
## Generate a Power-On Reset Pulse



On device start-up, some logic parts may output an invalid state until cleared. A pulse can be generated when  $V_{CC}$  turns on to reset those parts to valid output states.



## **Design Considerations**

- The pulse width is determined by T = RC
  - The standard configuration for a 1-ms pulse is R = 10 kΩ, C = 0.1  $\mu$ F
- Multiple reset pulse generators with different RCs can be used to delay the pulse to some devices, resetting some before others or triggering clock inputs
- [FAQ] How does a slow or floating input affect a CMOS device?
- [FAQ] Where do I find maximum power dissipation for a device?
- Ask a question on the TI E2E<sup>™</sup> forum

## **Recommended Parts**

| Part Number    | AEC-Q100 | V <sub>CC</sub> Range | Channels         | Features                          |
|----------------|----------|-----------------------|------------------|-----------------------------------|
| SN74LVC1G14    |          | 1.65 V – 5.5 V        | Inverting buffer | 1 channel, Schmitt-trigger inputs |
| SN74LVC1G14-Q1 | ✓        |                       |                  |                                   |
| SN74LVC2G14    |          | 1.65 V – 5.5 V        | Inverting buffer | 2 channel, Schmitt-trigger inputs |
| SN74LVC2G14-Q1 | ✓        |                       |                  |                                   |
| SN74LVC1G17    |          | 1.65 V – 5.5 V        | Buffer           | 1 channel, Schmitt-trigger inputs |
| SN74LVC1G17-Q1 | ✓        |                       |                  |                                   |

For more devices, browse through the *online parametric tool* where you can sort by desired voltage, channel numbers, and other features.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated