectional voltage translation for all channels
TXS0104E-Q1	✓	✓	✓	✓	Supports all voltages and frequencies for SIM/UICC Increased ESD protection on B ports
TXS4555			√	✓	Complete SIM/UICC translator solution Integrated LDO regulator Increased ESD protection on card-side
TXS02326A			✓	1	Complete dual SIM/UICC translator and multiplexer solution Dual integrated LDO regulators I ² C communication with baseband processor Increased ESD protection on card-side

Table 2. Recommended Parts

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated