Robust design of delta-sigma ADC system inputs for EOS immunity – PLC analog input module

Dale Li
Applications, Data Converters – Precision ADC
Agenda

• EOS and fault conditions
 – EOS vs ESD
 – Fault conditions

• Diode and ADC input structure
 – Diode: Type and characteristic
 – ADC input protection structure

• Protection topologies for RTD in PLC AI module
 – Conventional TVS diode
 – TI flat-clamp TVS diode

• IEC testing (IEC61000-4-x) – RTD in PLC AI module
ESD vs. EOS – what’s the difference?

<table>
<thead>
<tr>
<th>ESD</th>
<th>EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Electrostatic discharge</td>
<td>• Electrical overstress</td>
</tr>
<tr>
<td>• Short duration event (1-100ns)</td>
<td>• Longer duration event</td>
</tr>
<tr>
<td>• High voltage (kV)</td>
<td>– Milliseconds or more</td>
</tr>
<tr>
<td>• Fast edges</td>
<td>– Can be continuous</td>
</tr>
<tr>
<td>• Both “in-circuit” and “out-of-circuit”</td>
<td>• Lower voltage</td>
</tr>
<tr>
<td></td>
<td>– May be just beyond absolute maximum ratings</td>
</tr>
<tr>
<td></td>
<td>• “In-circuit” event only</td>
</tr>
</tbody>
</table>
EOS from fault or overdriven

- **Fault conditions**
 - Harsh electrical environment
 - High voltage circuit in the system
 - Improper power up sequencing
 - Hot-swap connection and disconnection
 - Loss of power supply but input signal is applied
 - Apply bipolar signal to unipolar input ADC
 - Miswiring
 - Other conditions violating the absolute maximum specifications

- **Key conditions to result in an EOS to RTD application:**
 - Miswiring power supply to RTD input
 - Connect high voltage signal from voltage channel to RTD input
Agenda

• EOS and fault conditions
 – EOS vs ESD
 – Fault conditions

• Diode and ADC input structure
 – Diode: Type and characteristic
 – ADC input protection structure

• Protection topologies for RTD in PLC AI module
 – Conventional TVS diode
 – TI flat-clamp TVS diode

• IEC testing (IEC61000-4-x) – RTD in PLC AI module
Unidirectional TVS Diode
(Transient voltage suppressor)

Symbol	Parameter
V_{BR} | Breakdown voltage
V_R | Stand-off voltage
V_C | Clamping voltage
V_F | Forward voltage drop
I_{BR} | Breakdown Current @ V_{BR}
I_R | Reverse Leakage @ V_R
I_F | Forward Current @ V_F
I_{PP} | Peak Pulse current @ V_C

TVS_Uni
Bidirectional TVS diode
(Transient voltage suppressor)

Symbol	Parameter
V_{BR} | Breakdown voltage
V_R | Stand-off voltage
V_C | Clamping voltage
V_F | Forward voltage drop
I_{BR} | Breakdown Current @ V_{BR}
I_R | Reverse Leakage @ V_R
I_F | Forward Current @ V_F
I_{PP} | Peak Pulse current @ V_C

TVS_Bi

![Bidirectional TVS diode graph](image)
Capacitance and leakage current on TVS diode

- **Capacitance**
 - Not constant, change with standoff voltage
 - Junction capacitance changes from hundreds pF up to 10-nF
 - Large power rating diode has higher capacitance and variation
 - Key impact to switch-capacitor input structure SAR ADC

- **Leakage Current**
 - Data sheet from most manufacturers only shows max leakage at room temperature.
 - Same PN from different manufacturers may have different leakage spec.
 - Leakage variation with temperature.
 - Key impact to RTD measurement.

<table>
<thead>
<tr>
<th>Manufacturers</th>
<th>PN</th>
<th>Leakage current (max at 25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourns Inc.</td>
<td>SMBJ14CA</td>
<td>1μA</td>
</tr>
<tr>
<td>Littelfuse</td>
<td>SMBJ14CA</td>
<td>1μA</td>
</tr>
<tr>
<td>Vishay</td>
<td>SMBJ14CA</td>
<td>1μA</td>
</tr>
<tr>
<td>Diodes Inc.</td>
<td>SMBJ14CA</td>
<td>5μA</td>
</tr>
<tr>
<td>Taiwan Semi</td>
<td>SMBJ14CA</td>
<td>5μA</td>
</tr>
</tbody>
</table>
TVS vs. Zener

TVS Diode
- Solid state PN junction
- Designed for operation in reverse-breakdown region only during over-voltage events
- Junction area sized to conduct significant current and absorb significant power
- Specifically designed for large transients such as ESD
- Can react to overvoltage in pico-seconds

Zener
- Solid state PN junction
- Designed for full-time operation in reverse-breakdown region
- Ideal for voltage regulation
- Slower reaction time
- Lower current/power capability

Zener diode
Internal clamp/protection on data converters

1. Input steering diodes:

2. Back-to-back Zener diode:

3. SCR-based input:

*Bi-directional SCR example
Agenda

• EOS and fault conditions
 – EOS vs ESD
 – Fault conditions

• Diode and ADC input structure
 – Diode: Type and characteristic
 – ADC input protection structure

• Protection topologies for RTD in PLC AI module
 – Conventional TVS diode
 – TI flat-clamp TVS diode

• IEC testing (IEC61000-4-x) – RTD in PLC AI module
RTD (resistance temperature detector) sensor

- **PT-100** exhibits 100Ω resistance at 0°C and has wide temp range: -200°C to 850°C.
- R varies from **20Ω to 400Ω**, Currents are pumped into RTD and voltage is measured.
- Sensor with a predictable resistance vs. temperature.
- Measure the resistance and calculate temperature based on the resistance vs. temperature characteristics of the RTD material.
- Overstress (EOS) protection is an increasingly popular requirement from customers.
Typical block diagram: 2-wire RTD inputs

Circuit notes:
- 2 terminal input
- High-side reference (low-side is possible as well)
- One excitation current required
- No lead wire compensation
- \(R_{\text{REF}} \) is typically largest source of error

Key ADC Specs
- \(+ V_{\text{ref}}\) and \(+ V_{\text{RTD}}\)
- \(- V_{\text{error}}^+\) and \(- V_{\text{error}}^-\)

- Differential VREF inputs
- 1x current sources
- Low-noise
- Integrated gain stage

From ADS124S08 EVM
Typical block diagram: 3-wire RTD inputs

Circuit notes
- 3 terminal input
- High-side reference (low-side is possible as well)
- Excitation via 1x or 2x current sources (1x IDAC requires 2x measurements)
- Lead wire compensation is possible
- R_{REF} is typically largest source of error

Key ADC Specs

1. $+V_{ref}$
2. $+V_{RTD}$
3. $-V_{error^+}$
4. $-0V^+$
5. $+V_{error^-}$

From ADS124S08 EVM
Typical block diagram: 4-wire RTD Inputs

Circuit notes:

- 4 terminal input
- High-side reference (low-side is possible as well)
- One excitation current required
- Inherent lead wire compensation
- R_{REF} is typically largest source of error

Key ADC Specs

From ADS124S08 EVM
Design requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input sensor</td>
<td>RTD: PT100</td>
</tr>
<tr>
<td>Measurement range</td>
<td>-200°C to 850°C (20Ω to 400Ω)</td>
</tr>
<tr>
<td>EOS fault protection</td>
<td>±30V on RTD input</td>
</tr>
</tbody>
</table>
| Resolution | ENOB: >20 bits
Noise-free resolution: >17 bits |
| Accuracy (TA = -40 to 85°C) | ±0.1% at room, ±0.5% full temp range |
| IEC certifications | ESD: IEC61000-4-2
EFT: IEC61000-4-4
Surge: IEC61000-4-5 |
Design block diagram: RTD measurement (IEC Testing)

Note: ADS124S08’s other channels are used for voltage and current measurement in this design.
Common 3-wire RTD measurement without protection

- **Ratiometric measurement:**
 IDAC noise and drift are cancelled.

- **Lead wire resistance cancellation:**
 - Lead resistance is related to length, material and cross-sectional-area of the conductor.
 - One IDAC needs two measurements.

- **Two IDACs need current chopping to minimize the effect of mismatched current sources.**

Note: 1-meter PT100 RTD sensor from Adafruit.
Why do we need two measurements

Two measurements by taking difference between V_1 and V_2:

- Cancel lead wire resistance.
- Cancel the offset of ADC.
- Low side reference requires two measurements.
- High side reference measurement only requires one measurement, however the resistor selections (R_{RTD}, R_{ref} and R_{bias}) and IDAC current are limited by compliance voltage.

Note: $R_{RTD} = 100\, \Omega$, $R_{Lead1} = R_{Lead2} = R_{Lead3} = 10\, \Omega$
ESD / EOS Protection Design

Design Goals
- Assume continuous fault
- Limit $I_{ABS_MAX} < 10\text{mA}$
- Minimize fault power dissipation in R_{P1}, R_1, and T_4
- Make sure normal operation of circuit is functional and has minimal error
 - Compliance limit
 - Leakage Errors
Protection: 3-wire RTD, low-side reference measurement

- Current limiting resistors:
 - $R_{P1}/R_{P2}/R_{P3}/R_{P4}$: limit current to TVS and ADC inputs
 - R_1 limits current to IDAC (no R_{flt} on AIN5).
 - Large value R_{P1} and R_1 limit current more:
 - Advantage: lower clamped voltage under fault condition.
 - Disadvantage: higher voltage under normal operation.
 (violate compliance voltage on IDAC).
 - Small value R_{P1} and R_1 limit less current, have higher
 power dissipation on R_{P1} and R_1.
 - Mismatching and drift affect accuracy.

- TVS diode considerations:
 - Proper standoff voltage (14V) -> tradeoff for R_{P1} and R_1.
 - Bidirectional TVS instead of unidirectional TVS.
 - Leakage current is a key error contribution to accuracy.
 - Temp drift of leakage current affects accuracy.

Absolute Maximum Ratings (Single 5V Power Supply)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog input voltage ($V_{in,\text{Abs}}$)</td>
<td>-0.3</td>
<td>+5.3</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Analog input current ($I_{in,\text{Abs}}$)</td>
<td>-10</td>
<td>+10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Normal input signal</td>
<td>0</td>
<td>+5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>AINx signal (V_{n})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum EOS: ±30W

Compliance voltage = 4.6V max

(*Common-mode capacitor not shown)
Voltage drop across Rp1 can not be acceptable and power dissipation on Rp1 can be a challenge.

Why do we use bidirectional TVS diode?

<table>
<thead>
<tr>
<th>Diodes Inc.</th>
<th>SMBJ14CA (Bidirectional)</th>
<th>SMBJ14A (Unidirectional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_B (Breakdown Voltage)</td>
<td>$-15.6V$</td>
<td>$-0.7V$</td>
</tr>
<tr>
<td>$V_{RP} = V_{EOS} - V_B$ (Volts on Rp)</td>
<td>$-14.4V$</td>
<td>$-29.3V$</td>
</tr>
<tr>
<td>$P_P = \frac{V_{RP}^2}{R_{P1}}$ (Power Dissipation on Rp)</td>
<td>$\frac{(-14.4V)^2}{590\Omega} = 0.351W$</td>
<td>$\frac{(-29.3V)^2}{590\Omega} = 1.455W$</td>
</tr>
</tbody>
</table>
Solution 1: Choose R_{P1} and R_1 with regular TVS diode

<table>
<thead>
<tr>
<th>Part number</th>
<th>MFG</th>
<th>Reverse standoff voltage(V_R)</th>
<th>Breakdown voltage (V_{BR})</th>
<th>Clamping voltage max ($V_{C@I_{PP}}$)</th>
<th>Reverse leakage max ($I_R\over V_R$) 25°C</th>
<th>Breakdown current ($I_{BR\over V_{BR}}$)</th>
<th>Peak pulse current (I_{PP})</th>
<th>Peak power dissipation (P_{PP})</th>
<th>Steady state power dissipation(P_{PP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMBJ14CA</td>
<td>Bourns</td>
<td>14V</td>
<td>Min 15.6</td>
<td>Max 17.9</td>
<td>23.2V</td>
<td>1uA</td>
<td>1mA</td>
<td>25.9A</td>
<td>600W</td>
</tr>
</tbody>
</table>

Positive EOS: (+30V)

1. \[R_{P1} \geq \frac{V_{EOS_max} - V_{BR_min}}{I_{fault}} = \frac{30V - 15.6V}{25mA} = 576\Omega \quad \text{(choose 590\Omega)} \]

2. \[R_1 \geq \frac{V_{BR_min} - V_{in_max}}{I_{ADC}} = \frac{15.6V - 5.3V}{5mA} = 2.06k\Omega \quad \text{(choose 2.2k\Omega, 5mA < I_{in_Abs})} \]

Negative EOS: (-30V)

1. \[R_{P1} \geq \frac{V_{EOS_max} - V_{BR_min}}{I_{fault}} = \frac{-30V - (-15.6V)}{-25mA} = 576\Omega \quad \text{(choose 590\Omega)} \]

2. \[R_1 \geq \frac{V_{BR_min} - V_{in_max}}{I_{ADC}} = \frac{-15.6V - (-0.3V)}{-5mA} = 3.06k\Omega \quad \text{(choose 3.4k\Omega, 5mA < I_{in_Abs})} \]

Power

1. \[P_{RP1} = \frac{(V_{EOS_max} - V_{BR_min})^2}{R_{P1}} = \frac{(-30V - (-15.6V))^2}{590\Omega} = 351mW \quad \text{(choose \geq 0.5W for P_{RP1})} \]

2. \[P_{R1} = \frac{(V_{BR_min} - V_{in_max})^2}{R_1} = \frac{(-15.6V - (-0.3V))^2}{3.4k\Omega} = 68.85mW \]

Power

1. \[P_{TVS_max} = \frac{(V_{EOS_max} - V_{BR_min}) - V_{BR_min} - V_{in_max}}{R_{P1}} \cdot V_c = \frac{(-30V - (-15.6V) - 15.6V - (-0.3V))}{590\Omega \cdot 3.4k\Omega} \cdot 23.2V = 461mW \]

Select worst case!
Select reference resistor - R_{REF}

Parameters known:

<table>
<thead>
<tr>
<th></th>
<th>Min (-200°C)</th>
<th>Max (+850°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT100</td>
<td>20Ω</td>
<td>400Ω*</td>
</tr>
<tr>
<td>Lead resistance</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td></td>
<td>0Ω</td>
<td>10Ω</td>
</tr>
</tbody>
</table>

Components selected: $R_P = 590\Omega, R_1 = 3.4k\Omega$

* Approximate value.

Select R_{REF} regarding maximum voltage across R_{RTD}:

1. Use $I_{\text{DAC}} = 0.5mA$ (lower sensor self-heating: $0.093\text{mW}<0.1\text{mW}$)
2. $V_{\text{RTD, max}} = I_{\text{DAC}} \cdot R_{\text{RTD, max}} = 0.5mA \cdot 400\Omega = 0.2V$
3. Use Gain = 4, $V_{\text{REF, min}} = V_{\text{RTD, max}} \cdot \text{Gain} = 0.2V \cdot 4 = 0.8V$
 $\Rightarrow V_{\text{REF}} = 1V$
4. $R_{\text{REF}} = V_{\text{REF}} / I_{\text{DAC}} = 1V / 0.5mA = 2k\Omega$

(*Common-mode capacitor not shown)
Compliance Voltage on I_{ref}

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>-1.5%</th>
<th>1.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCITATION CURRENT SOURCES (IDACS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compliance voltage^{(4)}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 \mu A to 750 \mu A, 0.1% deviation</td>
<td>AVSS</td>
<td>AVDD - 0.4 V</td>
</tr>
<tr>
<td>1 mA to 2 mA, 0.1% deviation</td>
<td>AVSS</td>
<td>AVDD - 0.6 V</td>
</tr>
<tr>
<td>T_x = 25°C, 10 \mu A to 100 \mu A</td>
<td>-5%</td>
<td>±0.7%</td>
</tr>
</tbody>
</table>

\[5V - 0.4V = 4.6V \]

Need to confirm that IDAC input < 4.6V
Verify node voltage

Parameters Known:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT100 (max)</td>
<td>400Ω</td>
</tr>
<tr>
<td>Lead Resistance (max)</td>
<td>10Ω</td>
</tr>
<tr>
<td>Excitation Current (I_{DAC})</td>
<td>0.5mA</td>
</tr>
<tr>
<td>Compliance voltage (V_C)</td>
<td>0.4V < V_C < 4.6V *</td>
</tr>
<tr>
<td>V_{(AINx)} (Gain=4)</td>
<td>0.45V < V_{(AINx)} < 4.55V *</td>
</tr>
</tbody>
</table>

Components Selected:

- R_P = 590Ω, R_1 = 3.4kΩ, R_{REF} = 2kΩ

* Limit calculated under specified conditions (Gain=4, AVDD=5V).

Verify Node Voltage under Normal Operation:

V_{AIN5} = I_{DAC} \cdot (R_1 + R_P1 + R_{Lead1} + R_{RTD} + R_{Lead3} + R_P5 + R_{REF}) =

0.5mA \cdot (3.4kΩ + 590Ω + 10Ω + 400Ω + 10Ω + 590Ω + 2kΩ) = 3.35V < 4.6V *

Compliance voltage = 4.6V max
Select R_{flt} and C_{flt} for differential and common-mode filter

- Keep bandwidth of differential filter $\geq 10 \times$ data rate.
- Keep differential capacitor $\geq 10 \times$ Common-mode capacitor.
- Keep input resistance $< 10k\Omega$ for proper input sampling.
- Higher resistance helps to limit current to ADC input.
- Keep resistance low on REFN0 since for single power supply.
- Set $R_{flt} = R_{flt_ref} = 4.12k\Omega$, $C_{flt} = C_{ref} = 470pF$, $C_{flt_Diff} = 4.7nF$.

<table>
<thead>
<tr>
<th>For ADC input filtering:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $f_{in_diff} = 1/([2 \cdot \pi \cdot C_{in_diff} \cdot (R_{RTD} + 2 \cdot R_{flt} + R_p)]) = 3.67kHz$</td>
<td></td>
</tr>
<tr>
<td>2 $f_{in_CM} = 1/[2 \cdot \pi \cdot C_{flt} \cdot (R_{RTD} + R_{flt})] = 74.9kHz$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For reference input filtering:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $f_{ref_filter} = 1/(2 \cdot \pi \cdot C_{ref} \cdot R_{flt_ref} + R_{flt})] = 82kHz$</td>
<td></td>
</tr>
</tbody>
</table>

see RTD Ratiometric Measurements and Filtering Using the ADS1148 and ADS1248.

Protection circuitry not shown
Calculated and simulated error with SMBJ14CA diode

- TVS leakage current are added:
 - I3 and I4 through both R_{RTD} and R_{REF}.
 - I2 and I1 through R_{REF} only.
- Leakage current on SMBJ14CA from Bourns: $I_{leak} = 1\mu A$
 (maximum at room temp, no spec over temp)

Additional error (maximum) at room temperature:

\[
\text{Ratio}_{-\text{Ideal}} = \frac{(I_{DAC} \cdot R_{RTD} \cdot \text{Gain})}{(I_{DAC} \cdot R_{REF})} = 400\Omega \cdot 4/2\,k\Omega = 0.8
\]

\[
V_1 = (I_{DAC} + I_3 + I_4) \cdot (R_{RTD} + R_{\text{lead1}}) + I_3 \cdot R_{RP2} - I_2 \cdot (R_{P3} + R_{\text{lead2}})
\]

\[
V_2 = (I_{DAC} + I_2 + I_3 + I_4) \cdot R_{\text{lead3}} + I_2 \cdot (R_{RP3} + R_{\text{lead2}}) - I_1 \cdot R_{RP4}
\]

\[
\text{Ratio}_{-\text{Actual}} = \frac{(V_{\text{meas.error}} \cdot \text{Gain})}{V_{\text{REF}}} = \frac{((V_1 - V_2) \cdot \text{Gain}))/\left((R_{REF} \cdot (I_{DAC} + I_1 + I_2 + I_3 + I_4 + I_5))\right)}{\left((I_{DAC} + 2I) \cdot R_{RTD} - 3I \cdot R_{\text{lead}} \cdot \text{Gain}))/\left((R_{REF} \cdot (I_{DAC} + 5I))\right) = 0.795^*\)
\]

\[
\text{Error} = \frac{(\text{Ratio}_{-\text{Actual}} - \text{Ratio}_{-\text{Ideal}})}{\text{Ratio}_{-\text{Ideal}}} \cdot 100\% = -0.625\%
\]

*Note: $I_1 = I_2 = I_3 = I_4 = I_5 = 1$

Accuracy desired: ±0.5%
Component mismatch - Monte Carlo simulation in TINA™-TI

Mismatch from:

- Current limiting resistors R_{px}
- Leakage current on TVS diodes.
- Temperature drift on diodes and resistors.

Monte Carlo Error Analysis PT100 RTD with SMBJ14CA-TSC
Component Mismatch - Monte Carlo Simulation - Cont’d

\[\text{TypError} = \frac{\text{standard deviation}}{\text{Mean}} \cdot 100 = \left(\frac{276.44474u}{-618.861022m} \right) \cdot 100 = \pm 0.045\% \]

For 68.26% of the population

\[\text{MaxError} = 3 \cdot \text{Typical} = 3 \cdot (\pm 0.045\%) = \pm 0.135\% \]

For 99.73% of the population
Error with low leakage current of TVS diode

<table>
<thead>
<tr>
<th>Part number</th>
<th>MFG</th>
<th>Reverse standoff voltage (V_R)</th>
<th>Breakdown voltage (V_{BR})</th>
<th>Clamping voltage max ($V_{C@I_{PP}}$)</th>
<th>Reverse leakage ($I_R@V_R$)</th>
<th>Peak power dissipation W (P_{PP})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Min</td>
<td>Typ</td>
<td>Max at 27°C</td>
</tr>
<tr>
<td>TVS1401</td>
<td>TI</td>
<td>14V</td>
<td>17.1</td>
<td>17.6</td>
<td>22.2</td>
<td>1.1nA</td>
</tr>
<tr>
<td>SMBJ14CA</td>
<td>Bourns</td>
<td>14V</td>
<td>15.6</td>
<td>17.2</td>
<td>23.2</td>
<td>1uA</td>
</tr>
</tbody>
</table>

RTD system error calculated from leakage current:

<table>
<thead>
<tr>
<th>PN</th>
<th>MFG</th>
<th>Error</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVS1401</td>
<td>TI</td>
<td>-0.16%</td>
<td>85°C</td>
</tr>
<tr>
<td>SMBJ14CA</td>
<td>Bourns</td>
<td>-0.625%</td>
<td>25°C</td>
</tr>
</tbody>
</table>

Accuray desired: ±0.5%

Note: The error with TVS1401 at room temp is much smaller.
RTD measurement: accuracy vs. temperature

RTD - 100ohm (0°C)

RTD - 400ohm (850°C)

Conditions: 0.1% 10ppm/°C resistors for Rp and R1, 0.01%, 5ppm/°C resistor for Rref.

10x better than expected!
EOS protection verification on ADC input

Input Signal

Clamped Signal on ADC Input

60Vpp
Agenda

- EOS and fault conditions
 - EOS vs ESD
 - Fault conditions

- Diode and ADC input structure
 - Diode: Type and characteristic
 - ADC input protection structure

- Protection topologies for RTD in PLC AI module
 - Conventional TVS diode
 - TI flat-clamp TVS diode

- IEC testing (IEC61000-4-x) – RTD in PLC AI module
Electromagnetic compatibility (EMC) tests

IEC – International Electrotechnical Commission

• Promotes international cooperation on standardization
• Created test standards for electronics
• IEC 61000-4 standard
 – IEC 61000-4-2: Electrostatic discharge (ESD)
 – IEC 61000-4-3: Radiated electromagnetic interference (EMI)
 – IEC 61000-4-4: Electrical fast transients (EFT)
 – IEC 61000-4-5: Surge
 – IEC 61000-4-6: Conducted electromagnetic interference (EMI)

* Precision Labs - Op Amps: Electrical Overstress
Electrical fast transient (EFT) immunity

IEC61000-4-4
Simulates everyday switching transients caused by interruption of inductive loads, relay bounces, etc.

* Precision Labs - Op Amps: Electrical Overstress
IEC 61000-4-4 threat levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Power supply port</th>
<th>I/O, signal, data & control lines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open-circuit voltage (kV)</td>
<td>Short-circuit current (A)</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>

* Precision Labs - Op Amps: Electrical Overstress
IEC 61000-4 test setup – RTD hardware
IEC61000-4 tested RTD module with TVS1401 EOS protection solution

<table>
<thead>
<tr>
<th>Standard</th>
<th>Type</th>
<th>Level</th>
<th>Outcome</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD Immunity</td>
<td>Contact</td>
<td>±8kV</td>
<td>Passed</td>
<td>Class B</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>±15kV</td>
<td>Passed</td>
<td>Class B</td>
</tr>
<tr>
<td>EFT Immunity</td>
<td>5kHz</td>
<td>±4kV</td>
<td>Passed</td>
<td>Class B</td>
</tr>
<tr>
<td></td>
<td>100kHz</td>
<td>±4kV</td>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>Surge Immunity</td>
<td>Planning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you!

Special thanks to:

Art Kay
Collin Wells
Bob Benjamin
Bryan Lizon
from PADC team

TI Precision Labs – ADCs: Electrical Overstress on Data Converters
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated