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Detailed agenda 

• Understanding noise origin and measurement 

– Noise origin, relevant parasitic elements, high frequency and low frequency 

components 

– Measurement techniques and examples 

– Noise reduction techniques 

• Output noise filtering comparison 

– 2nd Stage LC filters 

• Passives parasitic elements and filter performance 

• Design example 

– LDOs 

• Filtering performance  

• Design example 
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Understanding noise origin and 
measurement 
 



The ideal buck regulator 
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LF ripple origin 
• Result of the inductor ripple current and output capacitor impedance 
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HF noise origin 
• Who is generating the noise? 

– High di/dt current loop and any inductance in its path 

– Noise appears on the SW node as ringing at each edge 
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Measuring noise 

• Before we explore ways/tools for reducing the output noise, let’s make 

sure we are measuring it properly.  

• Improper measurement techniques can results in exaggerated output 

noise. 

• Exaggerated output noise measurements can result in overly 

conservative “methods” for fixing it. 

• It is important to know the “real” amount of noise before we start 

reducing it.  
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Bad measurement (example) 
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Improved measurement (example) 

11 



Measurement comparison 
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~2x difference in measured noise! 

 

The circuit is exactly the same.  

The difference is the measurement technique. 

 

~200mV pk-pk 

~100mV pk-pk 



Making a 1x probe (example) 

• Short coax cable soldered to the output 

• 0.1µF coupling capacitor 

• 50Ω termination 
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• Probe frequency response 

• High pass filter with cutoff frequency 

at 31.8kHz. OK for most modern 

switchers with loaded output.  

• Probe OK for 250MHz scope BW 



Advantage of 1x probe 
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Fuzzy due to the scope vertical 

sensitivity limitations of a 10x probe. 

Cannot zoom below 10mV/div 

 

Cleaner reading 

Can zoom to 1mV/div for sub 1mV 

measurements 

 
1x 
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10x 
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LF ripple reduction 
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How do we reduce this ripple? 



LF ripple mitigation 

– Inductor vs Switching Frequency 

– Output capacitor  
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– Second stage filter 
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LF ripple mitigation and mixing capacitor 
types 
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Ceramic 

Tantalum 

OSCON 

What if we parallel different types? 

Aluminum 

electrolytic 



LF output voltage ripple with parallel 
capacitors 
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HF noise reduction – component 
placement 
• First step is to optimize (minimize) the area of the high di/dt loop. 

• For Buck, the high di/dt loop is formed by the input capacitor and the 

power MOSFETs (switches). 

– Input capacitor as close as possible to IC = Smaller loop area 

– Smaller loop area = Lower ringing on SW node 

– Lower ringing on SW node = Lower output noise 

• So first step = optimize input capacitor placement for Buck  
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High di/dt capacitor placement - example 

• Buck Regulator comparison with Cin location  

• 12V input, 3.3V output, 2A Buck 
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High di/dt capacitor placement - example 
• Buck Regulator comparison with Cin location (2 times smaller loop 

area) 

• 12V input, 3.3V output, 2A Buck 
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How IC package construction can help  

• Bond wire vs Copper pillar interconnects 
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HF noise reduction – board layout tricks 
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Top Layer Mid 1 Layer 

VIN and VOUT Routing 

Mid 2 Layer Bot. Layer 

GND Plane Signal Layer GND Plane 

GND Plane GND Plane 
VIN and VOUT Routing 

and signals 
GND Plane 

Top Layer Mid 1 Layer Mid 2 Layer Bot. Layer 

• Same BOM! 

• Different stackup 

• Shielding the input (noisy) and 

output lines 

• Fail by ~5dB vs Pass by ~2dB 

Shielding 



Conducted EMI filter and radiated EMI 
performance 
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Input Filter 

Default configuration 



HF filtering 

• After careful input capacitor placement and layout there will be some 

left over high frequency noise – we cannot completely eliminate 

parasitic L and C. 
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HF filtering – parasitic component and 
pitfalls 
• Which one is better? 
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HF filtering – parasitic component and 
pitfalls 
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10µF 

10µF + 0.1µF + 0.1µF + 0.1µF 

10µF + 1.0µF + 0.1µF + 0.01µF 

SIMetrix schematic example: 



HF filtering with wrong capacitor (example) 
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76.2mV 

64.4mV 

85.7mV 



What are power modules? 

• DC/DC converter that integrates: 

controller, power MOSFETs and power 

inductor into single package 

• Simplifies and reducing customer’s 

BOM 

 

LMZM23601 

LM53601 

9 external 

components 

3 external 

components 
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Small Solution Size 

Power modules simplify design 

Broad Portfolio 

Easy to Use 

 Input Voltages from 2.2V up to 60V 

 Output Currents up to 70A 

 Stackable options for reduced noise and high Iout 

 Simple Design 

 Best in Class Thermals 

 Reliability Data 

 Smaller solution size vs discrete 

 Minimal external components 

 Inductors over active components 

 

 Meet EN55022 

Class B Emissions 

 Design Tools 

LMZ31710 Safe 

Operating Area 

12Vin, 1.2Vout, 

300kHz 

Range of Package Options 

 Package option matched to IC and application 

 Range of surface mount, leaded and through-hole 

options 

 Pin-Pin Compatible Options 
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HF noise reduction – DC/DC power 
modules save layout troubles 
• Reducing the high di/dt loop area  – integrated input capacitance. 

• Reducing the high dv/dt node area – integrated L and smaller switch 

node. 

• Discrete solution without optimized layout -> DC-DC Power Module 
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Output noise filtering comparison 
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Filtering techniques comparison 

• 2nd stage filter (L-C) 

 

 

 

 

 

• LDO post regulator 

33 

-
+

CIN
COUT

LOAD

VIN SW

GND

VOUT

High
di/dt
loop

FILTERED
VOUT

-
+

CIN
COUT

LOAD

VIN SW

GND

VOUT

High
di/dt
loop

FILTERED
VOUT

LDO



2nd stage filter tradeoffs 

• Ideal filter 

 

 

 

 

• Real filter 
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2nd stage filter parasitic elements 
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Inductor tradeoffs: high frequency filtering 
and SRF 

• High frequency filtering 

– The SRF of the inductor can affect the L-C filter performance at high 

frequency. 

– May be better to choose smaller L and larger C if HF attenuation is desired. 
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Inductor tradeoffs: high frequency filtering 
and SRF – example in frequency domain 
• High frequency filtering 

– The SRF of the inductor can affect the L-C filter performance at high 

frequency. 

– May be better to choose smaller L and larger C if HF attenuation is desired. 
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Example with 2nd stage filter with 
LMZM23601EVM 

Conditions: 

• Vin =12V 

• Vout = 3.3V 

• Iout = 500mA  

• 1X Scope probe  

• BW set to 250MHz 

HF noise peak-to-peak = 12.6mV 



LMZM23601
Module

12V 3.3V
VIN VOUT

GND

FB
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2nd stage output filter schematic 
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Initial filter design (2.2uH + 44uF)  

HF noise = 5.8mV 

Calculated HF attenuation = 6.7dB 
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Another filter design (1uH + 94uF)  

HF noise = 5.4mV 

Calculated HF attenuation = 7.7dB 



2nd stage filter tradeoffs (efficiency)  

• Power dissipation penalty depends on the DCR of the inductor and the 

load current 
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2nd stage filter tradeoffs (load regulation)  

• Depends on whether the 2nd stage filter is inside the feedback loop 
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2nd stage filter tradeoffs (LF attenuation at 
light load) 

• LC filter is chosen to attenuate ripple at the 

switching frequency. 

• Many switchers employ power savings mode 

at light load.  

• At low frequencies below the LC filter cutoff, 

the LF ripple may pass through at light loads  

• If attenuation is needed at light load, the LC 

filter must be oversized to capture the light 

load frequency. 
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2nd stage LC filter key takeaways 

• 2nd stage filter can help reduce both LF ripple and HF switching noise 

• Using the power savings mode feature at light load and lower switching 

frequency may require LC filter readjustment 

• HF switching noise reduction highly depends on the filter parasitics 

– Simulate and optimize filter design at HF ringing frequency 

• If LC filter is inside the FB loop 

– Regulation penalty is avoided 

– May need damping to avoid regulator stability issues 

– Damping will affect the filter attenuation at HF so HF switching reduction 

may be affected 

45 



LDO as a filter 

• Many low-noise applications utilize the PSRR (power supply rejection 

ratio) of the LDO to “clean the supply”.  
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PSRR curve details 

• Region 1 depends on: 

– Internal reference and internal filtering 

• Region 2 depends on: 

– Open-loop gain of the LDO error amp 

• Region 3 depends on: 

– Parasitic capacitance across the pass 

device and the LDO output cap size 
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Source: You Think LDOs are Simple? 

https://training.ti.com/sites/default/files/docs/you_think_ldos_are_easy-detroit_tech_day 

 

https://training.ti.com/sites/default/files/docs/you_think_ldos_are_easy-detroit_tech_day.pdf
https://training.ti.com/sites/default/files/docs/you_think_ldos_are_easy-detroit_tech_day.pdf
https://training.ti.com/sites/default/files/docs/you_think_ldos_are_easy-detroit_tech_day.pdf
https://training.ti.com/sites/default/files/docs/you_think_ldos_are_easy-detroit_tech_day.pdf


LDO as a filter for LMZM23601 
• LMZM23601 is a 36V 1A power module 

 

 

 

• TPS7A4701 is a 36V 1A ultra low noise LDO 
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LMZM23601 + TPS7A4701 output noise 

• Measurement shows attenuation 

of HF noise from 15.6mV to 

6.4mV for a total of 7.6dB 

attenuation 

 

SWITCHER OUTPUT 

LDO OUTPUT 



50 

LMZM23601 + TPS7A4701 output noise in 
frequency domain 



LDO as a filter tradeoffs (efficiency) 

• Additional power dissipation – need to give the LDO some headroom to 

regulate VOUT.  

• The additional dissipated power is V headroom x Load current 
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DAC adjustable low noise power supply 

• Some test and measurement applications may require DAC adjustable 

and low noise power rail 

• If LDO is used to “clean up” the power rail and the switcher output 

voltage is DAC adjustable, the voltage difference between the LDO 

input and output can be larger 

• To avoid excessive power loss the switcher can be configured as a 

tracking pre-regulator.  
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Link: Designing a pre-tracking regulator, part 1: for a positive-output LDO 

http://e2e.ti.com/blogs_/b/powerhouse/archive/2019/02/18/design-a-pre-tracking-regulator-part-1-for-a-positive-output-ldo
http://e2e.ti.com/blogs_/b/powerhouse/archive/2019/02/18/design-a-pre-tracking-regulator-part-1-for-a-positive-output-ldo
http://e2e.ti.com/blogs_/b/powerhouse/archive/2019/02/18/design-a-pre-tracking-regulator-part-1-for-a-positive-output-ldo
http://e2e.ti.com/blogs_/b/powerhouse/archive/2019/02/18/design-a-pre-tracking-regulator-part-1-for-a-positive-output-ldo
http://e2e.ti.com/blogs_/b/powerhouse/archive/2019/02/18/design-a-pre-tracking-regulator-part-1-for-a-positive-output-ldo
http://e2e.ti.com/blogs_/b/powerhouse/archive/2019/02/18/design-a-pre-tracking-regulator-part-1-for-a-positive-output-ldo


LDO as a filter tradeoffs (BOM) 

• At a minimum, the LDO requires 3 components (Cin, LDO, Cout) 

• Additional components could be FB resistors, reference filter cap 
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Filtering performance at light load 

• Many switchers have power savings mode at light load with reduced 

switching frequency (e.g. PFM mode).  

• The LC filter may not be adequate for filtering the PFM frequency. 
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LDO as a filter key takeaways 

• Can help reduce both LF ripple and HF switching noise 

• If the switcher has power savings mode with lower switching frequency 

at light load, the LDO will still work well 

• HF switching noise reduction depends on the LDO PSRR at high 

frequency which depends on the LDO output capacitor 

• Load regulation issues are mitigated with LDO 

• Tradeoff is additional power loss, BOM count, and board space. 
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So, LDO or a 2nd stage filter?! 

• LC filters can tricky at high frequency  

– The designer needs to consider the parasitic elements of the capacitor and 

inductor 

– Filter damping needs to be considered along with stability 

– It may require lower BOM count than LDO but it depends how many 

capacitors are used 

• If power savings mode is employed, the LDO will definitely provide 

better filtering 

• In terms of design, the LDO is straight-forward 

• LDO can always be followed by “high frequency” capacitors to clean up 

the remaining switching noise. 
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TPS62913 converter + internal filter comp. 
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• Simplified solution with filter 

compensation taken care of for 

FPWM applications that require 

output filtering 

 

• No VOUT regulation penalty since LC 

filter is inside the feedback network 



Summary 

• Understanding the noise origin is important for noise mitigation 

• The parasitic elements are usually the trouble makers 

• Measuring noise properly can save us effort in trying to design filtering 

solutions 

• There are many noise reduction techniques (e.g. layout, stackup, 

component placement, filtering, etc.) 

• 2nd stage LC filters and LDOs can be used to “clean up” a noisy power 

supply 

• LDOs may be preferred based on the tradeoffs discussed 
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