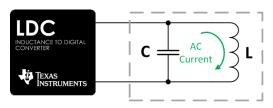
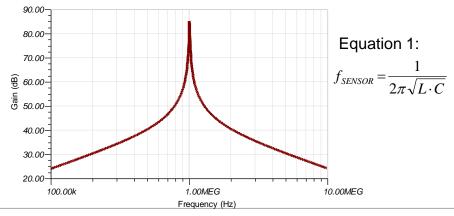
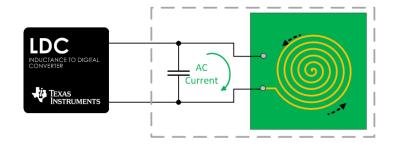

TI TECH DAYS

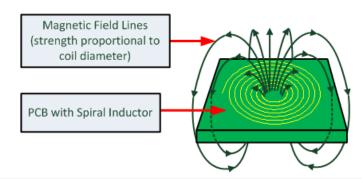

Introduction to inductive sensing technology: Benefits of inductive sensing as a button replacement

Justin Beigel

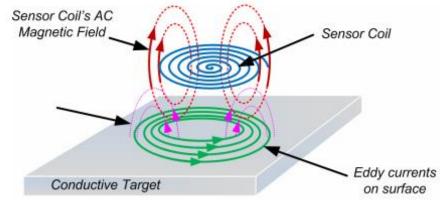

Position Sensing



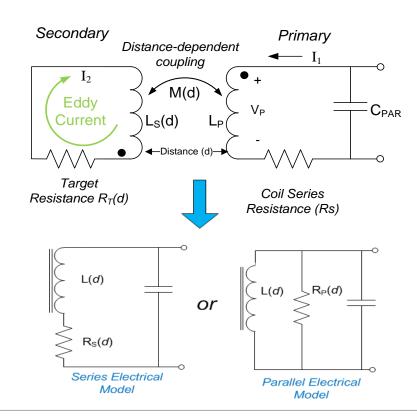
Basic concepts



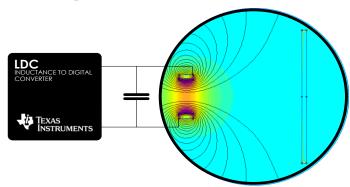
- Parallel inductor and capacitor form high Q resonant oscillator
- LDC converts fundamental frequency to high resolution digital value



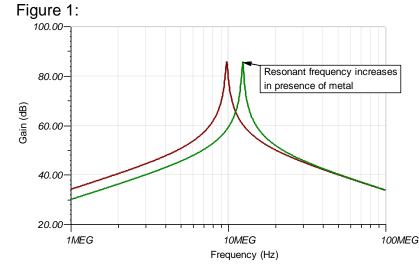
- Inductor typically constructed on PCB which radiates an AC magnetic field
- Discrete capacitor typically NP0/C0G



Inductive sensing Eddy currents and inductance coupling

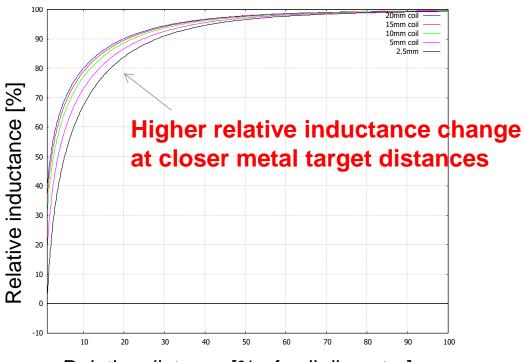


- The AC magnetic field from the LC sensor causes eddy currents to form on the surface of the conductor.
- Eddy currents create an opposing magnetic field which effectively reduces the inductance of the inductive sensor. The inductance changes as a function of distance.

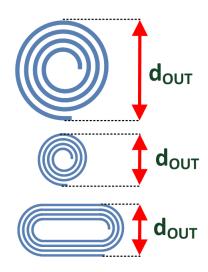


Metal target interaction

- Approaching conductive target forms greater density of eddy currents on its surface as it interacts with more of the magnetic field generated by the inductive sensor.
- ❖ Based on the properties of the metal and proximity to the sensor, the eddy currents generate an opposing magnetic field that varies in strength and reduces the inductance of the LC sensor.



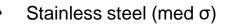
A decrease in inductance of the LC sensor causes an increase in resonant frequency which the LDC converts into a new digital value.

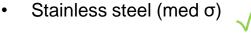

$$f_{SENSOR} = \frac{1}{2\pi\sqrt{L\cdot C}}$$

Relative inductance vs. distance

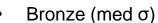
Relative inductance versus distance

Relative distance [% of coil diameter]


- Relative inductance shift determined by outer diameter or critical dimension of coil shape
- Note: More inductance does not mean more sensing range



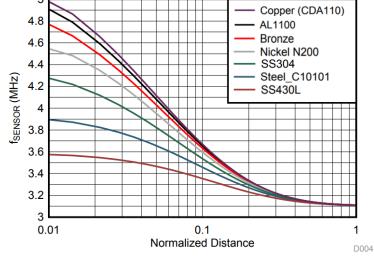
Material options – conductivity/Eddy currents/Skin depth



Aluminum (high σ)

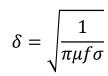
Copper (high σ)

Plastic

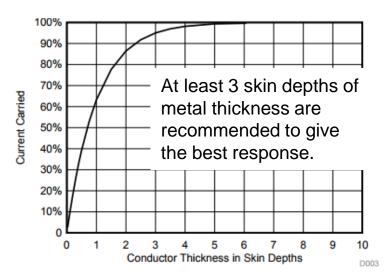

Glass

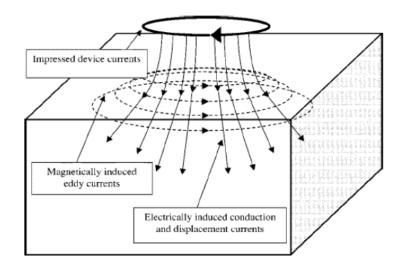
Plastic with metal film

Glass with metal film



Materials that have a higher conductivity produce more of an inductance shift because there are less losses in the material for the eddy currents to form




Thin materials and skin depth

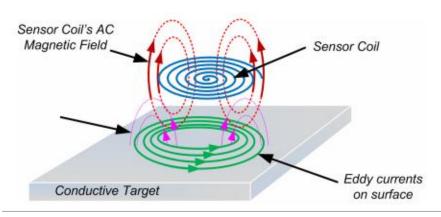
- Skin depth specifies how deep into the conductive surface that the eddy currents will form
- Eddy currents that form closer to the surface produce a more concentrated opposing magnetic field to our sensor

 δ = skin depth μ = permeability f = sensor frequency σ = conductivity

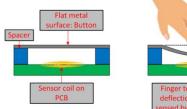
Target properties affecting power consumption

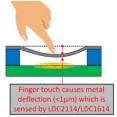
An inductive sensor generates an AC magnetic field which induces eddy currents on the conductor's surface.

Generated Eddy currents:


- Reduce the inductor's magnetic field reducing the inductance of the sensor.
- Lower inductance results in:
 - Higher sensor frequency which reduces the skin depth.
 - Shallower skin depth increases R_s losses, resulting in higher power consumption.

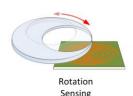
$$\delta = \sqrt{\frac{1}{\pi \mu f_{sensor} \sigma}}$$


$$f_{sensor} = \frac{1}{2\pi\sqrt{L*C}}$$


$$\delta$$
 = skin depth
 μ = permeability
 f = sensor frequency
 σ = conductivity

 f_{sensor} = sensor frequency L = sensor coil inductance C = fixed sensor capacitance

Inductive sensing Common applications



Benefit

- No cutouts or holes needed
- No moving parts
- · Force detection for multi-level button
- Not affected by debris, liquids, magnets
- · Works with gloves

Design considerations

- Resolution
- Coil size
- · Mechanical stack-up
- Automotive applications
- Power requirements

Event Counting

Benefit

- No calibration required
- No magnets required and not affected by them
- Immune against dirt and dust
- Can measure > 300 events per second
- Minimal MCU memory and instructions required

Design considerations

- Resolution
- · Coil size
- · Target design
- Automotive applications
- · Power requirements

PCB Sensor coil

Benefit

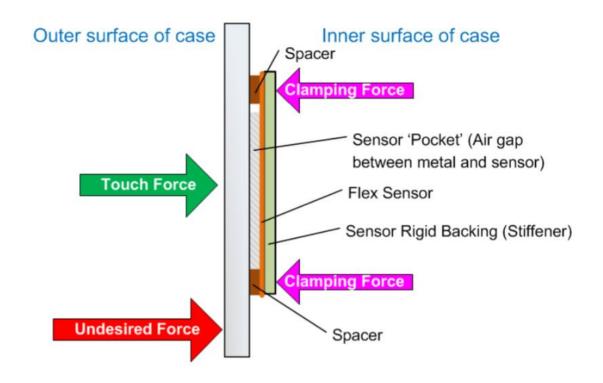
- Immune against dirt and dust
- No magnets required and not affected by them
- Sensor is simply a PCB coil and the target is any conductive material

Design considerations

- Resolution
- Target distance (min and max)
- Lateral or Axial
 - · Target design for lateral
- Coil size
- Mechanical stack-up
- Automotive applications
- Power requirements

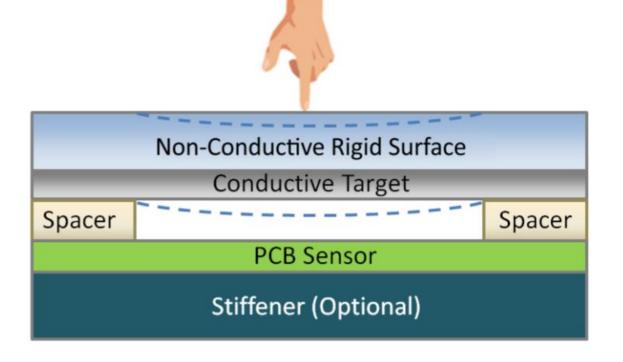
TITECH DAYS

Inductive sensing buttons

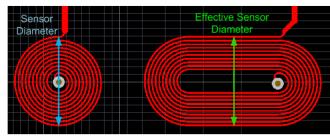

Inductive touch

Key advantages

- Simplified design approach :
 - Doesn't require cutouts or holes in the button surface
 - Button surface doesn't need to be grounded
 - Customizable sensor design and shape.
 - More button placement options
 - Sensor fabrication uses existing manufacturing processes and materials
- Senses actual mechanical deflection of the button surface :
 - Provides a force response
 - Works with gloves
 - Immune to false button response
- Rugged functionality Highly resistant to environmental factors like dust, dirt, oil, and water.
- High reliability and extended life span does not include any moving components or contacts



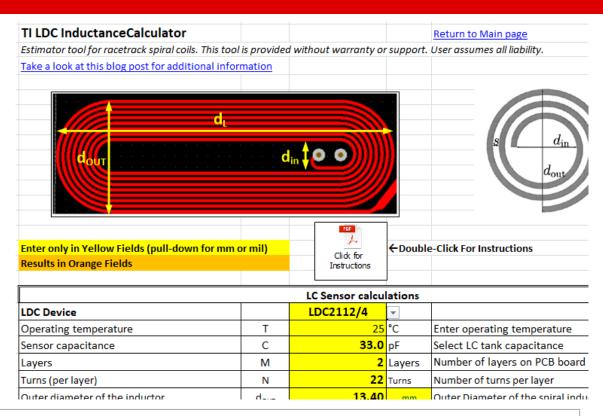
Inductive touch mechanical structure



Mechanical structure for non-conductive cases

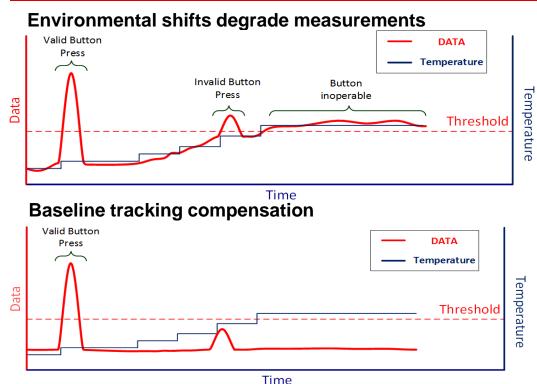
For non-conductive case materials such as plastic, a metal insert can be added to create a conductive target.

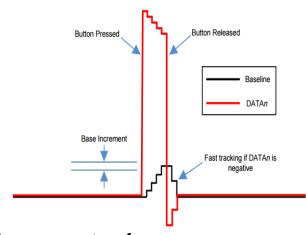
Button design considerations



- Target
 - Height, width, skin depth
- Coil
 - Circular vs racetrack
 - Diameter
 - Inductance
- Target distance vs. coil diameter

Design tools


- Excel calculation spreadsheet
 - Calculate sensor parameters
 - Device specific calculations
- FEMM simulation
 - 2D magnetic field simulation
- Webench coil designer
 - Online coil design tool



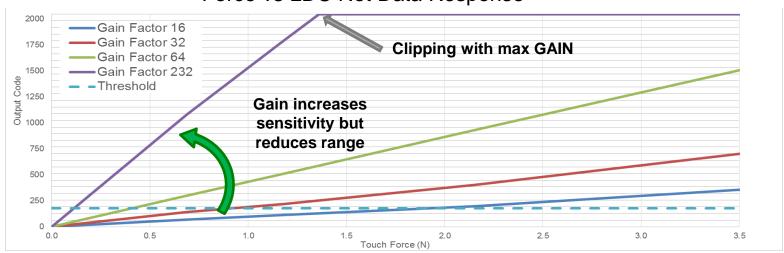
Baseline tracking

Baseline tracking for environmental factors

Implementation

Compensates for:

- Environmental factors
- Permanent deformation of button surface (drops, dents etc.)


Button gain/sensitivity

GAINn configuration

The digital IO toggles when the DATA level crosses the button threshold.

- Gain factor sets desired button trigger force.
- Gain factor adjusted from 1 to 232.

Force vs LDC Net Data Response

Button sensitivity can be easily adjusted by GAIN:

- The GAIN scales the normalized 12 bit DATA output value.
- A higher GAIN value results in a higher sensitivity.

Button examples

Personal electronics

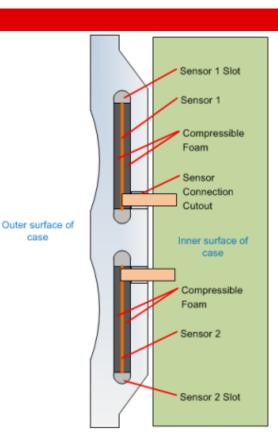
- Smart watches
- Cell Phones

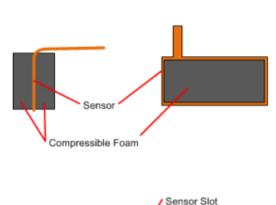
Smartwatch

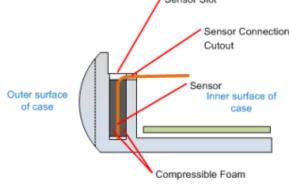
Smartphone

Industrial

- HMI
- **Grip Detection**




Personal electronics button


case

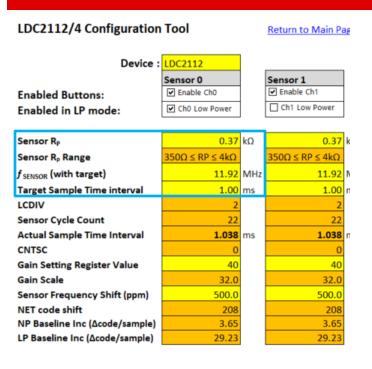
Key features

- Low power
- Sealed button design
- Small button form factor
- False button rejection
- Baseline tracking can account for dents to the outer surface

Personal electronics example

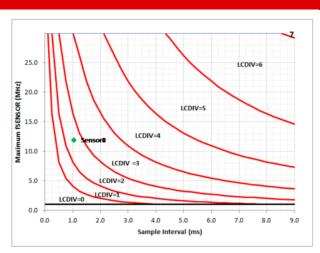
- Using the LDC2112
- Spiral inductance calculator
 - Device
 - Temperature
 - Capacitance
 - # of Layers
 - Racetrack
 - Diameter
 - Trace width
 - Trace spacing

		LC Sensor calcu	ations	
LDC Device		LDC2112/4		
Operating temperature	Т	22	°C	Enter operating temperature
Sensor capacitance	С	350.0	pF	Select LC tank capacitance
Layers	М	2	Layers	Number of layers on PCB board (1≤M≤8)
Turns (per layer)	N	9	Turns	Number of turns per layer
Short Side of inductor	d _{OUT}	4.00	mm	Outer Diameter of the spiral inductor
Sensor Shape		Racetrack		
Long side of inductor	d_L	8.00	mm	
spacing between traces	S	4.000	mil	Space between traces (mm or mil)
width of trace	w	4.000	mil	Width of the trace (mm or mil)
PCB thickness between 1st layer and 2nd layer	h12	0.040	mm	Space between layer 1 and 2 (mm or mil)
PCB thickness between 2nd layer and 3rd layer	h23	30.000	mm	Space between layer 2 and 3 (mm or mil)
PCB thickness between 3rd layer and 4th layer	h34	8.000	mm	Space between layer 3 and 4 (mm or mil)
PCB thickness between 4th layer and 5th layer	h45	8.000	mm	Space between layer 4 and 5 (mm or mil)
PCB thickness between 5th layer and 6th layer	h56	8.000	mm	Space between layer 5 and 6 (mm or mil)
PCB thickness between 6th layer and 7th layer	h67	1.575	mm	Space between layer 6 and 7 (mm or mil)
PCB thickness between 7th layer and 8th layer	h78	1.575	mm	Space between layer 7 and 8 (mm or mil)
Copper thickness	t	0.500	oz-Cu	Copper layer thickness (mm,Oz-Cu, or mil)


Personal electronics example - continued

• Outputs:

Copper resistivity at operating temperature	pr_t	1.693E-08	Ωm	
Coil Fill Ratio	din/dout	0.09		0.2> din/dout >0.8 is recommended for highest Q
Inductor inner diameter	din	0.342	mm	Inner diameter of the spiral inductor (mm or mil)
Self inductance per layer	L	0.305	μΗ	
Total Inductance with no target	L _{TOTAL}	1.111	μΗ	
Sensor Operating Frequency no target	f_{RES}	8.024	MHz	
Rp with no Target	R_{P}	0.87	kΩ	
Q factor	Q	15.36		
Self resonant frequency (estimated)	SRF	75.488	MHz	SRF should be >1.25*Fsensor
Target Distance	D	0.500	nm	For aluminum target of at least 5 skin depths
Sensor Inductance from Target Interaction	Ľ'	0.504	μН	$\frac{0.5 (mm)}{4 (mm)} = 12.5\%$ of the coil diameter
Sensor Frequency with Target Interaction	$f_{{\sf RES}}'$	11.920	MHz	$\frac{1}{4 (mm)}$ = 12.5% of the confidence
Rp with Target Interation	R _P '	0.37	kΩ	
Q Factor with target	92	9.7		
Ccom Value (with Target)	Ccom	3.6< C <45.2	nF	


Sensor Properties

Personal electronics example - continued

Low Power Scan Rate Normal Power Scan Rate Estimated Current in LP Estimated Current in NP	1.25 sps 10 sps 9.46 µA 78.95 µA	
Low Power Base Increment	3	
Normal Power Base Increment	3	
INTB pin polarity	Active Low	
HYST setting (Default = 8)	8	
Hysteresis	32 code	es.
Low Detect Threshold	96 code	es
High Detect Threshold	160 code	S

Partial List of Regi		
Name	Address	Value
EN	0x0C	0x13
NPSCAN_RATE	0x0D	0x03
GAIN0	0x0E	0x28
LP_SCAN_RATE	0x0F	0x02
GAIN1	0x10	0x28
INTPOL	0x11	0x01
GAIN2	0x12	0x28
LP_BASE_INC	0x13	0x03
GAIN3	0x14	0x28
NP_BASE_INC	0x15	0x03
LC_DIVIDER	0x17	0x02
HYST	0x18	0x08
CNTSC	0x1E	0x00
SENSORO_CONFIG	0x20	0x56
SENSOR1_CONFIG	0x22	0x56
SENSOR2_CONFIG	0x24	0x53
SENSOR3_CONFIG	0x26	0x53

Industrial button

Key features

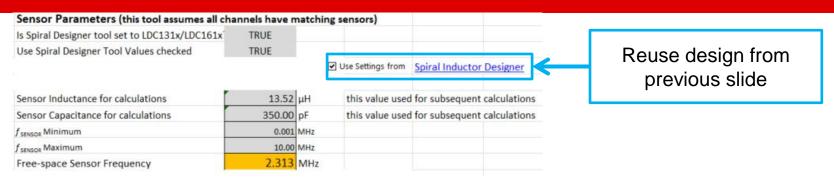
- Can use with gloves on
- Sealed design
- Robust
- Dents in the metal can be ignored using baseline tracking

Industrial button example

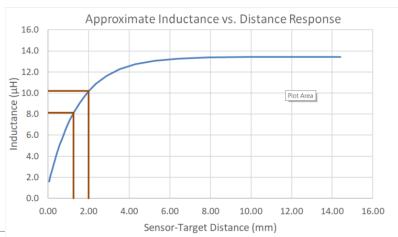
Using the LDC1614 for this design

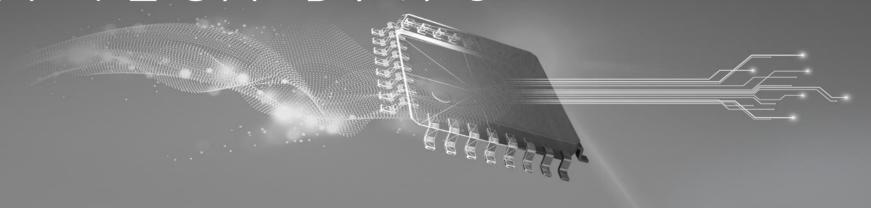
Sensor input parameters

Sensor output parameters

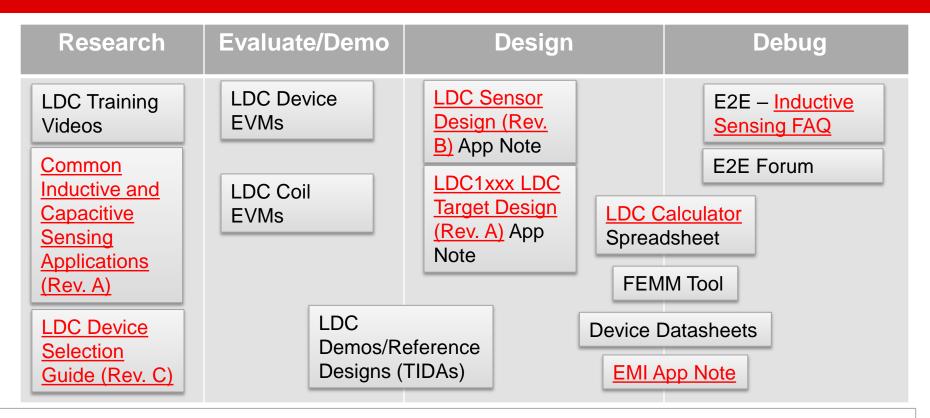

Even with a larger coil, we are still using the 0.5mm target distance

LC Sensor calculations				
LDC Device		LDC1612/4		
Operating temperature	T	22	°C	Enter operating temperature
Sensor capacitance	С	350.0	pF	Select LC tank capacitance
Layers	М	2	Layers	Number of layers on PCB board (1≤M≤8)
Turns (per layer)	N	20	Turns	Number of turns per layer
Outer diameter of the inductor	d _{OUT}	14.00	mm	Outer Diameter of the spiral inductor
Sensor Shape		Circular		
Long side of inductor	dL	8.00	mm	
spacing between traces	S	5.000	mil	Space between traces (mm or mil)
width of trace	w	5.000	mil	Width of the trace (mm or mil)
PCB thickness between 1st layer and 2nd layer	h12	0.040	mm	Space between layer 1 and 2 (mm or mil)


Coil Fill Ratio	din/dout	0.27		0.2> din/dout >0.8 is recommended for highest Q
Inductor inner diameter	din	3.840	mm	Inner diameter of the spiral inductor (mm or mil)
Self inductance per layer	L	3.426	μН	
Total Inductance with no target	L _{TOTAL}	13.522	μН	
Sensor Operating Frequency no target	$f_{{\sf RES}}$	2.300	MHz	
Rp with no Target	Rp	3.69	kΩ	
Q factor	Q	18.67		
Self resonant frequency (estimated)	SRF	21.641	MHz	SRF should be >1.25*Fsensor
Target Distance	D	0.500	mm	For aluminum target of at least 5 skin depths
Sensor Inductance from Target Interaction	Ľ	5.440	μН	
Sensor Frequency with Target Interaction	f RES'	3.627	MHz	
Rp with Target Interation	R _P '	1.42	kΩ	
Q Factor with target	Q'	11.4		


Industrial button example - continued

Axial Target Movement Calculations		
Farthest Target Distance	2.00	mm
Closest Target Distance	1.25	mm
distance1/diameter	0.14	
L adjust factor for distance 1	0.7543	
f _{SENSOR} at farthest target Distance	2.6638	MHz
skin depth of Alumium at f1	0.0502	mm
R _P at Distance 1	2.7840	kΩ
distance2/diameter	0.09	
L adjust factor for distance 2	0.6001	
$f_{\sf SENSOR}$ at Closest Target Distance	2.9864	MHz
Sensor Frequency shift	322.58	kHz
Maximum Distance between LDC & sensor:	36.84	cm


TI TECH DAYS

Backup Slides

Design Tools and Resources

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated