Designing for Ultra-Low Power with MSP430

Christian Hernitscheck
MSP430 FAE Europe
Texas Instruments
Agenda

• Introduction to Ultra-Low Power
• Looking for Ultra-Low Power Parts
• MSP430 – The Ultra-Low Power MCU
• Low-Power Efficient Coding Techniques
• Summary
Achieving **Ultra-low Power**

- Extended Ultra-low Power standby mode
- Minimum active duty cycle
- Performance on-demand
Ultra-low Power Clock Control

- **LPM0**
 - CPU Off
 - DCO on
 - ACLK on
 - 35uA

- **Active**
 - DCO on
 - ACLK on
 - 250uA

- **LPM3**
 - RTC function
 - LCD driver
 - RAM/SFR retained

- **Stand-by**
 - DCO off
 - ACLK on
 - 0.8uA

- **LPM4**
 - Off
 - All Clocks Off
 - 0.1uA

- **<6us**

© 2006 Texas Instruments Inc, Slide 4
Agenda

• Introduction to Ultra-Low Power
• Looking for Ultra-Low Power Parts
• MSP430 – The Ultra-Low Power MCU
• Low-Power Efficient Coding Techniques
• Summary
Ultra-Low Power Architecture

Multiple operating modes
- 0.1uA power down
- 0.7uA standby mode
- 250uA / 1MIPS

Modern CPU
Minimum cycles per task

Instant-on stable high-speed clock

Zero-power BOR

- 50nA pin leakage

Intelligent peripherals
Power Consumption in CMOS Designs

• CMOS Inverter:

- Power Consumption of a CMOS Inverter:

\[P = P_{\text{stat}} + P_Q + P_{\text{dyn}} \]

\[P_{\text{stat}} = V_{cc} \times I_{LL} \]
\[P_Q = \beta / 12 \times (V_{cc} - 2U_{Tn})^3 \times \tau / T \]
\[P_{\text{dyn}} = C_L \times f \times V_{cc}^2 \]
MCU's Digital Supply Current

- AVcc
- AVss
- DVcc
- DVss
- Reset
- CPU Clock

Graph showing waveforms with labels:
- CH1
- CH2

Tek Stop: 50.0MS/s
66 Acqs

© 2006 Texas Instruments Inc, Slide 8
MSP430 Active Mode Supply Current

- MSP430F2131 data sheet [slas439a]:

![Graph 1](image1.png)

Figure 2. Active mode current vs V_{CC}, $T_A = 25^\circ C$

![Graph 2](image2.png)

Figure 3. Active mode current vs DCO frequency

$T_A = 85^\circ C$

$T_A = 25^\circ C$

$V_{CC} = 3\, V$

$T_A = 85^\circ C$

$T_A = 25^\circ C$

$V_{CC} = 2.2\, V$

© 2006 Texas Instruments Inc, Slide 9
Device, Voltage, Temperature & Clock

<table>
<thead>
<tr>
<th>Device</th>
<th>Voltage</th>
<th>Temperature</th>
<th>Current (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSP430F16x LPM3</td>
<td>VCC = 2.2V</td>
<td>TA = -40°C</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 25°C</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 85°C</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = -40°C</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 25°C</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 85°C</td>
<td>3.0</td>
</tr>
<tr>
<td>MSP430F20xx LPM3</td>
<td>VCC = 3V</td>
<td>TA = -40°C</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 25°C</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 85°C</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = -40°C</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 25°C</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 85°C</td>
<td>1.6</td>
</tr>
<tr>
<td>LFXT1</td>
<td>2.2V</td>
<td>TA = -40°C</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 25°C</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 85°C</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = -40°C</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 25°C</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 85°C</td>
<td>1.0</td>
</tr>
<tr>
<td>VLO</td>
<td>3V</td>
<td>TA = -40°C</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 25°C</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA = 85°C</td>
<td>1.3</td>
</tr>
</tbody>
</table>

- Die size and # pins
- Family architectures and clock system
P1OUT |= 0x02; // Power divider
CACTL1 = CARSEL + CAREF_2 + CAON; // Comp_A on
if (CAOUT & CACTL2)
 P1OUT |= 0x01; // Fault
else
 P1OUT &= ~0x01;
P1OUT &= ~0x02; // de-power divider
CACTL1 = 0; // Disable Comp_A
Integrated Analog Power Managing

ADC10

<table>
<thead>
<tr>
<th>I_{ADC10}</th>
<th>Operating supply current into V_{CC} terminal (see Note 3)</th>
<th>V_{CC} = 2.2 V</th>
<th>V_{CC} = 3 V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$f_{ADC10CLK}$ = 5.0 MHz, $ADC10ON = 1$, REFON = 0, $ADC10SHT0=1$, $ADC10SHT1=0$, $ADC10DIV=0$</td>
<td>0.52 mA</td>
<td>0.6 mA</td>
</tr>
<tr>
<td>I_{REF+}</td>
<td>Reference operating supply current, reference buffer disabled (see Note 4)</td>
<td>V_{CC} = 2.2V/3 V</td>
<td>0.25 mA</td>
</tr>
<tr>
<td></td>
<td>$f_{ADC10CLK}$ = 5.0 MHz, $ADC10ON = 0$, REFON = 1, REF2_5V = x; REFOUT = 0</td>
<td></td>
<td>0.4 mA</td>
</tr>
</tbody>
</table>

DAC12

<table>
<thead>
<tr>
<th>DAC_{12AMPx}</th>
<th>$DAC_{12IR}=1$, $DAC_{12_XDAT}=0$</th>
<th>$V_{eeREF+}=V_{REF+}=AV_{CC}$; $V_{REF+}=AV_{CC}$</th>
<th>2.2V/3V</th>
<th>μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$DAC_{12AMPx}=2$</td>
<td>$DAC_{12IR}=1$, $DAC_{12_XDAT}=0800h$</td>
<td>$V_{eeREF+}=V_{REF+}=AV_{CC}$</td>
<td>2.2V/3V</td>
<td>50</td>
</tr>
<tr>
<td>$DAC_{12AMPx}=5$</td>
<td>$DAC_{12IR}=1$, $DAC_{12_XDAT}=0800h$, $V_{eeREF+}=V_{REF+}=AV_{CC}$</td>
<td>$V_{REF+}=AV_{CC}$; $V_{eeREF+}=V_{REF+}=AV_{CC}$</td>
<td>2.2V/3V</td>
<td>200</td>
</tr>
<tr>
<td>$DAC_{12AMPx}=7$</td>
<td>$DAC_{12IR}=1$, $DAC_{12_XDAT}=0800h$, $V_{eeREF+}=V_{REF+}=AV_{CC}$</td>
<td>$V_{eeREF+}=V_{REF+}=AV_{CC}$</td>
<td>2.2V/3V</td>
<td>700</td>
</tr>
</tbody>
</table>

OA

<table>
<thead>
<tr>
<th>Mode</th>
<th>V_{CC}</th>
<th>2.2 V/3 V</th>
<th>μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Mode, RRIP OFF</td>
<td>2.2 V/3 V</td>
<td>180</td>
<td>290</td>
</tr>
<tr>
<td>Medium Mode, RRIP OFF</td>
<td>2.2 V/3 V</td>
<td>110</td>
<td>190</td>
</tr>
<tr>
<td>Slow Mode, RRIP OFF</td>
<td>2.2 V/3 V</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Fast Mode, RRIP ON</td>
<td>2.2 V/3 V</td>
<td>300</td>
<td>490</td>
</tr>
<tr>
<td>Medium Mode, RRIP ON</td>
<td>2.2 V/3 V</td>
<td>190</td>
<td>350</td>
</tr>
<tr>
<td>Slow Mode, RRIP ON</td>
<td>2.2 V/3 V</td>
<td>90</td>
<td>190</td>
</tr>
</tbody>
</table>
Agenda

• Introduction to Ultra-Low Power
• Looking for Ultra-Low Power Parts
• MSP430 – The Ultra-Low Power MCU
• Low-Power Efficient Coding Techniques
• Summary
MSP430x11x/12x Basic Clock

R2/SR:

<table>
<thead>
<tr>
<th>Reserved</th>
<th>V</th>
<th>SCG1</th>
<th>SCG0</th>
<th>OSC OFF</th>
<th>CPU OFF</th>
<th>GIE</th>
<th>N</th>
<th>Z</th>
<th>C</th>
</tr>
</thead>
</table>

LFXT1 Oscillator

12pF

OSC OFF

12pF

VCC

SCG0

DCO

Digitally Controlled Oscillator

LFXT1CLK

ACLK

MCLK

CPU OFF

SCG1

SMCLK

© 2006 Texas Instruments Inc, Slide 14
Performance on Demand

- Immediate-stable clock start for reaction to events

Interrupt

DCO

© 2006 Texas Instruments Inc, Slide 15
Low Power Mode Configuration

<table>
<thead>
<tr>
<th>Mode</th>
<th>V</th>
<th>SCG1</th>
<th>SCG0</th>
<th>OSC OFF</th>
<th>CPU OFF</th>
<th>GIE</th>
<th>N</th>
<th>Z</th>
<th>C</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Mode</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>Z</td>
<td>C</td>
<td>~250uA</td>
</tr>
<tr>
<td>LPM0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>N</td>
<td>Z</td>
<td>C</td>
<td>~35uA</td>
</tr>
<tr>
<td>LPM3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>N</td>
<td>Z</td>
<td>C</td>
<td>~0.8uA</td>
</tr>
<tr>
<td>LPM4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>N</td>
<td>Z</td>
<td>C</td>
<td>~0.1uA</td>
</tr>
</tbody>
</table>

- **Assembler Code Example:**
  ```
bis.w #CPUOFF,SR ; LPM0
  ```
- **C Code Example:**
  ```
_BIS_SR (CPUOFF); // LPM0
  ```
Interrupt Processing

Prior to ISR

ISR hardware - automatically

- PC pushed
- SR pushed
- Interrupt vector moved to PC
- SR is cleared
- IFG flag cleared on single source flags

reti - automatically

- SR popped - original
- PC popped
Low Power Modes In Assembler

```
ORG 0F000h
RESET mov.w #300h,SP
       mov.w #WDT_MDLY_32,&WDTCTL
       bis.b #WDTIE,&IE1
       bis.b #01h,&P1DIR
Mainloop bis.w #CPUOFF+GIE,SR
       xor.b #01h,&P1OUT
       jmp Mainloop
WDT_ISR   bic.w #CPUOFF,0(SP)   reti

ORG 0FFFEh
DW RESET
ORG 0FFF4h
DW WDT_ISR
```
Low Power Modes In C

```c
void main(void)
{
    WDTCTL = WDT_MDLY_32;
    IE1 |= WDTIE;
    P1DIR |= 0x01;

    for (;;)
    {
        _BIS_SR(CPUOFF + GIE);
        P1OUT ^= 0x01;
    }
    #pragma vector=WDT_VECTOR
    __interrupt void watchdog_timer(void)
    {
        _BIC_SR_IRQ(CPUOFF);
    }
}
```

Low Power Modes In C

```
Item1
Item2
PC
SR=0018
```

```
Item1
Item2
PC
SR=0008
```

```
Item1
Item2
PC
SR
```
2xx Basic Clock Module+ with VLO Clock

- VLO provides crystal alternative
- Lower power
- < 500 nano-amp
Interrupts Control Program Flow

UART
RX
TX

9600 baud

100% CPU Load

// Polling UART Receive for (; ;)
{
 while (!(IFG2 & URXIFG0));
 TXBUF0 = RXBUF0;
}

0.1% CPU Load

// UART Receive Interrupt
#pragma vector=UART_VECTOR
__interrupt void rx (void)
{
 TXBUF0 = RXBUF0;
}
Software Functions >> Peripherals

100% CPU Load

Zero CPU Load

// Endless Loop
for (;;) {
 P1OUT |= 0x04; // Set
delay1();
P1OUT &= ~0x04; // Reset
delay2();
}

// Setup output unit
CCTL1 = OUTMOD0_1;
_BIS_SR(CPUOFF);

© 2006 Texas Instruments Inc, Slide 22
MSP430 ADC10

• 10-bit ADC
• 200ksps+
• Autoscan
• Single Sequence
 Repeat-single
 Repeat-sequence
• Internal/external reference
• TA SOC triggers
• Direct transfer controller (DTC)
Is Timer-Triggered ADC Important?

```
// Interrupt
; MSP430 ISR to start conversion
BIS #ADC12SC,&ADC12CTL0 ; Start conversion
RETI ; Return

CPU cycles
6
5
5
16
```
Why Is Autoscan + DTC Important?

70 cycles/Sample

Fully Automatic

// Software
Res[pRes++] = ADC10MEM;
ADC10CTL0 &= ~ENC;
if (pRes < NR_CONV)
{
 CurrINCH++;
 if (CurrINCH == 3)
 CurrINCH = 0;
 ADC10CTL1 &= ~INCH_3;
 ADC10CTL1 |= CurrINCH;
 ADC10CTL0 |= ENC+ADC10SC;
}

// Autoscan + DTC
_BIS_SR(CPUOFF);
Why Is DMA Important?

// Interrupt
; MSP430 ISR for one output waveform
CPU cycles	DMA clocks
6 | 0
MOV @R5+, &DAC12_0DAT ; Update DAC0
5 | 2
AND #1F, R5 ; Modulo pointer
2 | 0
RETI ; Return
5 | 0
; 18 | 2

; MSP430 ISR for two output waveforms
CPU cycles	DMA clocks
6 | 0
MOV @R5+, &DAC12_0DAT ; Update DAC0
5 | 2
MOV @R5+, &DAC12_1DAT ; Update DAC1
5 | 2
AND #3F, R5 ; Modulo pointer
2 | 0
RETI ; Return
5 | 0
; 23 | 4
Low-Power Peripheral Features

• ADC10 reference buffer automatically controlled
• ADC10, ADC12, SD16 cores automatically controlled
• Auto-scan ADC modes
• Timer-triggered data conversion
• I2C and USCI modules automatically enable clock
• DAC and OA have speed vs. power settings

What can I do without the CPU?
Power Manage External Devices

- OPA with shutdown can be 20x lower total power

0.01uA = Shutdown
20uA = Active

0.06uA = Average

1uA = Quiescent
1uA = Active

1uA = Average
How To Terminate Unused Pins?

• Floating inputs cause additional current consumption!

• Please see last page of chapter 2 in User’s Guide

Vin at P1.0 [V]
Agenda

• Introduction to Ultra-Low Power
• Looking for Ultra-Low Power Parts
• MSP430 – The Ultra-Low Power MCU
• Low-Power Efficient Coding Techniques
• Summary
Bytes, Words & CPU Registers

- Use CPU registers for calculations and dedicated variables
- Same code size for word or byte
- Use word operations when possible

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
<th>Code/Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>5405</td>
<td><code>add.w R4,R5</code></td>
<td>; 1/1</td>
</tr>
<tr>
<td>529202000202</td>
<td><code>add.w &0200,&0202</code></td>
<td>; 3/6</td>
</tr>
<tr>
<td>5445</td>
<td><code>add.b R4,R5</code></td>
<td>; 1/1</td>
</tr>
<tr>
<td>52D202000202</td>
<td><code>add.b &0200,&0202</code></td>
<td>; 3/6</td>
</tr>
</tbody>
</table>
Effect Of The Constant Generator

- Immediate values **0xFFFF, 0, 1, 2, 4, 8** generated in hardware
- Reduces code size and cycles

Completely Automatic!

```
D3E20021       bis.b  #002h,&P1OUT ; With CG
D0F200100021   bis.b  #010h,&P1OUT ; Without CG
```
Interrupt Vector Generator

- TAIV is used to efficiently decode the TIMER_A1 interrupt vector for all other interrupt sources
- Contents is either 0, 2, 4, or 10
- Reading TAIV returns and clears the highest-priority pending interrupt
- Add TAIV to the PC and use a jump-table for TAIV demux
- Using TAIV instead of IFG polling greatly reduces interrupt overhead
C Coding Tips

• Use local variable as much as possible. Local variables use CPU registers whereas global variables use RAM.

• Use bit mask instead of bitfields for unsigned int and unsigned char.

• Use unsigned data types where possible

• Use pointers to access structures and unions

• Use “static const” class to avoid run-time copying of structures, unions, and arrays.

• Avoid modulo

• Count down “for” loops

Get to know your C code and its disassembly!
Agenda

• Introduction to Ultra-Low Power
• Looking for Ultra-Low Power Parts
• MSP430 – The Ultra-Low Power MCU
• Low-Power Efficient Coding Techniques
• Summary
Principles For ULP Applications

• Maximize the time in standby (LPM3)
• Use interrupts to control program flow
• Replace software functions with peripheral hardware
• Power manage internal peripherals
• Power manage external devices
• Device choice can make a difference
• Effective code is a must. Every unnecessary instruction executed is a portion of the battery wasted that will never return.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>Low Power</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td>Wireless</td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated