Single-pair Ethernet, the future of industrial communications
10BASE-T1L IEEE 802.3cg single-pair Ethernet PHY
By the end of this webinar, you will learn:

- Where Ethernet fieldbuses exist in industrial applications today

- What is single-pair Ethernet and how it compares with standard Ethernet that exists today

- How single-pair Ethernet supports smart factories by moving data faster and farther than ever before

- What resources are available to help you along your design journey
Ethernet is an established, easy-to-use, robust, fast, price-competitive communication protocol that enables easy connection to internet (industry 4.0), scales from factory floor to enterprise and beyond.
Industrial and standard Ethernet in factory automation

- **Wireless Technologies**
 - Bluetooth
 - Wi-Fi
 - NFC

- **Wired Technologies**
 - IEEE TSN
 - PROFINET
 - EtherCAT
 - Ethernet/IP

- **Process Automation**
 - Fieldbus
 - Point to point
 - Wireless Sensors

- **Factory Automation**
 - Industrial Ethernet
 - Fieldbus
 - 4-20 mA
 - HART
 - TD-link

- **Motion and Robotics**
 - Industrial Ethernet
 - Multi-axis Drive
 - Motor integrated drive
 - conveyor belt with e.g. 16 motors
 - 6-axis robot arm

- **Control Level**
 - PLC
 - RIO
 - Gateway

- **Factory Level**
 - ERP
 - MES
 - Gateway

- **Field Level**
 - PLC

- **Time**
 - 100 ms
 - 1 ms
 - 31.25 μs

Input Output Cycle Time
Industrial and standard Ethernet in factory automation

- **Process Automation**
 - Sensor HUB
 - Industrial Ethernet
 - Gateway
 - Profibus PA
 - ASi
 - DeviceNet
 - Fieldbus
 - Wireless Sensors
 - 4-20 mA
 - Point to point

- **Factory Automation**
 - PLC
 - Industrial Ethernet
 - Gateway
 - RIO
 - RIO
 - Line
 - Wireless
 - NFC
 - Product

- **Motion and Robotics**
 - Motion
 - Vision
 - IPC
 - 6-axis robot arm
 - Multi axis Drive
 - 1-3 axis drive
 - Motor integrated drive conveyor belt with e.g. 16 motors

Input Output Cycle Time
- 100 ms
- 1 ms
- 31.25 us
What is single-pair Ethernet?

Single-pair Ethernet is Ethernet, but over a single twisted-pair of wires.

- Industry 4.0 / IIoT driving all parts of a system to “connectedness”
- Significant systems savings in copper and potential re-use of existing wiring harnesses
- DP83TD510 supports power over data line (PoDL), APL power, and intrinsic safety
Single-pair Ethernet benefits over field buses

- Constant bandwidth with cable reach
- Low power dissipation
- Secured communication
- Reduced gateways for cloud connectivity
- Reduced cable weight & cost
- Re-use of existing two-wire cable infrastructure
- Small form-factor
- Shortened firmware development cycles
 - TCP/IP based socket programming

<table>
<thead>
<tr>
<th>Field bus</th>
<th>Longest reach</th>
<th>Highest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFIBUS DP</td>
<td>9.6Kb/s @ 1200m</td>
<td>12Mb/s @ 100m</td>
</tr>
<tr>
<td>CANopen</td>
<td>10Kb/s @ 5000m</td>
<td>1Mb/s @ 20m</td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>100Kb/s @ 1200m</td>
<td>2Mb/s @ 50m</td>
</tr>
<tr>
<td>CC-Link</td>
<td>156Kbps @ 1.2km</td>
<td>10Mb/s @ 100m</td>
</tr>
<tr>
<td>HART</td>
<td>1200 baud @ 1524m (24AWG)</td>
<td>No enhanced rate</td>
</tr>
<tr>
<td>PROFIBUS PA</td>
<td>31.25Kb/s @ 1900m</td>
<td>No enhanced rate</td>
</tr>
<tr>
<td>INTERBUS</td>
<td>500Kb/s @ 400m</td>
<td>No enhanced rate</td>
</tr>
<tr>
<td>IEEE802.3cg 10BASE-T1L</td>
<td>10Mb/s @ 200m (1V)</td>
<td>No enhanced rate</td>
</tr>
<tr>
<td></td>
<td>10Mb/s @ 1000m (2.4V)</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.3bw 100BASE-T1</td>
<td>100Mb/s @ 50m</td>
<td>No enhanced rate</td>
</tr>
<tr>
<td>IEEE 802.3bp 1000BASE-T1</td>
<td>1000Mb/s @ 15m</td>
<td>No enhanced rate</td>
</tr>
</tbody>
</table>
Industry 4.0 over existing wires

In many cases, new wire does not need to be pulled – existing cabling can be used for SPE

- Process automation
- Building automation
- Factory automation (IO-Link upgrade)

Need both long distance and short distance, single drop and multi-drop

<table>
<thead>
<tr>
<th>Fieldbus</th>
<th>Cable Type</th>
<th>Cable Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation H1</td>
<td>FF-844 specified</td>
<td>Yes</td>
</tr>
<tr>
<td>HART</td>
<td>Various</td>
<td>Yes</td>
</tr>
<tr>
<td>Profibus PA</td>
<td>IEC 61158 Type A</td>
<td>Yes</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>SP-50 instrumentation cable</td>
<td>Yes</td>
</tr>
<tr>
<td>CANopen</td>
<td>EIA-485</td>
<td>Yes</td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>EIA-485</td>
<td>No</td>
</tr>
<tr>
<td>CC-Link</td>
<td>CC-Link, Ver.1.10 specified shielded, 3- & 5- core</td>
<td>No</td>
</tr>
<tr>
<td>DeviceNet</td>
<td>ODVA DeviceNet specified (5-core, various classes)</td>
<td>Yes</td>
</tr>
<tr>
<td>ControlNet</td>
<td>RG-6/U Coaxial</td>
<td>No</td>
</tr>
<tr>
<td>INTERBUS</td>
<td>3 / 6 no. twisted pairs, various</td>
<td>Yes</td>
</tr>
<tr>
<td>PROFIBUS DP</td>
<td>IEC 61158 Type A</td>
<td>No</td>
</tr>
</tbody>
</table>
Long reach Ethernet applications

Process automation
- Field instrumentation
 - Flow sensors
 - Level sensors
 - Pressure sensors
 - Temp sensors
 - Loggers
 - Field switches

HART + Other field buses \rightarrow T1L Ethernet

Building automation
- Fire alarm control
- HVAC control
- Elevators
- Security controls

RS485 \rightarrow T1L Ethernet

Factory automation
- Sensors
- Valves
- Encoders
- Motor starters
- Robotics

Various field buses \rightarrow T1L Ethernet
Application example | Elevator communications

• Elevators require traveling cable for communications

• Both length and bandwidth limited

• New features pushing requirements

• SPE enables retrofitting, and future architectures

Existing infrastructure

Elevator controller
Traction Inverter

Travelling cable with CAN/LonWorks
Length up to 500 m
<500kbps

Up to 10 nodes
CAN

Sensors
Car operating panel
Door motor controller

Elevator Car

Elevator controller
Traction Inverter

4 U
Traction Inverter

Media converter

(4 pair to single pair Ethernet)

Travelling cable with CAN/LonWorks
Length up to 500 m
Upto 10 Mbps

Elevator Car

Elevator controller

Machine room
TI’s Ethernet PHY key devices

<table>
<thead>
<tr>
<th>Standard ENET</th>
<th>1 GbE PHY</th>
<th>10/100 Mbps</th>
<th>1 GbE PHY</th>
<th>Single Pair ENET</th>
<th>10 Mbps</th>
<th>10 Mbps</th>
<th>10 Mbps</th>
<th>10 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP83869 RGMII / SGMII</td>
<td>• Cu/Fiber, Robust, Media Converter, Bridge, Supports TSN</td>
<td>• Supports TSN</td>
<td>• Low latency, low jitter → real-time industrial Ethernet</td>
<td>• Small</td>
<td>• Single supply</td>
<td>• Low Latency</td>
<td>• Long Cable Reach</td>
<td>• Cu/Fiber, Robust, low power</td>
</tr>
<tr>
<td>DP83867 RGMII / SGMII</td>
<td>• Supports TSN</td>
<td>• Low latency, low jitter → real-time industrial Ethernet</td>
<td>• Pin-to-pin with competitor</td>
<td>• Low Latency</td>
<td>• Long Cable Reach</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83822 RGMII / RMII / MII</td>
<td>• Cu/Fiber, Robust, low power</td>
<td>• Long cable reach</td>
<td>• Pin-to-pin with competitor</td>
<td>• Low Latency</td>
<td>• Long Cable Reach</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83848 RGMII / SGMII</td>
<td>• Low latency, low jitter → real-time industrial Ethernet</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td>• Low Latency</td>
<td>• Long Cable Reach</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83826 RMII / MII</td>
<td>• Low latency, low jitter → real-time industrial Ethernet</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td>• Low Latency</td>
<td>• Long Cable Reach</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83825 RMII</td>
<td>• Small</td>
<td>• Single supply</td>
<td>• Low Latency</td>
<td>• Long Cable Reach</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83T510 (10BASE-T1L)</td>
<td>• RMII / MII</td>
<td>• Low Power</td>
<td>• Long Cable Reach</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83TG720 (1000BASE-T1)</td>
<td>• SGMII / RGMII</td>
<td>• P2P w/ DP83TC811</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP83TC811 (100BASE-T1)</td>
<td>• SGMII / RGMII / RMII / MII</td>
<td>• Low Latency</td>
<td>• Long Cable Reach</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td>• Pin-to-pin with competitor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status
- **Production**
- **Pre-Production**
DP83TD510 IEEE 802.3cg – low power, long reach
Single twisted-pair Ethernet PHY (10BASE-T1L)

Features

• Very Low Power consumption (45mW)

• Cable reach: 1000 meter, 200 meter. Strap configurable modes
 • Cable Reach Extender Support, >1000 meters Cable Reach
 • MDI Amplitude Level: 2.4v p2p (1000 meter) or 1v p2p (200 meter)

• Robust
 • 8 kV HBM ESD Protection on MDI lines
 • Industrial Temperature Range support: -40 to 105C
 • MDC/MDIO Interface

• Diagnostics:
 • Active Link Cable Diagnostics
 • TDR Based Open and Short
 • Built In Packet Generator
 • IEEE Test Mode Support

Benefits

• Supports Ethernet-APL intrinsic safety implementation

• Flexible cable lengths, reduced cabling costs or cable reuse

• Assures performance in harsh environments

• Simplifies maintenance & lowers costs

Applications

• Factory Automation: PLC and IO Communication modules

• Process Automation: Sensor Nodes, Field Switches, Transmitters

• Building Automation: HVAC Controls, Fire Safety, Escalators
DP83TD510 IEEE 802.3cg – low power, long reach
Single twisted-pair Ethernet PHY (10BASE-T1L)

- Power consumption results

<table>
<thead>
<tr>
<th>Specification</th>
<th>Config. 1</th>
<th>Config. 2</th>
<th>Config. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>1V p2p, 200 meters</td>
<td>1V p2p, 200 meters</td>
<td>2.4V p2p, 1000 meters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1V p2p, 200 meters</td>
</tr>
<tr>
<td>AVDD</td>
<td>1.8V</td>
<td>1.8V, 1V</td>
<td>3.3V</td>
</tr>
<tr>
<td>VDDIO</td>
<td>1.8V</td>
<td>1.8V</td>
<td>1.8V</td>
</tr>
<tr>
<td>Status</td>
<td>Target</td>
<td>Measured</td>
<td>Target</td>
</tr>
<tr>
<td>Typical Power Dissipation (25C)</td>
<td>70mW</td>
<td>52 mW</td>
<td>65mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DP83TD510 IEEE 802.3cg – low power, long reach
Single twisted-pair Ethernet PHY (10BASE-T1L)

<table>
<thead>
<tr>
<th></th>
<th>1V p2p</th>
<th>2.4V p2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable</td>
<td>Auto-Neg</td>
<td>Force Mode</td>
</tr>
<tr>
<td>#1</td>
<td>1.2 km</td>
<td>1.7 km</td>
</tr>
<tr>
<td>#2</td>
<td>300 meters</td>
<td>550 meters</td>
</tr>
</tbody>
</table>

Tested across temperature

[Image of circuit board and cables]
Summary

• DP83TD510E 10BASE-T1L IEEE 802.3cg PHY:

 – Exceeds standards’ specifications, enabling data to travel faster and farther

 – Eases upgrade by supporting reuse of existing cabling where possible, and migration to more economical copper where fibre has been used before

 – Mitigates the need for protocol conversion by gateways
Key features:

1. Media Convertor
2. Option to use on board LDO or external Power Rails
3. MDI : Terminations and CMC on the board.
4. RGMII/MII/RMII interface on the connector
5. Jumpers for strapping
Single-pair Ethernet tools

IEEE 802.3cg / 10BASE-T1L:
- Product Folders / Datasheets DP83TD510EVM DP83TD510E-EVM

IEEE 802.3bw / 100BASE-T1:
- Product Folders / Datasheets DP83TC811R DP83TC811S EVM DP83TC811EVM

IEEE 802.3bp / 1000BASE-T1:
- Product Folders / Datasheets DP83TG720SS EVM DP83TG720EVM

Additional resources
Single-pair Ethernet
- Low-power operation
- Diagnostic toolkit
- Systems and reference schematics for configurable MAC interfaces
- Compliance & debug
- How 10Base-T1 single-pair Ethernet PHYs help bring more data farther in long-distance applications technical article
- Extend network reach with IEEE 802.3cg 10BASET1L Ethernet PHY application report
- Previous new product webinar: Industrial Ethernet

Development Support
- EVM GUI
- Linux drivers
- Ethernet schematic checklists
- E2E™ support forums
- Technical articles > Industrial

Learning Tools
- TI training and videos
- Engineering thought leadership

TIDA-010076: Daisy-chained power and data over single-pair Ethernet (T1)
TIDA-01020: Automotive domain controller for gateway, assisted & automated driving systems
Visit www.ti.com/npu

For more information on the New Product Update series, calendar and archived recordings
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated