Demystifying BLDC motor commutation:
Trap, Sine, & FOC

Matt Hein
Applications manager, brushless-DC motor drives
Agenda

• Introduction

• BLDC motor basics

• Basic commutation (trap)

• Sensored & sensorless

• Advanced commutation (Sine & FOC)

• Summary
Matt Hein introduction

• Work
 – Applications engineer in motor drives (4 months)
 – Systems engineer in motor drives (3.5 years)
 – Product marketing engineer in motor drives (3 years)
 – Product marketing manager in motor drives (1 year)
 – Applications manager in motor drives (1 year)

• Personal
 – Rollerblading
 – Travel (not so much right now)
 – 11-month-old son at home

Some of my writings:
 • Seven things that only an analog engineer would understand – e2e.ti.com
 • Brushless-DC motor systems for the uninitiated – Planet Analog
Agenda

- Introduction
- BLDC motor basics
- Basic commutation (trap)
- Sensored & sensorless
- Advanced commutation (Sine & FOC)
- Summary
Motor operation

- Electrical power is converted into mechanical power

\[P_{IN} = V_S I_M \]
\[P_{OUT} = \tau \omega \]
Motor operation

- Commutation is mechanical
- **Advantage:** Easy to drive
- **Downside:** efficiency, power, wear-out, sparking

- Commutation is electrical
- **Advantage:** Efficiency, power
- **Downside:** System needs to apply signal to commutate motor

Image credit:
(1) Morai Motion, Brushed vs Brushless DC Motors. https://microlinearactuator.com/brushed-vs-brushless-dc-motors/
Motor construction

Sinusoidal motors

Trapezoidal motors

BEMF waveform
Motor construction

Sinusoidal motors

Trapezoidal motors

Need a way to tell them apart? Hook up a scope probe between two outputs and spin it with your fingers!
Motor construction

Sinusoidal motors

- Ideally driven with a sinusoidal current

Trapezoidal motors

- Ideally driven with a trapezoidal current

More on this later!
Agenda

• Introduction

• BLDC motor basics

• Basic commutation (trap)

• Sensored & sensorless

• Advanced commutation (Sine & FOC)

• Summary
Motor operation

Rotation position defines the direction of current!

- Commutator reverses flow of current to make sure that the magnetic field generated on the rotor is always opposed by the field on the stator

Image credit:
(1) Morai Motion, Brushed vs Brushless DC Motors, https://microlinearactuator.com/brushed-vs-brushless-dc-motors/
Motor operation

Step 1: Figure out where the rotor is
Step 2: Apply a magnetic field to move the rotor

Rotation position defines the direction of current!

- Commutator reverses flow of current to make sure that the magnetic field generated on the rotor is always opposed by the field on the stator

Image credit:
(1) Morai Motion, Brushed vs Brushless DC Motors, https://microlinearactuator.com/brushed-vs-brushless-dc-motors/
Motor operation

Rotation position defines the direction of current!

- Commutator reverses flow of current to make sure that the magnetic field generated on the rotor is always opposed by the field on the stator

- Step 1: Figure out where the rotor is
- Step 2: Apply a magnetic field to move the rotor
Sensored brushless-DC motor control

• Step 1: Figure out where the rotor is
• Step 2: Apply a magnetic field to move the rotor

Figure out where the motor is through a position sensor

Hall-effect Sensor
Sensored motor control

N = H
S = L

Hall A
Hall B
Hall C

1 2 3 4 5 6
Sensored Trapezoidal Motor Control

Phase Configuration

<table>
<thead>
<tr>
<th>Hall A</th>
<th>Hall B</th>
<th>Hall C</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Phase Allocation

<table>
<thead>
<tr>
<th>Phase U</th>
<th>Phase V</th>
<th>Phase W</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>Z</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Z</td>
<td>Z</td>
<td>-</td>
</tr>
<tr>
<td>Z</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Symbol Indicators

- **N = H**
- **S = L**

Texas Instruments
Trapezoidal control (Trap)
Also called: 6-step, block commutation, 120°, 150°

Advantages
- Highest maximum speed
- Great for delivering maximum torque
- Lowest switching losses
- Easiest implementation

Disadvantages
- Not great noise performance
- Efficiency not the best

<table>
<thead>
<tr>
<th>Phase U</th>
<th>+</th>
<th>+</th>
<th>Z</th>
<th>-</th>
<th>-</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase V</td>
<td>-</td>
<td>Z</td>
<td>+</td>
<td>+</td>
<td>Z</td>
<td>-</td>
</tr>
<tr>
<td>Phase W</td>
<td>Z</td>
<td>-</td>
<td>-</td>
<td>Z</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Brushed-DC vs. sensored brushless-DC
Agenda

- Introduction
- BLDC motor basics
- Basic commutation (trap)
- Sensored & sensorless
- Advanced commutation (Sine & FOC)
- Summary
Sensored brushless-DC motor control

Hall-effect Sensor

Figure out where the motor is through a position sensor

Disadvantage: increased cost

- Step 1: Figure out where the rotor is
- Step 2: apply a magnetic field to move the rotor
Sensorless brushless-DC motor control

- Step 1: Figure out where the rotor is
- Step 2: apply a magnetic field to move the rotor

Figure out where the motor is through Back-EMF
What is Back-EMF?

Back-EMF is a sinusoidal or trapezoidal voltage generated on the motor while it is spinning.

Spin the motor with your fingers to create a back-EMF signal.
Sensorless brushless-DC motor control

Back-EMF “zero crossing” can be used as a commutation signal

This coil is not being driven
Sensorless brushless-DC motor control

Detecting Back-EMF:

1) Measurement

Advantage: Simplicity

Disadvantage: Performance, need to have open window on phase to measure

Back-EMF measurement does not allow for sinusoidal or FOC control
Sensorless brushless-DC motor control

Detecting Back-EMF:

2) Estimation & Calculation

Advantage: Performance, can achieve sine/FOC

Disadvantage: Complexity, calculation, need to know motor parameters

\[v_s = Ri_s + L \frac{d}{dt}i_s + e_s \]
Disadvantages of sensorless?

Where is Back-EMF (sensorless techniques) not going to work?

Applications that require torque at zero speed

Servo applications → always sensored!
How do we start a motor sensorlessly*?

*not a real word, but it should be

Starting a motor:

• We need to figure out where the rotor is so that we can apply a magnetic field to move it
How do we start a motor sensorlessly*?

*not a real word, but it should be

Align / Blind Start

- Force a magnetic field on the motor, the motor will align to this field
- The motor may spin backwards

Initial Position / Speed Detect

- Measure position through high frequency pulses or speed through back-EMF detection
- Drive motor given initial condition
Agenda

- Introduction
- BLDC motor basics
- Basic commutation (trap)
- Sensored & sensorless
- Advanced commutation (Sine & FOC)
- Summary
Motor performance

- Commutation is mechanical
- Can’t adjust drive method beyond 100% ON/OFF

- Commutation is electrical
- Can drive motor with trapezoidal (100% ON/OFF) or a smoother sinusoidal waveform

Image credit:
(1) Morai Motion, Brushed vs Brushless DC Motors, https://microlinearactuator.com/brushed-vs-brushless-dc-motors/
Sensored trapezoidal

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase U</td>
<td>+</td>
<td>+</td>
<td>Z</td>
<td>-</td>
<td>-</td>
<td>Z</td>
</tr>
<tr>
<td>Phase V</td>
<td>-</td>
<td>Z</td>
<td>+</td>
<td>+</td>
<td>Z</td>
<td>-</td>
</tr>
<tr>
<td>Phase W</td>
<td>Z</td>
<td>-</td>
<td>-</td>
<td>Z</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Current U</td>
<td>+</td>
<td>+</td>
<td>Z</td>
<td>-</td>
<td>-</td>
<td>Z</td>
</tr>
<tr>
<td>Current V</td>
<td>-</td>
<td>Z</td>
<td>+</td>
<td>+</td>
<td>Z</td>
<td>-</td>
</tr>
<tr>
<td>Current W</td>
<td>Z</td>
<td>-</td>
<td>-</td>
<td>Z</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

DRV5013

Hall A

Hall B

Hall C

N = H
S = L

Current U
Current V
Current W

Phase U
Phase V
Phase W

Texas Instruments
Sensored sinusoidal

Phase U
Phase V
Phase W
Current U
Current V
Current W

DRV5013

Hall A
Hall B
Hall C

N = H
S = L
Sinusoidal control (Sine)
Also called: 180° - *always ask if your sine control is really 180°!*

Advantages
- Low noise
- Easier to implement than FOC

Disadvantages
- Switching losses
- Not great dynamic load performance
- Lower maximum speed
Field-oriented control (FOC)
Also called: vector control, “why is this so complicated”

Advantages

- Highest power output
- Lowest noise
- Best torque ripple
- High motor speed (field weakening)
- Maximum motor efficiency (MTPA)

Disadvantages

- Computation complexity (especially when sensorless)
- Coding experience needed
- Switching losses
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor

Diagram showing the control flow and components involved in a field-oriented control system.
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor
Clarke transform

\[\alpha = U + V \cos 120^\circ + W \cos 240^\circ \]
\[\beta = V \sin 120^\circ + W \sin 240^\circ \]
\[\alpha = U + \frac{1}{2} V - \frac{1}{2} W \]
\[\beta = \frac{\sqrt{3}}{2} V - \frac{\sqrt{3}}{2} W \]
Park transform

\[d = \alpha_d + \beta_d \]
\[d = \alpha \cos \theta + \beta \sin \theta \]
\[q = \alpha_q + \beta_q \]
\[q = -\alpha \sin \theta + q \cos \theta \]
Field-oriented control (FOC)

FOC applies all motor torque perpendicular to the rotor

\[
\begin{align*}
\alpha, \beta & \quad u, v, w \\
d, q & \quad \alpha, \beta \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Inverter} \\
& \quad \text{PWM Vu, Vv, Vw} \\
& \quad \text{Encoder} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{M} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Park} \\
& \quad \text{Inverse Park} \\
& \quad \text{PI Torque Controller} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Clarke} \\
& \quad \text{Inverse Clarke} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Rotor position - } \theta \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Id} \\
& \quad \text{Iq} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Vd} \\
& \quad \text{Vq} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Va} \\
& \quad \text{Vb} \\
\end{align*}
\]

\[
\begin{align*}
& \quad \text{u, v, w} \\
\end{align*}
\]
Agenda

• Introduction

• BLDC motor basics

• Basic commutation (trap)

• Sensored & sensorless

• Advanced commutation (Sine & FOC)

• Summary
Summary

• Think of a brushless-DC motors like a brushed-DC motor without the brushes
 – Brushed-DC motor: mechanical commutation, brushless-DC motor: electrical commutation

• Sensored versus sensorless
 – Sensored requires additional components but control is easier
 – Sensorless requires fewer components but control is harder
 – Don’t ask to do a sensorless servo

• Comparison of commutation methods (Trap, Sine, FOC)

<table>
<thead>
<tr>
<th></th>
<th>Implementation</th>
<th>Switching Loss</th>
<th>Audible Noise</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trap</td>
<td>Easy look-up table</td>
<td>Low</td>
<td>High</td>
<td>Best for high torque or high speed</td>
</tr>
<tr>
<td>Sine</td>
<td>Complex look-up table</td>
<td>High</td>
<td>Low</td>
<td>Not the best for dynamic torque</td>
</tr>
<tr>
<td>FOC</td>
<td>Complex real-time calculation</td>
<td>High</td>
<td>Lowest</td>
<td>Highest efficiency, dynamics</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated