TI TECH DAYS

Design Challenges for Automotive USB Type C® in CarPlay Application

Michael Tan

TI-APP-PSIL

Agenda

What is CarPlay/MFi and what is USB's role in the application?

- How to pass MFi VBUS requirement with TPS2583x/4x
 - TPS2583X/4x introduction
 - MFi VBUS spec and test set up
 - Cable compensation introduction
 - Cable compensation design to pass MFi
- How to pass MFi OCP requirement with TPS2583x/4x
 - MFi OCP spec and test set up
 - How to pass MFi OCP with TPS2583x/4x
- How to improve eye diagram performance with TPS2583x/4x
 - Eye diagram introduction and challenges in long cables
 - How to improve eye diagram performance with TPS2583x/4x
- How to improve EMI with TPS2583x/4x
- Q&A

TI TECH DAYS

What is CarPlay/MFi and what is USB's role in the application?

On-the-Go (OTG)

- On-the-go:
 - Allows USB devices to act as host
 - In automotive: Interoperability between automotive infotainment systems (head unit) and USB devices (phone)
 - Phone becomes the host and control phone App on the Head Unit
- Major players:
 - Apple CarPlay, Google Android Auto,

What is Apple CarPlay?

* **"Apple CarPlay** is a smarter, safer way to use your iPhone while you drive. With an all-new CarPlay Dashboard that helps you with tunes, turns, and Siri suggestions, a Calendar app that lets you view and manage your day, and maps for navigation."

Apple Carplay will swap the host between the Head Unit and Apple phone, you can control the App on the actual Head Unit.

*Text source : https://www.apple.com/ios/carplay/

Apple CarPlay handshake process

- 1. Phone connect to head unit and is recognized by head unit
- 2. If CarPlay feature enabled in phone, the head unit will send some packets indicating made for iPhone (MFi) information.
- 3. Head unit sends role switch request
- 4. If phone supports CarPlay, it will disconnect from the D+ and D-
- 5. Head unit turns on and pull up D+ (per OTG supplement)
- 6. Head unit waits for Apple device to enumerate, communication success

Apple MFi -----<u>Made For iPhone/iPod/iPad</u>

It is a licensing program for developers of hardware and software <u>peripherals</u> that work with Apple's <u>iPod</u>, <u>iPad</u> and <u>iPhone</u>.

MFi has strict requirement for USB port voltage, current and bandwidth.

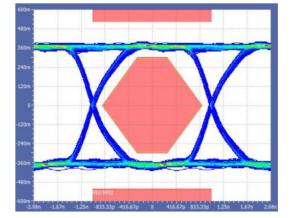
- 1. USB port VBUS voltage range
- 2. USB Port bandwidth and signal integrity
- 3. USB Port Overcurrent and short circuit protection

USB port VBUS voltage range

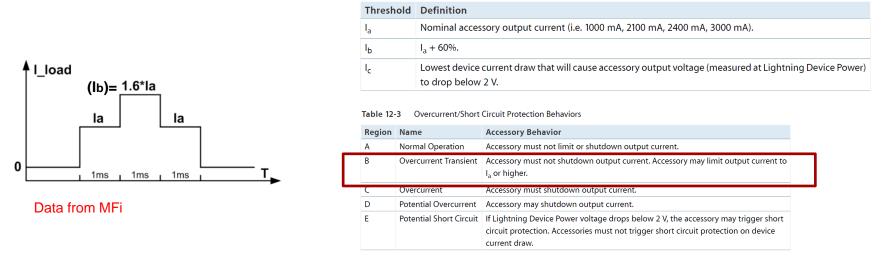
Power for non-lightning accessories				
Supply RatingMin OutputMax Output				
1 A	4.90	5.25		
2.1 A delivering up to 1 A	4.90	5.25		
2.1 A delivering up to 1 to 2.1 A	4.97	5.25	V	
2.4 A delivering 1 to 2.4 A	4.97	5.25		

*Data from MFi

USB port voltage range should always within apple MFi VBUS windows.


• USB Port bandwidth and signal integrity

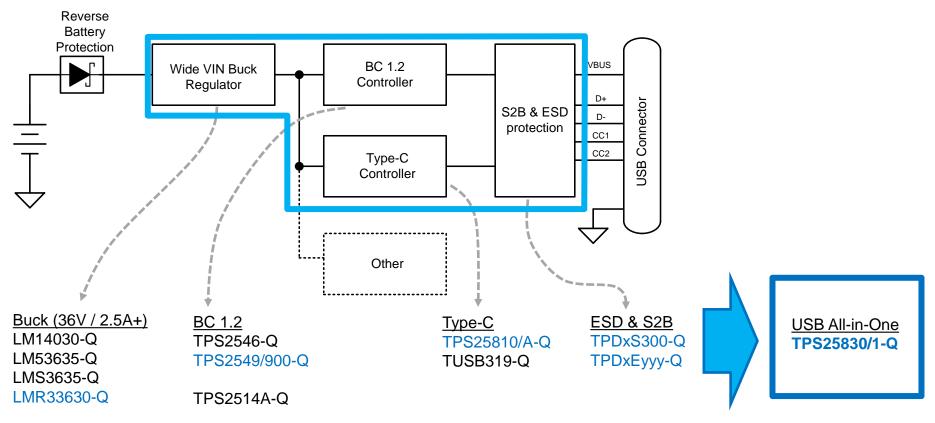
Lightning cables transfer data at USB 2.0 speeds.


USB 2.0 need to supports 480Mb/sec data rate transfer, Apple Carplay will require the good signal integrity quality for the USB Port.

10

USB Port overcurrent and short circuit protection

The USB port need to sustain 160% la for 1mS without VBUS drop to Zero.


Agenda

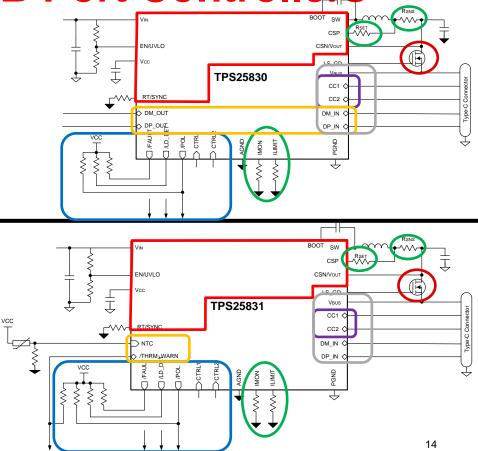
• What is CarPlay/MFi and what is USB's role in the application?

- How to pass MFi VBUS requirement with TPS2583x/4x
 - TPS2583X/4x introduction
 - MFi VBUS spec and test set up
 - Cable compensation introduction
 - Cable compensation design to pass MFi
- How to pass MFi OCP requirement with TPS2583x/4x
 - MFi OCP spec and test set up
 - How to pass MFi OCP with TPS2583x/4x
- How to improve eye diagram performance with TPS2583x/4x
 - Eye diagram introduction and challenges in long cables
 - How to improve eye diagram performance with TPS2583x/4x
- How to improve EMI with TPS2583x/4x
- Q&A

Automotive USB power

TPS25830/1: Single USB Port Controllers

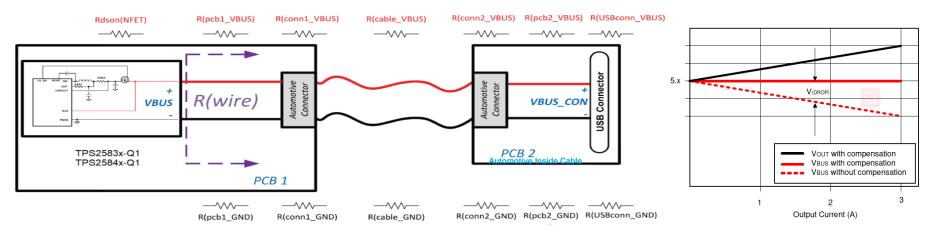
Common Features:

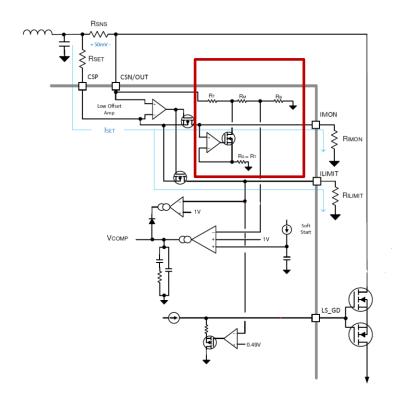

- 6-36V VIN, 3.5A Buck with Spread-Spectrum
- USB Type-C & BC1.2 port control with DCP, CDP, SDP
- ± 7% Acc. Current Sense / Current Limit
- Linear VBUS Droop Compensation
- External FET for current limited
- VCONN support: 5V @ 250mA
- Simple Control & Status flags
- Fault protection:
 - VBUS: short to VBAT (OV) or GND (OC)
 - CC: short to VBAT (OV) or GND (OC)
 - Dx: Short to VBAT (OV)
 - IC Over-temperature

<u>TPS25830:</u>

 >800MHz USB HS pass-through switch with IEC61000-4-2 ESD protection

<u>TPS25831:</u>


 Thermistor input and thermal warning flag for monitoring PCB temperature


MFI output current and VBUS voltage range

SUPPLY RATING	MINIMUM OUTPUT	MAXIMUM OUTPUT
1 A	4.90 V	5.25 V
2.1 A delivering up to 1.0 A	4.90 V	5.25 V
2.1 A delivering 1.0 to 2.1 A	4.97 V	5.25 V
2.4 A delivering 1.0 to 2.4 A	4.97 V	5.25 V

TPS2583X/4X block diagram for cable compensation

The current that passes the RSET can be calculated by equation:

ISET = RSNS × ILOAD / RSET

The voltage on the IMON can be calculated by equation :

 $V_{IMON} = (ISET / 2) \times RIMON = RSNS \times ILOAD \times RIMON / (2 \times RSET)$

Cable compensation voltage as equation:

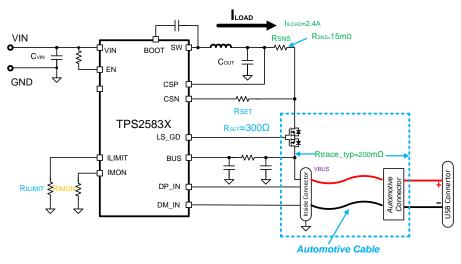
VCOMP =VIMON

RIMON can be deduced by equation:

 $R_{IMON} = VCOMP \times 2 \times R_{SET} / (ILOAD \times RSNS)$

VBUS accuracy estimation for MFi certification

Cable compensation voltage						
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT	Compensation Accuracy
Vimon	(VCSP - VCSN) = <mark>46 mV</mark> , RSET= 300 Ω, RILIMIT = 13 kΩ, RIMON = 13 kΩ	0.935	1	1.065	V	±6.5%
Vimon	(VCSP - VCSN) = <mark>26 mV</mark> , RSET = 300 Ω, RILIMIT = 13 kΩ, RIMON = 13 kΩ	0.435	0.5	0.565	V	±13%


TI Recommends: Choosing the suitable RSNS, which has

an approximate 50 mV voltage drop under desired maximum output current.

VBUS_typ = VOUT_typ + VCOMP_typ - VDROP_typ VBUS_min = VOUT_min + VCOMP_min - VDROP_max VBUS_max = VOUT_max + VCOMP_max - VDROP_min

VBUS cable compensation design example

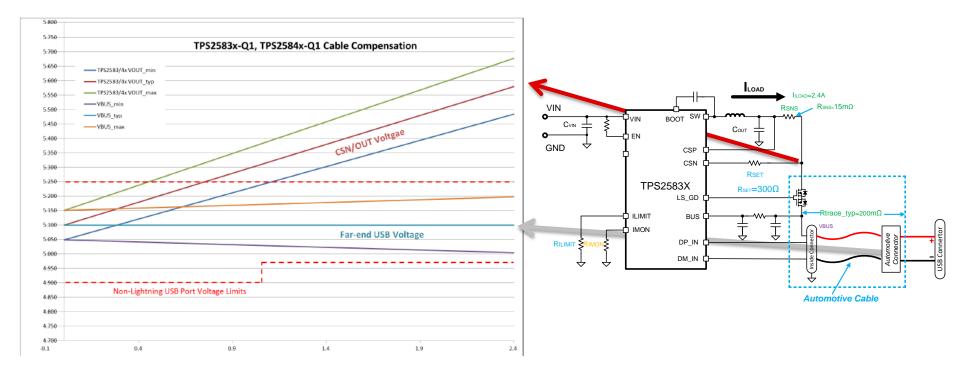
1. $VDROP_{typ} = ILOAD_{typ} \times Rtrace_{typ} = 2.4 \text{ A} \times 200 \text{ m}\Omega = 480 \text{ mV}$

2.ILOAD_min = ILOAD_max = ILOAD_typ = 2.4 A;VDROP_max = VDROP_min = VDROP_typ = 480 mV.

- 3. Choose $R_{SNS} = 15 m\Omega$ (choose reason)
- 4. Choose $R_{SET} = 300 \Omega$

5. VCOMP = VDROP = 480 mV

6. RIMON = VCOMP × 2 × RSET / (RSNS × ILOAD) = 480 mV × 2 × 300 Ω / (15 m Ω × 2.4 A) = 8 K Ω

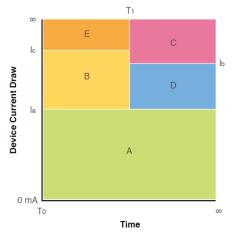

7. Assume the resistor accuracy is $\pm 1\%$, that is **R**_{SNS}_min/max = 15 m $\Omega \times (1 \pm 1\%)$, RIMON_min/max =8 K $\Omega \times (1 \pm 1\%)$, and **R**_{SET} = 300 $\Omega \times (1 \pm 1\%)$.

8. VCOMP_min = $15 \text{ m}\Omega \times 99\% \times 2.4A \times 8 \text{ K}\Omega \times 99\% / (2 \times 300 \ \Omega \times 101\%) \times 93.5\% \approx 435.5 \text{ mV}$. Choose VIMON_acc = $\pm 6.5\%$ according. VCOMP_max = $15 \text{ m}\Omega \times 101\% \times 2.4 \text{ A} \times 8 \text{ K}\Omega \times 101\% / (2 \times 300 \ \Omega \times 99\%) \times 106.5\% \approx 526.74 \text{ mV}$

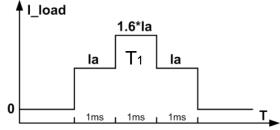
9.VBUS_min = 5.1V × 99% + 435.5 mV - 480 mV ≈ 5.005 V VBUS_max = 5.1 V × 101% + 526.74 mV - 480 mV ≈ 5.198 V

TPS2583x-Q1 far-end USB voltage

Application Note Link: http://www.ti.com/lit/an/slvaeb8/slvaeb8.pdf?&ts=1589098739222


🕂 🔱 Texas Instruments

Agenda


- What is CarPlay/MFi and what is USB's role in the application?
- How to pass MFi VBUS requirement with TPS2583x/4x
 - TPS2583X/4x introduction
 - MFi VBUS spec and test set up
 - Cable compensation introduction
 - Cable compensation design to pass MFi
- How to pass MFi OCP requirement with TPS2583x/4x
 - MFi OCP spec and test set up
 - How to pass MFi OCP with TPS2583x/4x
- How to improve eye diagram performance with TPS2583x/4x
 - Eye diagram introduction and challenges in long cables
 - How to improve eye diagram performance with TPS2583x/4x
- How to improve EMI with TPS2583x/4x
- Q&A

MFi OCP test standard

standard load waveform for OCP test

Threshold	Definition
T ₀	Start of any device current draw transient.
T ₁	Accessory overcurrent/short circuit deglitch/debounce time, must $\ge T_0 + 1$ ms.

Threshold	Definition
l _a	Nominal accessory output current (i.e. 1000 mA, 2100 mA, 2400 mA, 3000 mA).
I _b	l _a + 60%.
I _c	Lowest device current draw that will cause accessory output voltage (measured at Lightning Device Power) to drop below 2 V.

Table 12-3 Overcurrent/Short Circuit Protection Behaviors

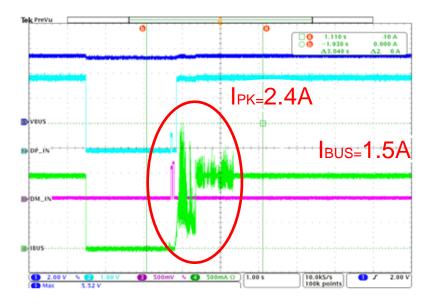
Region	Name	Accessory Behavior
А	Normal Operation	Accessory must not limit or shutdown output current.
В	Overcurrent Transient	Accessory must not shutdown output current. Accessory may limit output current to $\mathbf{I}_{\mathbf{a}}$ or higher.
С	Overcurrent	Accessory must shutdown output current.
D	Potential Overcurrent	Accessory may shutdown output current.
E	Potential Short Circuit	If Lightning Device Power voltage drops below 2 V, the accessory may trigger short circuit protection. Accessories must not trigger short circuit protection on device current draw.

Required equipment for MFi test 1A 100W Electronic Load

KEYSIGHT N6705C Mainframe

MFi lightning tester fixture

Performance Specifications	N6791A			
Input Ratings:				
Current Voltage Maximum Power @ 40 °C		0 - 20 A 0 - 60 V 100 W		
Specified Current @ Low Volt	age Operation:			
1.6 V 1 V 0.5 V 0.1 V		20 A 12.5 A 6.25 A 1.25 A		
Programming Accuracy:				
Current high range Current low range Voltage Resistance high range Resistance medium range Resistance low range Power high range Power low range	20 A/40 A 2 A/4 A 60 V 8 kΩ 100 Ω 3 Ω 100 W/200 W 10 W/20 W	$\begin{array}{c} 0.04 \% + 2.6 \text{mA} \\ 0.04 \% + 0.04 \text{mA} \\ 0.03 \% + 7.2 \text{mV} \\ \pm (0.1 \% + 0.0014) \text{S} \\ \pm (0.1 \% + 0.0014) \text{S} \\ \pm (0.1 \% + 0.038) \text{S} \\ 0.06 \% + 180 \text{mW} \\ 0.06 \% + 30 \text{mW} \end{array}$		
Measurement Accuracy:				
Current high range Current low range Voltage Power high range Power low range	20 A/40 A 2 A/4 A 60 V 100 W/200 W 10 W/20 W	0.04 % + 2.4 mA 0.04 % + 0.40 mA 0.03 % + 7.2 mV 0.05 % + 160 mW 0.06 % + 25 mW		



Apple charging test

CURRENT LIMIT - BUCK REGULATOR PEAK CURRENT LIMIT						
I _{L-SC-HS}	High-side current limit		4.6	5.4	6.2	А
I _{L-SC-LS}	Low-side current limit		3.5	4	4.5	А
I _{L-NEG-LS}	Low-side negative current limit		-3.1	-2.1	-1.3	А

Apple SE charging waveform

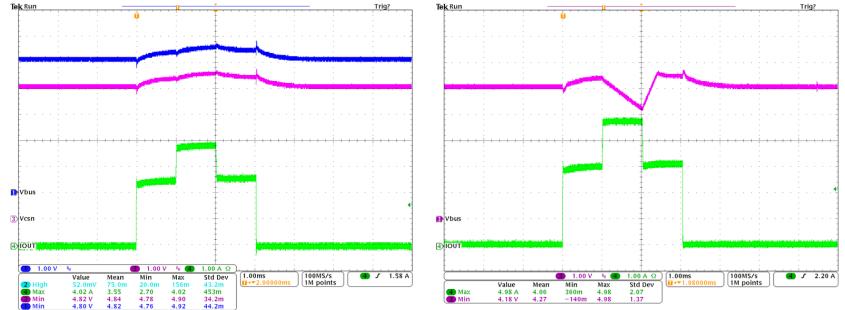
Apple MFi OCP Transient Current

la(A)	lb(A)=160%*l a
1.5	2.4
2.1	3.36
2.4	3.84
3	4.8

Current solution based on TPS2583x/4x-Q1

Solution 1. Set current limit >1.6*la

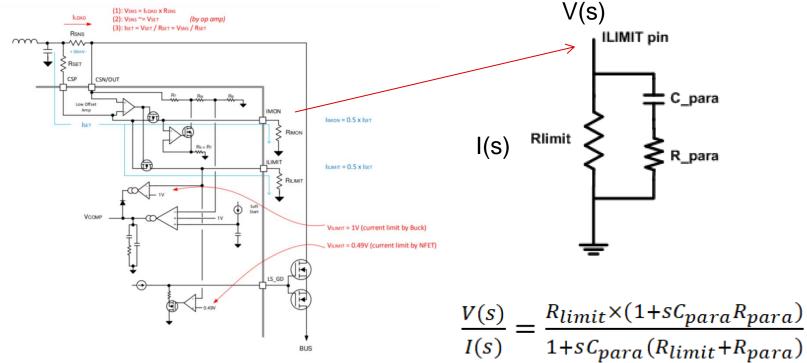
- 1.5A port, set current limit > 2.4A
- 2.1A port, set current limit > 3.36A
- 2.4A port, set current limit > 3.84A
- 3A port:set current limit >4.8A and add 330uf cap on CSP(High-side current limit=4.6A)


Solution 2. Parallel Cap+R with Rlimit to delay the response of current limit.

Solution and result	With ex FET Rlimit//RC	Without ex FET Rlimit//RC
1.5A port (1.8A current limit)	10.7kΩ//10.7k+82nF Vbus no drop	21.5kΩ//21.5KΩ+82nf Vcsn no drop
2.1A port(2.52A current limit)	7.68k Ω //7.68k Ω +82nf Vbus no drop	15.8kΩ//15.8kΩ+82nf Vcsn no drop
2.4A port(2.88A current limit)	Recommend using Solution 1	13.7kΩ//13.7kΩ+82nf Vcsn no drop
3A port(3.5A currnt limit)	Recommend using Solution 1	11.3kohm//11.3k Ω +82nf add 330uf on CSP Vcsn drop to 4.02V
Solution 3 . Ne	ext generation pr	oducts

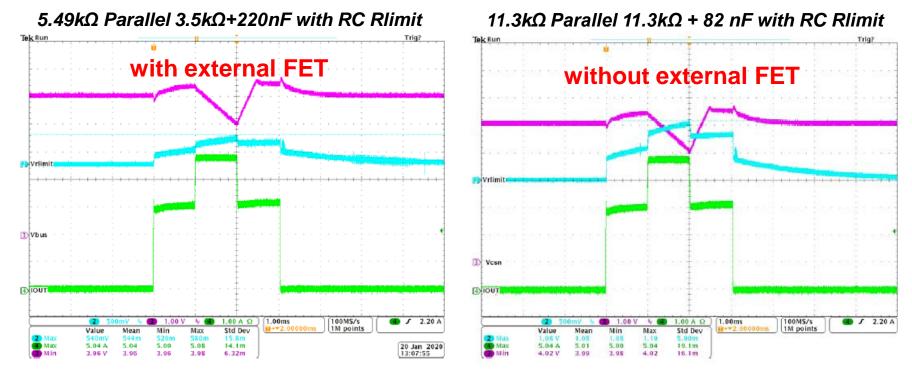
.

Solution 1: 2.4A and 3A MFI OCP test results (with external FET)



Set 3.96A Current Limit for 2.4A Port

Set 5A Current Limit, and Add 330 µf Cap on CSP for 3A Port



Solution 2: Paralleling RC with Rlimit to delay the current limit response

Current limit function diagrams

Solution 2 : Paralleling RC with Rlimit to Delay the current limit Response

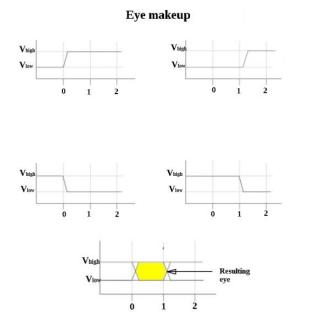
Set 3.5A current limit for 3A port

Set 3.5A current limit for 3A port

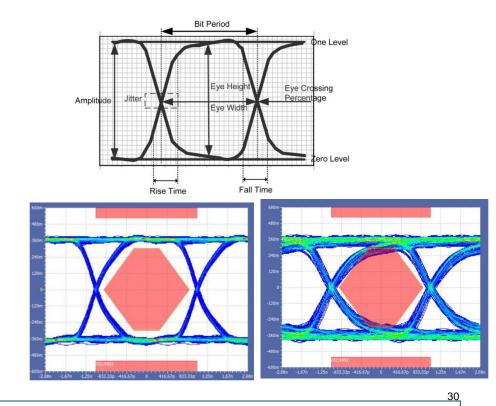
TPS2583x/4x- MFi OCP summary of solution

Solution and result	with external FET Rlimit//(Rpara+Cpara)	without external FET Rlimit//(Rpara+Cpara)
1.5A port (1.8A current limit)	10.7k Ω //(10.7k Ω + 82nF) Result: Vbus no drop	21.5kΩ//(21.5KΩ + 82nF) Result : Vcsn no drop
2.1A port (2.52A current limit)	7.68k Ω //(7.68k Ω + 82nF) Result: Vbus no drop	15.8kΩ//(15.8kΩ + 82nF) Result: Vcsn no drop
2.4A port (2.88A current limit)	$6.65k\Omega//(6.65k\Omega + 82nF)$ Result: Vbus no drop	13.7kΩ//(13.7kΩ + 82nF) Result: Vcsn no drop
3A port (3.5A current limit)	5.45kΩ//(3.5kΩ + 220nF) add 330 µf on CSP Result: Vbus drop to 3.96V	11.3kΩ//(11.3kΩ + 82nF) add 330 µf on CSP Result: Vcsn drop to 4.02 V

Application Note Link: http://www.ti.com/lit/an/slvaeq2/slvaeq2.pdf?&ts=1589098829411

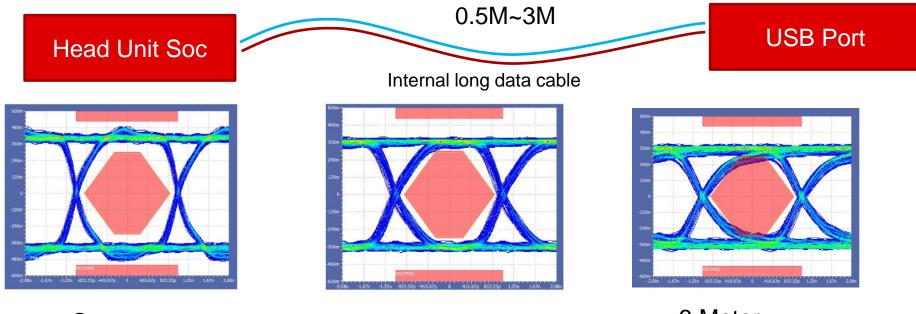

Agenda

- What is CarPlay/MFi and what is USB's role in the application?
- How to pass MFi VBUS requirement with TPS2583x/4x
 - TPS2583X/4x introduction
 - MFi VBUS spec and test set up
 - Cable compensation introduction
 - Cable compensation design to pass MFi
- How to pass MFi OCP requirement with TPS2583x/4x
 - MFi OCP spec and test set up
 - How to pass MFi OCP with TPS2583x/4x
- How to improve eye diagram performance with TPS2583x/4x
 - Eye diagram introduction and challenges in long cables
 - How to improve eye diagram performance with TPS2583x/4x
- How to improve EMI with TPS2583x/4x
- Q&A



Eye diagram introduction

An eye diagram is evaluation method the signal quality in system data communication.



The bit sequences 011, 001, 100, and 110 are superimposed over one another to obtain the example eye diagram.

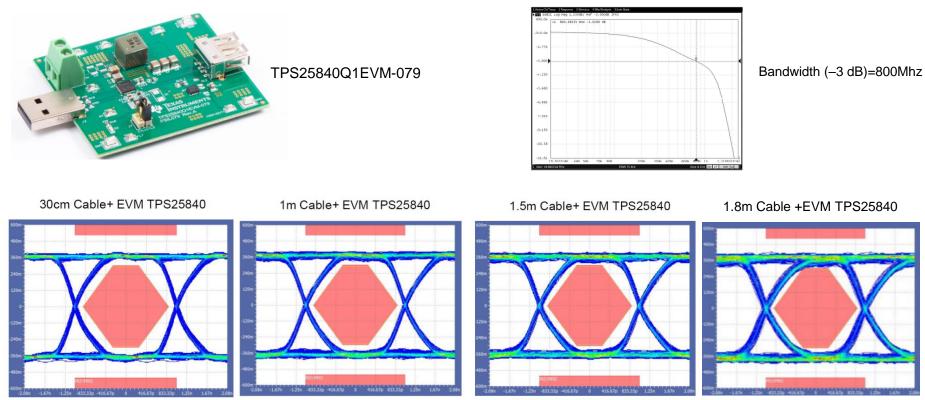
Challenge: Eye diagram in long cables

Source

1.8 Meter

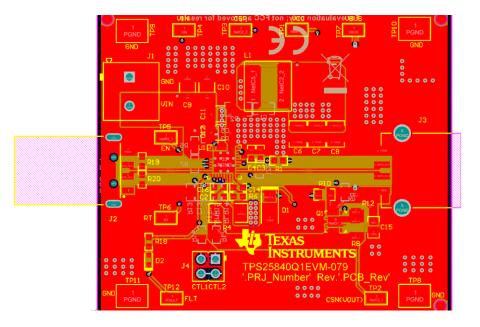
3 Meter

The long cable will create the equivalent capacitance and resistance which will make the system bandwidth become narrow. It is challenging to design good eye diagrams in long data cable applications.

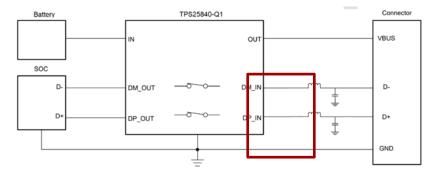


How to improve eye diagram performance with TPS2583x/4x

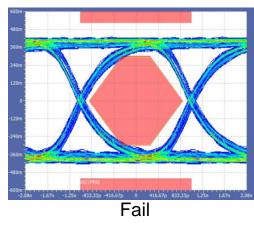
- 1. TPS2583x/4x eye diagram performance
- 2. PCB layout
- 3. Using LC network
- 4. Using signal re-driver (TPS25840 + TUSB217)

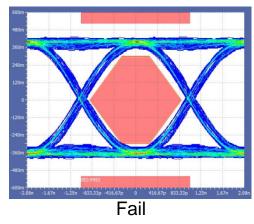

TPS2583x/4x eye diagram performance

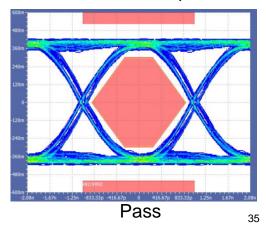
The TPS2583x have 800Mhz bandwidth help system pass 1.5Meter long cable eye diagram test.


PCB Layout

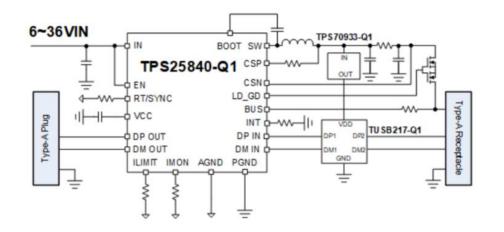
- 1. Both the DP and the DM signals should travel the same distance.
- 2. Control the DP and DM trace differential impendence to 90 ohm.
- 3. DP and DM signals should consistently be routed over a signal ground layer.
- 4. DP and DM keep away from noisy power signals and clock circuitry components.



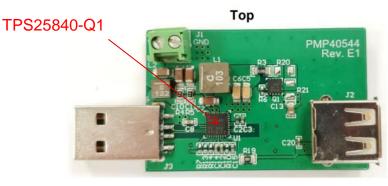

How to improve eye diagram with TPS2583x/4x-Q1

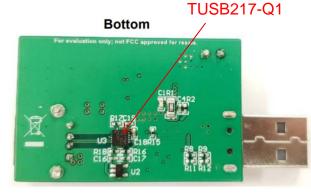

1.8m cable customer board

LC=16nH + 10pF

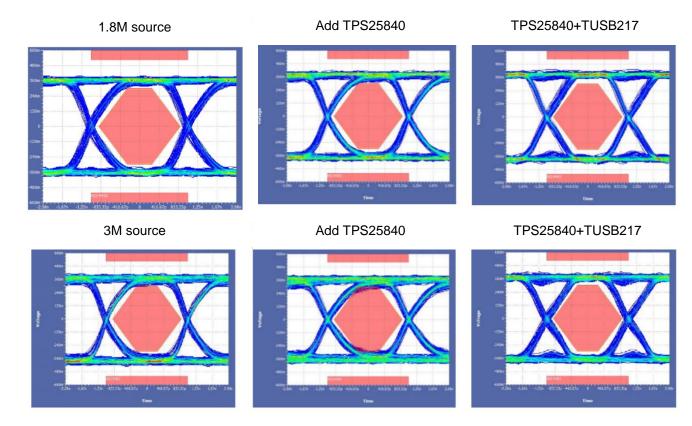


LC=16nH + 4.7pF





TPS25840 + TUSB217 eye diagram performance


Reference Design: PMP40544

TPS25840 + TUSB217 eye diagram performance

Agenda

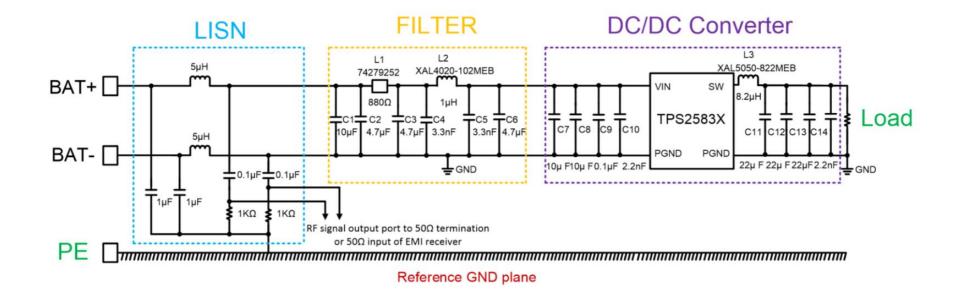
What is CarPlay/MFi and what is USB's role in the application?

- How to pass MFi VBUS requirement with TPS2583x/4x
 - TPS2583X/4x introduction
 - MFi VBUS spec and test set up
 - Cable compensation introduction
 - Cable compensation design to pass MFi
- How to pass MFi OCP requirement with TPS2583x/4x
 - MFi OCP spec and test set up
 - How to pass MFi OCP with TPS2583x/4x
- How to improve eye diagram performance with TPS2583x/4x
 - Eye diagram introduction and challenges in long cables
 - How to improve eye diagram performance with TPS2583x/4x
- How to improve EMI with TPS2583x/4x
- Q&A

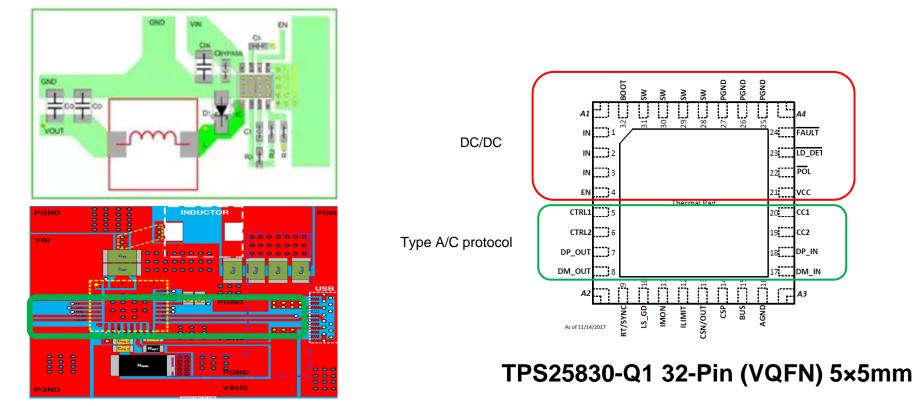
TPS2583X/4X EMC test setup

CONDUCTED EMISSION STANDARD: CISPR25, CLASS 5

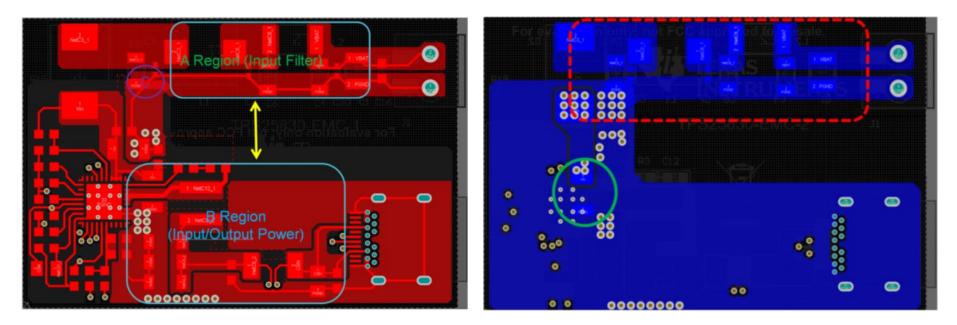
Test Site: Accurate technology Co., Ltd(ATC)



RE Setup

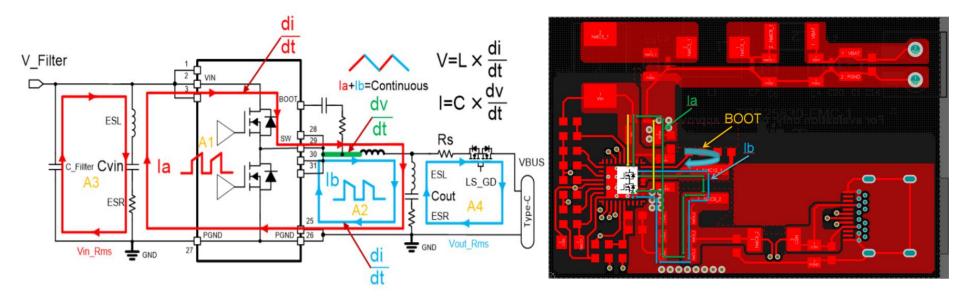


Recommended parameters for input filter


TPS2583X/4X pin layout

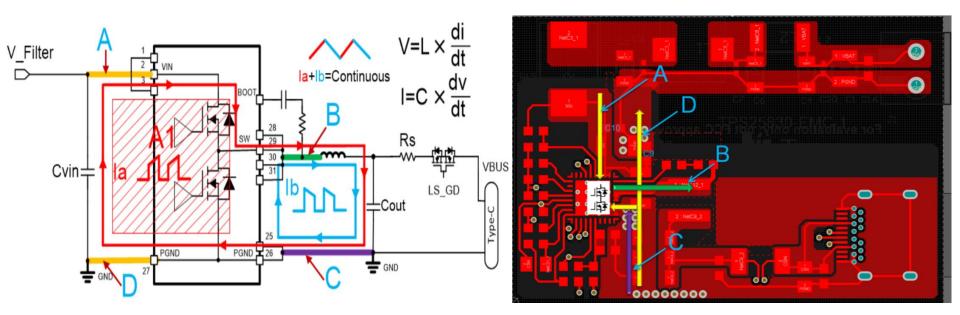
Input filter

Distance between input filter and DCDC controller should be more than 15 mm in order to prevent the switching noise bypassing the input filter.

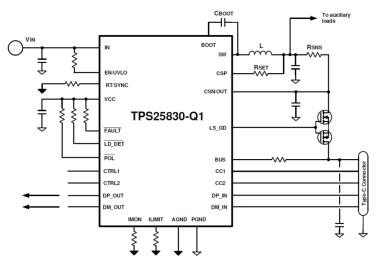


Top-layer of the PCB layout for input filter

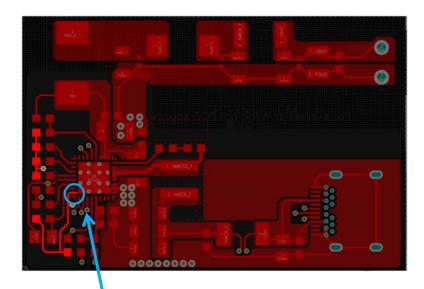
Bottom Layer of the PCB layout for input filter


DC/DC power loop

la and *lb* have high di/dt . These two loops should be kept as small as possible


DC/DC power loop

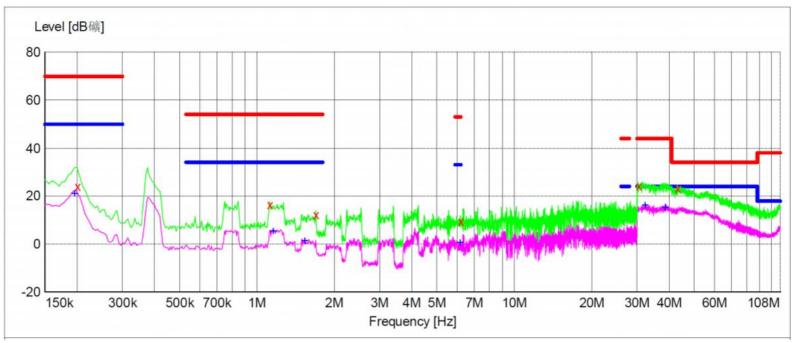
line A, line B, line C, and line D trace length should be as short as possible.


PGND and **AGND**

The signal ground AGND and the power ground PGND need to be separated in the actual PCB layout to reduce the power ground PGND causing oscillating to interfere with the signal ground AGND.

PGND includes: the ground of the input capacitor, output capacitor, VCC capacitor, input port, output port, and so forth.

AGND includes: the ground of RT, IMON, ILMIT, CC1, CC2, FAULT, LD_DET, POL, CTRL1/2, DP, DM resistors, capacitors and ground lines.


AGND and PGND connect point

TPS2583X EMI test result

CONDUCTED EMISSION STANDARD: CISPR25, CLASS 5

Test Condition: Vin=12v VBUS=5V/3A F=400KHz

Summary

1. The input and output capacitors should be as close as possible to the input and output pins of the device.

2. Do not put Via on SW lines and keep the SW area as small as possible.

3. The input and output power loop should be as small as possible.

4. The BOOT pin trace loop circuit should as small as possible.

5. Power ground PGND and signal ground AGND should be separated.

6. The input and output capacitors better selected different value and package ,such as $10 \ \mu F(1210) + 0.1 \ \mu F(0603) + 2.2 \ nF(0603)$.

Application Note Link: http://www.ti.com/lit/an/slvaen5/slvaen5.pdf?&ts=1589098906250

Thank you for listening!

Do you have any questions?

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated