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Front-end background
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¢ The term “front end” generally implies that this is a network or coupling circuit that
connects between the last stage of the signal chain (usually an amplifier, gain block or
tuner) and the converter's analog inputs.

4 In order to achieve DS performance the designer must understand the frontend goals.
& There are typically two types of front ends, they are passive or active.
¢ It must also be very linear, well balanced and properly laid out on the printed circuit board

(PCB) in order to preserve the signal content properly.
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Front-end goals & definitions

+ Designing an input network is important because it allows for a complete evaluation over the
converter's entire useable band.

¢ When designing the network there are five parameters to keep in mind:

® Input impedance/VSWR (voltage standing wave ratio) is a unitless parameter that shows how
much ?OWGI‘_IS belng?_ reflected into the load over the bandwidth of interest. Input impedance of
the network is specified value of the load, usually this is 500hms.

® Passband flatness is usually defined as the amount of fluctuation/ripple that can be tolerated
wgmm tt?e specified bandwidth. 1.0dB, +0.5dB, could be more, could be less, could be define
with a slope

® Bandwidth is simply the beginning and ending of the frequencies to be used in the system.
Typically -3dB from some reference point.

® SNR (signal-to-noise ratio) / SFDR (spurious free dynamic range)

® Input drive level is a function of the bandwidth, |nPu_t impedance, and VSWR specifications.
This sets the gain/amplitude required for a full-scale mPUt signal at the converter. It is highly
dependent onthe frontend components chosen — i.e., transformer, amplifier, AAF — and can be
one of the most difficult parameters to achieve.
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Front-end goals & definitions: to match or not to match?

« The word “match” is a term that should be used wisely. Keep in mind an ADC is a voltage sensitive device that typically
has poor VSWR and return loss on the analog input pins.

» Therefore, it is almost impossible to match a ADC front ends that samples at 100s of MSPS, let alone +1GSPS which are
very popular today....the BWs are just too wide.

+ The RF-term “match” should be positioned to mean...for an ADC: optimization yielding the best results given the front-end
design and application.

« Keep in mind, the impedance is only one of the parameters on the list.

Signal
Source

zSource

Max power transfer occurs when,
ZSource = ZLoad (complex Conjugate)
Z=R+jX_Z=R-jX

Signal
Source
zSo urce

Radc || Cadc
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Front-end goals & definitions: one approach to “matching”...

Final match

*Putting boundaries on each of these parameters can help quickly arrive to an expected/optimum frontend design. Id eal m atCh
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Front-end goals & definitions: passband flatness/bandwidth/drive level

Fundamental Amplitude (dBFS)
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Front-end goals & definitions: noise and distortion

dB Fs
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Front-end goals & definitions: dBc vs. dBFS

ADC12DJ00RF_IMO E]
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Front-end types: amplifier vs. transformer/balun

Q: Who will win?
A: It depends!

The KEY is understanding the tradeoffs (i.e. — those goals we discussed in the
previous slides) which are mostly set per the application

An amplifier is active and a transformer is passive.
Like all active devices, amplifiers consume power and transformers do not.
However, both have dynamic effects that need to be dealt with.

o @
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Front-end types: amplifier vs. transformer/balun

« Why use an amplifier?
— Amplifiers preserve the DC content of the signal (in some cases)

— Amplifiers preserve isolation between the previous stage and the ADC...on the
scale of ~40-60dB.

— Amplifiers are easier to work with in terms of gain and are not bandwidth
dependent.

— Amplifiers are less likely to ripple through the passband.
— Can be used to convert single-ended signals to differential (in some cases)
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Front-end types: amplifier vs. transformer/balun

* Why use a transformer?

— Transformers have the advantage of coupling higher IF frequencies without
significant loss (>200MHz).

— For this same reason transformers usually have more bandwidth.

— Transformers don’t require a power supply and thus add no power increment
to the overall signal chain.

— Transformers don’t add noise to the system, they only gain the signal noise, if
using a transformer with gain.

— Transformers provide an inherent AC coupled circuit.
» Baluns are not.
— Can be used to convert single-ended signals to differential (in all cases)
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Front-end types: examples

Signal

Source

ZSo urce Rg Rf Ro

0.1u
Amplifier
0.1u
Rg Rf Ro
Signal
Source

4V y ADC

Radc || Cadc
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Front-end types: summary

Bandwidth

Gain

Passband flatness

Power requirement
Noise

DC vs. AC coupling

Transformer/balun
Amplifier
Amplifier
Transformer/balun
Transformer/balun

Amplifier (DC level preservation)
Transformer/Balun (DC isolation)
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ADC types: ADC internal input architectures

* Unbuffered

Input Impedance set by switched-capacitor design

Lower power

Input Impedance varies over time (sample clock — track and hold)
Charge injection from sample caps reflects back onto input network

» Buffered

Highly linear buffer but requires more power
Generally have lower SNR, buffer = noise

Easier to design input network to interface high impedance buffer since it provides a
fixed input termination resistance

Buffer provides isolation between sample caps and input network resulting in reduced
charge injection transients
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ADC types: unbuffered input architectures

Sampling
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ADS4149: unbuffered ADC input architecture, simplified
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ADC types: unbuffered input architectures, cont. —input Z
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ADC types: unbuffered input architectures, cont. — TD

Single-Ended: AIN+ and AIN-

CHi~ 200mv [E 20007

ch3 200V

“WMS0.0ms (h2 S 1.69V

Charge injection glitches reflect back on the analog
inputs relative to the sampling clock edges in the time domain.

Differential: AIN+ - AIN- OSCOPE

" Unbuffered ADC

-
Radc || Cadc

Ch3 200V

Charge injection glitches subtract or common mode out on the
analog input relative to the sampling clock edges.
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ADC types: unbuffered input architectures, cont. — FD

RESOLUTION BANDWIDTH Marker 1 [T1 ]
-59.54 dBm
250 .000000000 MHz

elta 3 [T1 1]
19.10 4B
500 .000000000 MHz

Spec An

N 19.56 dB |
3 750.000000000 'Hz

Unbuffered ADC

e

Fs = 250MSPS

Start @ Hz

Stop 1 GHz

Spectrum analyzer measurement at the analog inputs showing charge injection in the frequency domain
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ADC types: buffered input architectures

ADS5400

~5.25 nH Bond Wire
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ADS5400: buffered ADC input architecture, simplified
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ADC types: buffered input architectures, cont. —input Z
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ADS54J69: buffered ADC input Zin = Rin || Cin, measured

Wip TEXAS INSTRUMENTS

20



ADC types: ADC input architectures — quick input Z approx.

§ ADC
Xinp =====-- “
Ly —— ‘ -
XN ====e=- Radc ||Cadc

Note that the Rin & Cin values are a reflection of the ADC'’s internal circuitry during tﬁe sampling process in track mode—this is when the actual
sample of the signal is taken. In hold mode, the sampling switch is open and isolates the input front-end circuitry from the internal sampling process
or buffer.

If we derive the simple model and solve for the real and imaginary terms:
Z, =R, Z, = 1/s*C, s = j*2*p*f, f = frequency ()

Z = U(1/Zy+ 1/Z,) = (LR + s*C) = 1/((1 + S*R*C)/R)) = R/(1 + S*R*C) )

Now sub in for s and multiply by the complex conjugate:
Zn = RI(1 + j*2*p*F*R*C) = R/(1 + j*2*p*f*R*C)*((1 — j*2*p*F*R*C)/(1 — j*2*p**R*C)) = (R —*2*p**R?*C)/(1 + (2*p**R*C)?) (3)

Now find the “real” and “imaginary” terms:

Z,, = Real + jflmag = R/(L + (2*p*PR*C)2) + [*(=2*p*FR2*C)/(1 + 2*p*PR*C)2) (4)

Real = R/(1 + (2*p**R*C)?)  Imag = (-2*p*F*R>*C)/(1 + (2*p*PR*C)2) (5) Spreadsheet
calculator upon

This mathematical model has proven to align well with the ac simulation in track mode. request

The main source of error in this simple model is the settling level of the impedance at higher frequencies.
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ADC types: ADC input architectur

ADS54J69: Rin

Radc || Cadc

es — quick input Z approx.

ADS54J69: Cin

Calculated

33333

Calculated
Spreadsheet
e - calculator upon
request
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Anti-aliasing filters (AAF) — things to watch out for...

Too many components in the AAF design can cause mismatches (component
tolerance) in differential filters, therefore giving rise to even order distortions
(HD2) due to imbalance

Not all inductors are created equal, so model or simulate those inductors, so
that, sim = pcb design

« DL Sparameters, use Modelithics models or measure them on VNA
Inductors can sometimes have assembly issues giving rise to poor connections
due to hidden end tabs.

« This can lead to distortion effects because of lop-sided filtering
When designing an AAF or even using a filter to test an ADC, make sure the
stopband region is specified to be flat, broadband noise can still fold back in-
band, see next slide...
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Anti-aliasing filters (AAF) — filter flyback example

T T T T T LI B B j
el ADC BW Response _
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— W
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40
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-80
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Anti-Aliasing Filters (AAF) — Filter Flyback Example
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Anti-aliasing filters (AAF) — filter flyback example
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Anti-aliasing filters (AAF) — design procedure

I
Corn] |

Signal 0.1u
Source

ZSource 0.1u LAAF ' ADC
[} [}
Rrame : -
: Raoc | ICADC
Z=2R: || R S

Canr2 | :
¢ = : Zp = 2Ra + (Zpare | | 2Rrame)
! 1 Zpnr = Rraoc | | (Raoc + 2Rs)

[}
|
]
0.1u |
]
|
]
[}

—>
ZAL

Z Z
ARFS AARL Zaars = 2Rrame | | (Zo + 2R,)

The amplifier should see the correct dc load recommended by the data sheet for optimum performance. 50ohm? 100o0hm?
2000hm?, etc.

The correct amount of series resistance must be used between the amplifier and the load presented by the filter. This is to
prevent undesired peaking in the pass band.

The input to the ADC should be reduced by an external parallel resistor, and the correct series resistance should be used to
isolate the ADC from the filter. This series resistor also reduces peaking.

Wip TEXAS INSTRUMENTS | 27



Anti-aliasing filters (AAF) — design procedure, cont.

The basic design process is as follows:
1) Select the external ADC termination resistor RTADC so that the parallel combination of RTADC and
RADC is between 200 Q and 400 Q. This can help stabilize the filter design.
2) Select RKB based on experience and/or the ADC data sheet recommendations, typically between 5 Q
and 36 Q.
3) Calculate the filter load impedance using: ZAAFL = RTADC || (RADC + 2RKB)
4) Select the amplifier external series resistor RA.

Make RA less than 10 Q if the amplifier differential output impedance is 100 Q to 200 Q.

Make RA between 5 Q and 36 Q if the output impedance of the amplifier is 12 Q or less.
5) Select RTAMP so that the total load seen by the amplifier, ZAL, is optimum for the particular differential
amplifier chosen using the equation: ZAL = 2RA + (ZAAFL || 2RTAMP).
6) Calculate the filter source resistance: ZAAFS = 2RTAMP || (ZO + 2RA).
7) Using a filter design program select the filter’'s source and load impedances, ZAAFS and ZAAFL, type of
filter, bandwidth, and order. Use a bandwidth that is slightly higher than one-half the sampling rate to ensure
flatness in the frequency span between dc and fs/2.
8) The internal ADC capacitance, CADC, should be subtracted from the final shunt capacitor value
generated by the program. The program will give the value CSHUNT?2 for the differential shunt capacitor.
The final common-mode shunt capacitance is CAAF2 = 2(CSHUNT2 - CADC).
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Anti-aliasing filters (AAF) — design procedure, cont.

After running these preliminary calculations, the circuit should be given a quick review for the following
items.

1) The value of CAAF2 should be at least 10 pF so that it is several times larger than CADC. This minimizes
the sensitivity of the filter to variations in CADC.

2) The ratio of ZAAFL to ZAAFS should not be more than about 7 so that the filter is within the limits of most
filter tables and design programs.

3) The value of CAAF1 should be at least 5 pF to minimize sensitivity to parasitic capacitance and
component variations.

4) The inductor, LAAF, should be a reasonable value of at least several nH.

In some cases, the filter design program may provide more than one unique solution, especially with higher
order filters. The solution that uses the most reasonable set of component values should always be chosen.
Also, choose a configuration that ends in a shunt capacitor so that it can be combined with the ADC input
capacitance.
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Transformers & baluns — The basics

Transformer
i’ <£ Balun Balun
Primary Secondary  Primary Secondary OR Primary Secondary
O O =
Turns ratio
n = N1/N2

Defines the ratio of primary voltage to secondary voltage
Impedance ratio
n?=21/22
Seen as the primary reflected from the secondary, the square of the turns ratio
The transformer’s signal gain
20 log (V2/V1) = 10 log (Z2/Z21)
A transformer with a voltage gain of 3 dB would have a 1:2 impedance ratio
This is good since data converters are voltage devices. Voltage gain is noise FREE!

Wip TEXAS INSTRUMENTS

30



Transformers & baluns — models & parasitics

Transformer
Il. . 12

@ @
Primary ﬁ ﬁ Secondary
...as they say: L A

Transformers, more than
meets the eye! ©

C D)

Primary Secondary

C D)
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Transformers & baluns - specifications

Insertion loss Return loss

T ™

Insertion Loss -Sds21 (dB)
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Transformers & baluns — specifications, cont.

Phaselmbal Magimbal
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Transformers & baluns — balancing

Phaselmbal — single vs. double Maglmbal — single vs. double
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Transformers & baluns — balancing

¢Layout is another variable that can wreak havoc on any frontend design.
Improper layout can literally mess up the frontend design causing unexpected performance.
Take the time to keep the layout sound and symmetrical.

¢ Keeping the frontend network symmetrical, forces return currents or ground references to be
common.

& This next slide shows an example of an FFT performance plot, using the symmetrical layout:
This yielded a 2" harmonic of 85dB with a 140MHz IF applied at -1dBFS.

¢ The figure on the bottom shows the performance under these same conditions however, a

non-symmetrical layout was used.
This consistently yields a 2"d harmonic of 79.5dB, more than 5dB lost in performance!
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Transformers & baluns — balancing example

Input .“.
'“

T1 T2 Balanced
. {

L1=1L2

ol 1 [ E!:I ———

- ] [ [ ==

NOTE: Please
follow the
manufacture-
recommended
layout pattern

T1 T2 Unbalanced
2 [ Unbal

o I%I E L1512

-~/ kﬁ

O Output-

O Output+ FFT performance

results

36M 42M 48M 54M  BOM

(©N
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B B & 8 & 2
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& 8 & o
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V33 8

2HD = 5dB worse
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8 8 &
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Transformers & baluns — configurations

Single configurations

Input Output+

O Output-

Input ) Output+

Output-

.‘ ’. -
O O Output-

Input O QO Output+
O . - QO Output-
Output+ =

&

Double configurations
(for improved phase imbalance)

Output+

Output-

Wip TEXAS INSTRUMENTS

37



Transformers & baluns - tradeoffs

20.00
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Amplifier — balancing

* Tolerances in passive components can hurt performance too. This can be seen at the summing nodes in the feedback loop of
an amplifier and multi-pole anti-aliasing filters between amplifiers and converters. Simple mismatches here can be seen in the
math.

* Take for example the differential amplifier analysis below. A common mode voltage mismatch can be developed if the
component tolerances of R1(Rg) and R2(Rf) are not tight.

* Notice that beta (B) is the ratio of these two resistors on either side of the amplifier. Any mismatch here will cause the summing
node Vacm to be slightly different as these resistors drift over the tolerance itself, the temperature variation and over life.

« A difference in Vn & Vp will ultimately cause Vout+ and Vout- to be different on the amplifier’s outputs, giving rise to second
order distortion.

» To combat this, make sure the component tolerances are low (<1%). If accuracy is important, specialized resistor packs can be
procured that offer low ppm drifts and tight tracking tolerances. One of the reasons Tl puts matched resistor gain networks inside

our high-speed amplifiers is for this reason. R2
R1  Vn NOTE: Amplifiers
NN v ' with internal resistors
OUuT-

Vv +
AR veew  are better matched

7
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Amplifier — balancing, cont.

Vin b Vours NOTE: SLVA417 — DC output errors
Vine Vour. in a fully differential amplifier
R4 VOCM
Quantity Symbol General Expression Asymptotic Form
Feedback factors B1.B B, = R3/(R3 + R4), B, = R1/(R1 + R2)
Coefficients b,.b, 1 1
b, = |[1+———| b,=[1-
2CMRR 2CMRR
Equivalent resistances Reqi.Reqz Reqi = R1 || R2, Rgg; = R3 || R4
Applied input V +
common-mode o View = (V'N—TV'N*)
Desired output Vob. Desired 1 1 —
’ 2 - (Bﬁﬁﬂ-m(fﬁ - B2) Vid( 5 B]
I 1 2
B +B2) + ZCMRR(B1 - B2)+ /El
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Frontend VCM - common mode voltage follies in ADCs

« Since converter supply ranges are between VDD and GND and the process nodes
are getting smaller, this leave little room for headroom error.

*The ADC'’s analog inputs have an inherent common mode voltage (VCM) bias that
establishes the “zero code” for the converter’s input signal to swing around.

* Any deviation in the VCM voltage on either analog input, puts the converter’s
performance in serious jeopardy...

*Why? Because the VCM helps establish the input fullscale range of the
converter
*Any deviation allow for clipping or over-ranging to occur early

A quick review of the converter’s analog inputs signal is on the next slide....
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Frontend VCM - analog input signal review

. . . 0 180 360 deg
2Vpp differentially balanced signals AoV AT A
N+ 1.5V INFOIN- +0.5V |
VCM =
1VDC 1.0V VCM 0V 2Vpp
IN- 0.5V -0.5V {+--!
Vx(t) = Vpk * sin(wt) + VCM
= 1*Sln(Wt) @ 90 = +1Vpk 1.0V o v 0 \of v
= 1*sin(wt) @ 270 = -1Vpk ' 90 270 deg

= 2Vpp
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Frontend VCM — buffered vs. unbuffered ADCs

» Unbuffered converters (aka: switched-capacitor type) require an external VCM bias on
the analog inputs, typically the VCM = AVDD/2 or half the analog supply

 Buffered converters typically have self-biased analog inputs and are set by the
converter’s internal buffer, VCM is typically half of the supply, plus a diode drop above
or AVDD/2+0.7V

* DC coupled application notes:
*Make sure the amplifier can meet the VCM requirement of the ADC
*Any VCM mis-match between the amp and ADC or either input differential pin,
even if small, can create performance issues, ie — early clipping
*Adding a buffer amp between the ADC and Amp is preferred
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Frontend VCM — AC vs. DC coupled examples

AC coupled
Rfint
Rg
Input Signal
Rtm ADC
Radc | |Cadc
Rm
Rg Rf =\ _
AVDD Vocm Rfint
T_/V\.../V\__L Connection Not Required
Reml Rem2 = for Buffered ADC =
DC coupled
Rfint
Input Signal
Rtm ADC
Radc | |Cadc
= -
Rm

Rfint

Vocm

cmv
1
o.1uI
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Frontend VCM - “common”

High Speed Data Converter Pro v5.13

File Instrument Options Data Captur

J{, Texas
INSTRUMENTS

ADC3683_2W_13bit Qe[
Capture
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Single Tone ~
Value Unit W
SNR 83.602 dBFs
SFDR "77.934 dBFs
THD 77.445 dBFs
SINAD 76.551 dBFs
ENOB 12.424 Bits
Fund. -1.003 dBFs
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Next Spur 0582 | dBFs
HD2 88296 | dBFs
HD3 77934 | dBFs
HD4 115907 | dBFs
HDS -98.6 dBFs
HDG 11434 | dBFs
NSDMHz 158665 | dBFsiHz
dBFs Hz
M1 128701 | 0.00E+) ¥
Test Parameters
[F] Aute Calculstion of Caharant
Frequencies
Analysis Window (ssmples)
65536 ~
ADC Output Dats Rate
B5M
ADC Input Targst Frequency
2.000503540M

iIssues, baseline

_ B High Speed Data Converter Pro v3.13 *
X | Fde insrument Cptions  Data Capture Optons TestOptoons Help
& Options  Test Options Help — ADC DAC
¢ INSTRUMENTS Lar
L ADC DAC #0302 2w_ta_ O g 292142+ AT
T @ Capture 3 ; . . - - - -
Test Seection 500 10000 20000 25000 30000 45000 50000 E5000 60000 65000 70000
a8+ Tmedoman v comss crameizz_ [ unurap
i e n ] pngagEACwetay Uneap Vietormr waretom
] i i i i i i i i i i i i i \ ) - K Lo 2600007
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 10w wasma | cooes
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m -70.0-] 4
s « >
-80.0- 2
irware Version - 0.2 TSW1400 Board - K1227360 Interface Typa - ADC_FIRMWARE
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i i i i i ] i ] i ] i i i
2.5M 5 7.5M 10M 1251 15M 17.5M 200 22.5M 25M 27.5M 30M 325M

Frequency (Hz)

>

Firmware Version

Waiting for user input

0.2" TSW1400 Board = K1227360

10/7/2020 4:27:49 PW Build - 08/06/2020

Interface Type = ADC_FIRMWARE
Idle *i} TExas INSTRUMENTS

CONNECTED

Baseline

Unbuffered ADC

“Radc | | Cadc

VCM
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Frontend VCM - “common” issues, VCM floating

8 High Speed Data Converter Pro v5.13 — X
File Instrument Options Data Capture Options Test Options Help
ig TEXAS i ADC DAC
INSTRUMENTS . 4
ADC3683_2wW_18bit ¥ &] EIT
Gt 0-y i i 1 1 i 1 i 1 1 1 1 i 1 ol
Test Selection 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000
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< >

B High Speed Dt ConverterPro V.13 - *
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— 10812020 113334 AM | B 020 CONMECTED | e A TEXAS INSTRUMENTS

Firmware Version = "0.2" TSW1400 Board = K1227360

Waiting for user input 10/8/2020 11:33:21 AM | Build - 08/06/2020 CONNECTED

Interface Type = ADC_FIRMWARE
*i TEXAS INSTRUMENTS

Idle
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Frontend VCM - “common” issues, VCM mismatch

8 High Speed Data Converter Pro v5.13 - e
File Instrument Options Data Capture Options  Test Options Help
i3 Texas i ADC i DAC
INSTRUMENTS . 4 L
\ 262143
ADC3683_2w_18bit (v | 2 aF
Capture S 0-y 0 ' ' | v v | | | | | | v g
Test Selection 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 56000 60000 65000 70000
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Frontend VCM - “common” issues, VCM too high or low

@ High Speed Data Converter Pro v5.13 - 4
File Instrument Options Data Capture Options Test Options Help
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Front-end eummary

* Understand and define the front-end design goals up front...

 “Matching” is just a fancy RF word which translates to ADC optimization...

» Understanding the application can zero in on the front-end amp or balun of choice....

« What's your converter type? Buffered vs. unbuffered...

* A good impedance curves vs. frequency can be estimated by the ADC AIN internal R||C...

» Understand the AAF pitfalls and make sure your filters are filtering...

» Check for balancing issues, might need a better balun! Or lower tolerance resistors around the amp...

« Keep common modes common between amps and ADCs...don’t let them fight for VCM equilibrium...

* It’s not really a mystery after all...©
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Front-end references

* SLVA417: DC Output Errors in a Fully-Differential Amplifier, John Miller, Tl.com
* Unraveling the full-scale mysteries of your RF converter’s analog inputs, Rob Reeder, Electronic Products, Nov 2019
* Breaking down accuracy errors in a precision high-speed ADC signal chain, Rob Reeder, Analog Design Journal, Sept 2020

» Achieve CM Convergence Between Amps And ADCs, Rob Reeder, Electronic Design, June 2010

» Wideband A/D Converter Front-End Design Considerations, Rob Reeder, Analog Dialogue, July 2008

» AN-935: Designing an ADC Transformer-Coupled Front End, Rob Reeder, Analog Devices, Inc., May 2007

» Wideband A/D Converter Front-End Design Considerations Il, Rob Reeder, Analog Dialogue, Feb 2007

* Designing High Speed Analog Signal Chains from DC-to-Wideband, Rob Reeder, Analog Devices, Inc.

* CN-0227: High Performance, 16-Bit, 250 MSPS Wideband Receiver with Antialiasing Filter, Rob Reeder, Analog Devices, Inc.
* CN-0238: High Performance, 12-Bit, 500 MSPS Wideband Receiver with Antialiasing Filter, Rob Reeder, Analog Devices, Inc.
* Test high-speed ADCs for analog-input phase imbalance, Rob Reeder, T&M World, April 2011

* MS-2597: How to Design Wideband Front Ends for GSPS Converters, Rob Reeder, Analog Devices, Inc.

» High-Speed ADC Input Impedance: A Measured Versus A Mathematical Approach, Rob Reeder, Electronic Design, April 2011
* AN-742: Frequency Domain Response of Switched Capacitor ADCs, Rob Reeder, Analog Devices, Inc.

* MT-230: Noise Considerations in High Speed Converter Signal Chains, Rob Reeder, Analog Devices, Inc.
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Useful converter equations

Theoretical Signal-to-Noise Ratio (SNR) Table 1
. . FFT Poi 12-BIT 14-BIT 16-BIT
RMS Signal =(FSR / 2)/ sqrt(2), RMS Noise = Qn = ¢/ sqrt(12) 1020:3 o1 s e
SNR (dB) = RMS Signal / RMS Noise = 20*log(2(™V*sqrt(6)) = 6.02*n + 1.76 Jous Loa 116 128
Total Harmonic Distortion (THD) 4096 107 119 131
THD (-dB) = 20*log (sqrt((10¢2\ND HARI20))2 4 (1(Q(-3RD HAR/20))2 4 ({1 ((-6THHAR/20))2 ) 8192 110 122 134
Signal-to-Noise Ratio and Distortion (SINAD) 16384 113 125 137
SINAD (dB) = -20*Iog (sqrt(lO('SNR W/O DIST/10) 4 10(THD/10))) 32768 116 128 140
SNR (dB) 74.0 86.0 98.1

Effective Number of Bits (ENOB)
ENOB (BITS) = (SINAD - 1.76 + 20*log(FSR/ActualFSR))/ 6.02

Theoretical Noise Floor
Noise Floor (-dB) = 6.02*n + 1.76 + 10*log (N/2),

(See Tablel ), Assume coherent sampling and no windowing

Noise Floor (-dB) = 6.02*n + 10*log (3*N/(n+*ENBW)),

Assume noncoherent sampling and no windowing

Noise Spectral Density (NSD)
NSD (dBFS/Hz) = SNR + 10*log (Fs/2), Fs = sampling clock rate

Definitions / terms

Fs = Sampling Rate (Hz)
Fin = Input Signal Frequency (Hz)
FSR = Full Scale Range (V)
n = Number of Bits
g = LSB Size
Qn = Quantization Noise
LSB = Least Significant Bit = FSR/2"
N = Number of FFT Points
ENBW = Equivalent Noise Bandwidth of window
function (Example: Four-Term Blackman-Harris
Window, ENBW = 2)
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