Maximize density, power, and reliability with TI GaN and C2000™ real-time MCUs

GaN: Yichi Zhang
C2000: John Kim
Overview

• Introduction of GaN and C2000 real-time MCUs which enable efficient power conversion and fast control

• Example of TI GaN and C2000 real-time MCUs in wide variety of applications
 – Totem pole PFC
 – 900V bidirectional energy storage system with 99% efficiency
 – 1.25kW 3-phase inverter with 99% efficiency
GaN + C2000: Efficient power and control

• Both LMG341x GaN & C2000 enable high MHz operation, for high power density
 – GaN FETs have inherently lower switching and conduction losses, to switch at high frequencies and increase power density
 – C2000 MCUs offer precision sensing, powerful processing and premium actuation capabilities engineered specifically for high frequency power control applications
• TI GaN with integrated gate drive and protection. Enables fastest GaN switching in the market, for high efficiency and reliability.
• C2000 is a platform of scalable, ultra-low latency, real-time controllers designed power electronics that demand high power density, high switching frequencies, perfectly paired with GaN and SiC technologies
TI GaN + C2000: Delivering efficient power solution

1MHz CrM PFC with 99% Efficiency

TI-GAN

- Integrated driver delivers 2X switching speed and half the losses of discrete GaN
- Built-in protection designed for operation under extreme conditions
- Simple interface signal for closed loop connection with C2000 real-time MCUs

C2000 real-time MCUs

- 12-/16-bit ADCs with up to 3.5MSPS for high speed and accurate voltage and current sensing
- Powerful 32-bit Floating point DSP enabling multi-phase and multi-level control topologies
- Highly flexible, High resolution 150ps PWM enables high frequency converter design

Power Density: 250 W/in³ (15.2 W/cm³)

Versus

Silicon: 55 W/in³ (3.4 W/cm³)
Applications for GaN & C2000 real-time MCUs

- Energy Delivery
 - Solar Power
 - Wind Power
- Motor Control
 - Appliance
 - E-bike
- Digital Power
 - Uninterruptable Power Supplies
 - DC/DC Converters
- Industrial Drives
 - Robotics
 - Automation
 - AC Drives
- Automotive & EV/HEV
 - On-Board Charging (OBC)
 - Servo Drive
 - DC-DC
C2000™ real-time MCUs overview

Scalable, ultra-low latency, real-time controller platform designed for efficiency in power electronics, such as high power density, high switching frequencies, GaN and SiC technologies.

- **Highly accurate sensing**
 - 12-/16-bit ADCs, up to 24 channels
 - ADC post processing, and externally accessible DACs

- **Highly flexible, High-resolution PWMs:**
 - Up to 32 outputs
 - Position Manager, Sigma-Delta Filter Module, trip zones

- **Expertise and support:**

- **High performance processing**
 - Floating-point DSP C28x™ core + parallel multi-core architecture + instructions set optimized for control math, up to 925 MIPS

- **Interface**
 - CAN, CAN-FD, LIN, UART, SPI, I2C, PMBus, USB, 10/100 Ethernet MAC, EtherCAT®, XEMIF

- **Leading innovation:**
 - Config. Logic Block for peripheral customization, Fast Serial Interface for high-speed communication, ERAD for enhanced diagnostics and profiling

25 years expertise in real-time control systems

- 1.2-V core, 3.3-V I/O design
- Up to 1.5 MB Flash, 256 kB RAM (ECC protected)
- QFN, QFP, BGA packages
- -40 to 125°C temperature range
- Q100 automotive qualified options
- Over 750 million units shipped for industrial and automotive applications with compatible software
GaN: Key advantages over silicon FET

- Low $C_{G, QG}$ gate capacitance/charge (1 nC-Ω vs Si 4 nC-Ω)
 - faster turn-on and turn-off, higher switching speed
 - reduced gate drive losses

- Low $C_{OSS, QOSS}$ output capacitance/charge (5 nC-Ω vs Si 25 nC-Ω)
 - faster switching, high switching frequencies
 - reduced switching losses

- Low R_{DSON} (5 mΩ-cm² vs Si >10 mΩ-cm²)
 - lower conduction losses

- Zero Q_{RR} No ‘body diode’
 - No reverse recovery losses
 - Reduces ringing on switch node and EMI
TI GaN: Efficient and reliable GaN

Twice the Speed, Half the Losses

- Highest switching speed in the industry enabling 50% lower losses in 65W to >10kW applications

Lifetime Reliability

- Robust self-protected solutions with >30M device reliability hours and >3GWHr of power conversion to date

Low Cost and Integrated

- TI Owned process and manufacturing of GaN FET with integrated driver and protection in a low inductance package
Example of TI C2000 + GaN: CCM PFC
CCM PFC: topologies

- Good EMI performance
- Distributed heat
- Moderate efficiency
- Low power density
- Requires 6 power switches and 2 inductors

- High power density
- High efficiency
- Distributed heat
- Requires 4 power switches and 1 inductor

- SJ Mosfet has large reverse recovery loss
 - can’t survive in a half bridge configuration
- GaN FET with 0 Qrr is ideal for totem pole PFC
Why choose TI GaN in totem-pole PFC?

- GaN has >50% lower switching energy compared to SiC
- GaN has zero reverse recovery losses
- TI GaN switches at up to 100 V/ns – resulting in 5.5x reduction in losses compared to SiC and 2.7x compared to discrete GaN
- TI GaN has the best cost parity to Si MOSFETs
1-kW CCM PFC: power loss comparison

Power loss comparison for 1-kW PFC

- Dual Boost - SJ
- Totem Pole - SiC
- Totem Pole - TI GaN

Loss (W)
Higher switching frequency

- 40-kHz CCM PFC inductor (1000 W)
 - Inductor volume: 138915 mm3
 - Dimensions: 63 mm (width) x 35 mm (height)

- 100-kHz CCM PFC inductor (1000 W)
 - Inductor volume: 43952 mm3
 - Dimensions: 42.5 mm (width) x 23.24 mm (height)

3.2x reduction in inductor volume
Path to 99% efficiency with GaN: control

- Adaptive Dead Time (A.D.T)
 - Dead time calculated based on operating condition to minimize the third quadrant loss and improve efficiency
 - C2000 real-time MCUs with Hi-res PWM deadband and compute power can enable adaptive dead time implementation.

\[T_d = \frac{2 \times C_{sw} \times V_{out}}{I_{L, peak}} \]

Optimal turn-on point

- Turn-on too soon
- Optimal \(T_d \)
- Turn-on too late
Path to 99% efficiency with GaN: control

• Phase shedding
 – Shed phase in lighter load application to reduce switching loss and improve efficiency
 – Phases need to be added/dropped quickly for safe operation and optimal efficiency
 – Decision based on current reference in voltage loop

C2000™ Real-Time Controllers enable to implement flexible phase shedding
Bi-Directional 3Ph Interleaved Totem-Pole CCM PFC/Inverter Reference Design TIDM-02008

Features

• GaN-based 3 phase interleaved totem pole bidirectional PFC
• Rated Power: 3.3 kW (at 230 V_{rms})
• Peak efficiency: 98.7% (at 230 V_{rms})
• Total Harmonic Distortion (THD) < 2% (at low line)
• PWM switching frequency: 100 kHz
• PFC mode specification: 120/230 V_{ac_in}, 380 V_{dc_out}
• Inverter mode specification: 380 V_{dc_in}, 120/230 V_{ac_out}
• Soft starting for totem-pole bridge
• Phase shedding and adaptive dead time control for higher efficiency
• F28004x CPU + CLA (co-processor) support

Benefits

• High power density design while maintaining OEM specified form factor
• Further system integration through latest TI-GaN gate drivers
• Enables superior control and implementation of advanced control schemes brought by high performance C2000 MCU
• Enables simple adaptation of software through powerSUITE™ support

Target Applications

• Energy storage system
• Industrial power supply
• Onboard charger

Tools & Resources

• TIDM-02008 Tools Folder
• Test Data/Design Guide
• Design Files: Schematics, BOM, Design Files
• Key TI Devices: TMS320F280049, TMS320F28075, LMG3410R070, UCC27714D, OPA2376, SN74LVC1G3157, ISO7831, TLV713

C2000 Microcontroller
TMS320F28004x
TIDM-02008: Measured efficiency and THD

![Graph showing efficiency and THD measurements.](image-url)
TIDM-02008 test results

Steady State 230-Vac IN, 380V DC OUT, 3.3kW, iTHD 2.69%
The maximum ISR loading numbers were captured
- ISR1: Inner current loop, grid synchronization (PLL), etc
- ISR2: Outer voltage loop, relay on/off, OVP, UVP, OCP, etc

<table>
<thead>
<tr>
<th></th>
<th>ISR1 (100 kHz)</th>
<th>ISR2 (10 kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU utilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*Advanced options: All Off)</td>
<td>53%</td>
<td>6 %</td>
</tr>
<tr>
<td>CPU utilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Advanced options: All On)</td>
<td>65%</td>
<td>9%</td>
</tr>
<tr>
<td>CLA utilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*Advanced options: All Off)</td>
<td>57%</td>
<td>9 %</td>
</tr>
<tr>
<td>CLA utilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Advanced options: All On)</td>
<td>79%</td>
<td>12 %</td>
</tr>
</tbody>
</table>

*Advanced options: A.D.T, Phase Shedding, NL voltage loop, SFRA
Example of TI C2000 + GaN: 900V bidirectional energy storage system with 99% efficiency
900V-5kW bidirectional ACDC converter with TI-GaN

Design Features
- DC voltage up to 1400V, AC voltage up to 480V L-L
- Peak efficiency of 99.2%
- Convection cooled with no fan
- Scalable multi-level solution for >5kW
- Total harmonic distortion (THD) < 3%
- Surface-mount devices to reduce manufacturing cost
- LMG3410R050, 600V, 50mΩ GaN FET with integrated Driver & Protection
- Leverages TI C2000 controller: TMS320F28379D

Design Benefits
- 3X power density improvement over IGBT and 1.25X over SiC

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>20</th>
<th>100</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open frame Power Density (W/in³)</td>
<td>73</td>
<td>170</td>
<td>211</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>98.3</td>
<td>98.9</td>
<td>99.2</td>
</tr>
</tbody>
</table>

470 mm x 162 mm x 51 mm
Topology comparison at 99% efficiency

Inverter relative volume breakdown

- SiC HB
- SiC T type
- ANPC PWM3
- FC4L (TI-GaN)

Inverter relative cost breakdown

- SiC HB
- SiC T type
- ANPC PWM3
- FC4L (TI-GaN)
Results

- 99% efficiency 3 kW to 5 kW natural convection cooling

CH1: Fly capacitor 532 V
CH2: Fly capacitor 266 V
CH3: Grid voltage 270 V
CH4: Grid current 6 A
Example of TI C2000 + GaN:
1.25kW 3-phase inverter with 99% efficiency
TIDA-00915: 1.2kW 3Φ integrated drive

Solution Features
- Ultra-small form factor with power density of 150W/in³
 - 50°C ambient conditions up to 1.25kW
 - 85°C ambient conditions up to 550W
- Peak efficiency > 99%
- Natural convection cooling with 10mm heatsink
- Built-in short-circuit and over temperature protection
- 450V Max DC Operation

Applications
- Integrated motor drives
- Robotics
- Servo drivers
Traditional external drive systems with silicon

Manipulator

AC Motor 1 Angle Sensor 1

AC Motor 6 Angle Sensor 6 (Encoder, Resolver)

Power Interface Cable
Length of 10m+ for each motor!

High dv/dt

Encoder cable
(Length 10m and more)

Digital or analog communication (encoded angle) require high immunity against fast transient bursts, high-voltage surge and ESD.

Robot Controller Cabinet Multi-Axis Inverter

3-Phase Inverter 1
3-Phase Inverter 2
3-Phase Inverter 6

Position Interface 1
Position Interface 2
Position Interface 6
Integrated motor drive with GaN + C2000 MCUs

Cost savings:
• Reduce power and communication cabling
• Free up floor and cabinet space

High Performance:
• Higher dv/dt, less switching power loss
• Improve EMC immunity on communication cables
TIDA-00915: Natural convection cooling

Heatsink: 10mm fin height
Peak efficiency > 99.2%
Backup
C2000 MCU ideal for high switching frequency control

<table>
<thead>
<tr>
<th>C2000 MCU DNA</th>
<th>Scalable MCU architecture from high to low end power stages with high frequency control & processing capabilities</th>
<th>Ideal For WBG (GaN/SiC) Switching/control/system</th>
</tr>
</thead>
</table>
| 32-bit -28xCPU Up to 200MHz | - Industry’s leading real time control CPU
- Single/double floating point precision
- Tightly integrated accelerators & control peripherals | - Efficient low latency, precision control algorithms
- Widely adopted in Motor drive/Solar inverters/Automotive power stages |
| CLA/ TMU/ NLPID Up to 200MHz | - Industry’s low latency event/algorith processing engine
- Executes in floating point precision and in parallel to the CPU
- Fast trigonometric and non-linear algorithm processing engine | - Enabling multi-phase & multi-level control topologies
- Ideal for low latency non-linear control |
| PWM/ Capture engine | - Industry’s proven best in class and flexible PWM generation
- Up to 200/MHz PWM clock with protection
- Up to 150ps pulse width resolution with high resolution dead band
- Tightly integrated with the Analog sub-system | - Multi-phase & multi-level control topologies
- Protects shoot-through/short circuit
- Efficient switching of GaN/SiC power stage
- Glueless interface to TI Gate Driver family |
| Analog sub-system | - Up to x4 high-precision, just-in time 12/16bit ADCs
- Flexible Analog comparator & DAC subsystems
- Pre-processing blocks to minimize latency in sensing | - Enables fast current/voltage sensing scheme
- Enables customizable Peak-current mode control
- Minimizes data analog preconditioning/latency |
| Delta Sigma- SDFM | - Up to 8 programmable Delta sigma filters, with digital comparators | - Enables isolated current/voltage sensing |
| CLB Configurable Logic | - Configurable logic to add customizable protection
- Custom peripheral events using Analog and digital triggers | - Enables power stage protection
- Develop advanced switching topologies |
| Fast Serial interface | - Supports low cost fast serial interface up to 200Mbps | - Enables isolated current sensing with low latency.
- Allows distributed power stage architectures |
| Communication ports | - Connectivity ports 50MHz SPI, CAN/CANFD/Ethernet/Ethercat | - Enables External host links for monitoring/control |

Red- Unique to C2000 MCU only
Green – Showcased in TI Designs/examples
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated