
Unraveling the practical mysteries behind  
RF converter front ends 

Rob Reeder 

Data Converters – High-Speed Converters 



Front-end background 

 The term “front end” generally implies that this is a network or coupling circuit that 
connects between the last stage of the signal chain (usually an amplifier, gain block or 
tuner) and the converter’s analog inputs. 

 

 In order to achieve DS performance the designer must understand the frontend goals. 

 

 There are typically two types of front ends, they are passive or active. 

 

 It must also be very linear, well balanced and properly laid out on the printed circuit board 
(PCB) in order to preserve the signal content properly. 
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Front-end goals & definitions 
 Designing an input network is important because it allows for a complete evaluation over the 

converter’s entire useable band. 

 

 When designing the network there are five parameters to keep in mind:  

 
 Input impedance / VSWR (voltage standing wave ratio) is a unitless parameter that shows how 

much power is being reflected into the load over the bandwidth of interest. Input impedance of 
the network is specified value of the load, usually this is 50ohms. 
 

 Passband flatness is usually defined as the amount of fluctuation/ripple that can be tolerated 
within the specified bandwidth. 1.0dB, +0.5dB, could be more, could be less, could be define 
with a slope 
 

 Bandwidth is simply the beginning and ending of the frequencies to be used in the system. 
Typically -3dB from some reference point. 
 

 SNR (signal-to-noise ratio) / SFDR (spurious free dynamic range) 
 

 Input drive level is a function of the bandwidth, input impedance, and VSWR specifications. 
This sets the gain/amplitude required for a full-scale input signal at the converter. It is highly 
dependent on the frontend components chosen – i.e., transformer, amplifier, AAF – and can be 
one of the most difficult parameters to achieve. 
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Front-end goals & definitions: to match or not to match? 
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Max power transfer occurs when, 

ZSource = ZLoad (complex conjugate) 

Z = R + jX         Z = R - jX 

 

• The word “match” is a term that should be used wisely. Keep in mind an ADC is a voltage sensitive device that typically 

has poor VSWR and return loss on the analog input pins. 

• Therefore, it is almost impossible to match a ADC front ends that samples at 100s of MSPS, let alone +1GSPS which are 

very popular today….the BWs are just too wide. 

• The RF-term “match” should be positioned to mean…for an ADC: optimization yielding the best results given the front-end 

design and application.  

• Keep in mind, the impedance is only one of the parameters on the list. 

 

 



Front-end goals & definitions: one approach to “matching”… 
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Ideal match 

Final match 

*Putting boundaries on each of these parameters can help quickly arrive to an expected/optimum frontend design. 



Front-end goals & definitions: passband flatness/bandwidth/drive level 
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Front-end goals & definitions: noise and distortion 
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HD2: Influenced by balance HD3: Influenced by IC nonlinear effects 

Fundamental frequency 

SNR = 52dB 

Process Gain = 45dB 

FFT process gain (per BIN) = 10*log (M/2) = 45.15dB, M = number of FFT points = 65536 

SFDR 

Noise floor (per Hz) = 10*log (Fs/2) = -97.16dB, Fs = sample rate = 10.4GSPS 

Noise NSD (dBFS/Hz) = SNR + 10*log (Fs/2) = -149.16dB, Fs = sample rate = 10.4GSPS 



Front-end goals & definitions: dBc vs. dBFS 

FULL SCALE (FS) = 0dBFS 

SFDR (dBFS) 

HD3 = SFDR = 51dBc/66dBFS 
SFDR (dBc) Fund = -15dBFS 



Front-end types: amplifier vs. transformer/balun 

• Q: Who will win? 

• A: It depends! 

• The KEY is understanding the tradeoffs (i.e. – those goals we discussed in the 
previous slides) which are mostly set per the application 

• An amplifier is active and a transformer is passive.  

• Like all active devices, amplifiers consume power and transformers do not. 

• However, both have dynamic effects that need to be dealt with. 
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Front-end types: amplifier vs. transformer/balun 

• Why use an amplifier? 

– Amplifiers preserve the DC content of the signal (in some cases) 

– Amplifiers preserve isolation between the previous stage and the ADC…on the 
scale of ~40-60dB. 

– Amplifiers are easier to work with in terms of gain and are not bandwidth 
dependent. 

– Amplifiers are less likely to ripple through the passband. 

– Can be used to convert single-ended signals to differential (in some cases) 

10 

AMP



Front-end types: amplifier vs. transformer/balun 

• Why use a transformer? 

– Transformers have the advantage of coupling higher IF frequencies without 
significant loss (>200MHz). 

– For this same reason transformers usually have more bandwidth. 

– Transformers don’t require a power supply and thus add no power increment 
to the overall signal chain. 

– Transformers don’t add noise to the system, they only gain the signal noise, if 
using a transformer with gain. 

– Transformers provide an inherent AC coupled circuit. 
• Baluns are not. 

– Can be used to convert single-ended signals to differential (in all cases) 

11 

Balun



Front-end types: examples 
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Front-end types: summary 
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Parameter Usual preference 

Bandwidth Transformer/balun 

Gain Amplifier 

Passband flatness Amplifier 

Power requirement Transformer/balun 

Noise Transformer/balun 

DC vs. AC coupling Amplifier (DC level preservation) 

Transformer/Balun (DC isolation) 



ADC types: ADC internal input architectures 

• Unbuffered 

– Input Impedance set by switched-capacitor design 

– Lower power 

– Input Impedance varies over time (sample clock – track and hold) 

– Charge injection from sample caps reflects back onto input network 

 

• Buffered 

– Highly linear buffer but requires more power 

– Generally have lower SNR, buffer = noise 

– Easier to design input network to interface high impedance buffer since it provides a 

fixed input termination resistance 

– Buffer provides isolation between sample caps and input network resulting in reduced 

charge injection transients 
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ADC types: unbuffered input architectures 

15 

ADS4149: unbuffered ADC input architecture, simplified 



ADC types: unbuffered input architectures, cont. – input Z 
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ADS4149: unbuffered ADC input Zin = Rin || Cin 



ADC types: unbuffered input architectures, cont. – TD 
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Charge injection glitches reflect back on the analog  

inputs relative to the sampling clock edges in the time domain. 
Charge injection glitches subtract or common mode out on the 

analog input relative to the sampling clock edges. 

Single-Ended: AIN+ and AIN- Differential: AIN+ - AIN- 
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Radc ||Cadc

OSCOPE
CH1



ADC types: unbuffered input architectures, cont. – FD 
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Spectrum analyzer measurement at the analog inputs showing charge injection in the frequency domain 

Single-Ended: AIN+ or AIN- 

Unbuffered ADC

Radc ||Cadc

Spec An

Fs = 250MSPS 



ADC types: buffered input architectures 
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ADS5400: buffered ADC input architecture, simplified 



ADC types: buffered input architectures, cont. – input Z 
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ADS54J69: buffered ADC input Zin = Rin || Cin, measured 



ADC types: ADC input architectures – quick input Z approx. 
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Note that the Rin & Cin values are a reflection of the ADC’s internal circuitry during the sampling process in track mode—this is when the actual 

sample of the signal is taken. In hold mode, the sampling switch is open and isolates the input front-end circuitry from the internal sampling process 

or buffer. 

 

If we derive the simple model and solve for the real and imaginary terms:  

Z0 = R, Z1 = 1/s*C, s = j*2*p*f, f = frequency      (1) 

 

ZIN = 1/(1/Z0 + 1/Z1) = 1/(1/R + s*C) = 1/((1 + s*R*C)/R)) = R/(1 + s*R*C)    (2) 

 

Now sub in for s and multiply by the complex conjugate: 

ZIN = R/(1 + j*2*p*f*R*C) = R/(1 + j*2*p*f*R*C)*((1 – j*2*p*f*R*C)/(1 – j*2*p*f*R*C)) = (R –j*2*p*f*R2*C)/(1 + (2*p*f*R*C)2) (3) 

 

Now find the “real” and “imaginary” terms: 

ZIN = Real + j*Imag = R/(1 + (2*p*f*R*C)2) + j*(–2*p*f*R2*C)/(1 + 2*p*f*R*C)2)     (4) 

 

Real = R/(1 + (2*p*f*R*C)2) Imag = (–2*p*f*R2*C)/(1 + (2*p*f*R*C)2)     (5) 

 

This mathematical model has proven to align well with the ac simulation in track mode.  

The main source of error in this simple model is the settling level of the impedance at higher frequencies.  
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ADC types: ADC input architectures – quick input Z approx. 
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Anti-aliasing filters (AAF) – things to watch out for… 
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• Too many components in the AAF design can cause mismatches (component 

tolerance) in differential filters, therefore giving rise to even order distortions 

(HD2) due to imbalance 

• Not all inductors are created equal, so model or simulate those inductors, so 

that, sim = pcb design 

• DL Sparameters, use Modelithics models or measure them on VNA 

• Inductors can sometimes have assembly issues giving rise to poor connections 

due to hidden end tabs.  

• This can lead to distortion effects because of lop-sided filtering 

• When designing an AAF or even using a filter to test an ADC, make sure the 

stopband region is specified to be flat, broadband noise can still fold back in-

band, see next slide… 



Anti-aliasing filters (AAF) – filter flyback example 
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Anti-Aliasing Filters (AAF) – Filter Flyback Example 
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Fs = 10GSPS 

Fs/2 = 5GHz = Baseband 

IF = 2GHz 



Anti-aliasing filters (AAF) – filter flyback example 
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Fs = 10GSPS 

Fs/2 = 5GHz = Baseband 

IF = 2GHz 



Anti-aliasing filters (AAF) – design procedure  
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The amplifier should see the correct dc load recommended by the data sheet for optimum performance. 50ohm? 100ohm? 

200ohm?, etc.  

 

The correct amount of series resistance must be used between the amplifier and the load presented by the filter. This is to 

prevent undesired peaking in the pass band.  

 

The input to the ADC should be reduced by an external parallel resistor, and the correct series resistance should be used to 

isolate the ADC from the filter. This series resistor also reduces peaking.  
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Anti-aliasing filters (AAF) – design procedure, cont. 
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The basic design process is as follows:  

1) Select the external ADC termination resistor RTADC so that the parallel combination of RTADC and 

RADC is between 200 Ω and 400 Ω. This can help stabilize the filter design. 

2) Select RKB based on experience and/or the ADC data sheet recommendations, typically between 5 Ω 

and 36 Ω.  

3) Calculate the filter load impedance using: ZAAFL = RTADC || (RADC + 2RKB)  

4) Select the amplifier external series resistor RA.  

 Make RA less than 10 Ω if the amplifier differential output impedance is 100 Ω to 200 Ω.  

 Make RA between 5 Ω and 36 Ω if the output impedance of the amplifier is 12 Ω or less.  

5) Select RTAMP so that the total load seen by the amplifier, ZAL, is optimum for the particular differential 

amplifier chosen using the equation: ZAL = 2RA + (ZAAFL || 2RTAMP).  

6) Calculate the filter source resistance: ZAAFS = 2RTAMP || (ZO + 2RA).  

7) Using a filter design program select the filter’s source and load impedances, ZAAFS and ZAAFL, type of 

filter, bandwidth, and order. Use a bandwidth that is slightly higher than one-half the sampling rate to ensure 

flatness in the frequency span between dc and fs/2.  

8) The internal ADC capacitance, CADC, should be subtracted from the final shunt capacitor value 

generated by the program. The program will give the value CSHUNT2 for the differential shunt capacitor. 

The final common-mode shunt capacitance is CAAF2 = 2(CSHUNT2 − CADC).  

 

 



Anti-aliasing filters (AAF) – design procedure, cont. 
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After running these preliminary calculations, the circuit should be given a quick review for the following 

items.  

 

1) The value of CAAF2 should be at least 10 pF so that it is several times larger than CADC. This minimizes 

the sensitivity of the filter to variations in CADC.  

2) The ratio of ZAAFL to ZAAFS should not be more than about 7 so that the filter is within the limits of most 

filter tables and design programs.  

3) The value of CAAF1 should be at least 5 pF to minimize sensitivity to parasitic capacitance and 

component variations.  

4) The inductor, LAAF, should be a reasonable value of at least several nH.  

 

In some cases, the filter design program may provide more than one unique solution, especially with higher 

order filters. The solution that uses the most reasonable set of component values should always be chosen. 

Also, choose a configuration that ends in a shunt capacitor so that it can be combined with the ADC input 

capacitance.  

 



Transformers & baluns – The basics 
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Turns ratio 

n = N1/N2 

Defines the ratio of primary voltage to secondary voltage 

Impedance ratio 

n2 = Z1/Z2  

Seen as the primary reflected from the secondary, the square of the turns ratio 

The transformer’s signal gain 

20 log (V2/V1) = 10 log (Z2/Z1) 

A transformer with a voltage gain of 3 dB would have a 1:2 impedance ratio 

This is good since data converters are voltage devices.  Voltage gain is noise FREE! 
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Transformers & baluns – models & parasitics 
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…as they say:  
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Transformers & baluns - specifications 
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Insertion loss Return loss 



Transformers & baluns – specifications, cont. 
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MagImbal PhaseImbal 



Transformers & baluns – balancing 
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MagImbal – single vs. double PhaseImbal – single vs. double 



Transformers & baluns – balancing 
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Layout is another variable that can wreak havoc on any frontend design. 

Improper layout can literally mess up the frontend design causing unexpected performance. 

Take the time to keep the layout sound and symmetrical.  

 

Keeping the frontend network symmetrical, forces return currents or ground references to be 

common.  

 

This next slide shows an example of an FFT performance plot, using the symmetrical layout:      

 This yielded a 2nd harmonic of 85dB with a 140MHz IF applied at -1dBFS.  

 

The figure on the bottom shows the performance under these same conditions however, a 

non-symmetrical layout was used.  

This consistently yields a 2nd harmonic of 79.5dB, more than 5dB lost in performance! 
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2HD = 5dB better 
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Transformers & baluns – configurations 
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Transformers & baluns - tradeoffs 
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Bottom line: 

Find a better balun 

or use two baluns to 

help improve the 

HD2 specification 



Amplifier – balancing 
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• Tolerances in passive components can hurt performance too. This can be seen at the summing nodes in the feedback loop of 

an amplifier and multi-pole anti-aliasing filters between amplifiers and converters. Simple mismatches here can be seen in the 

math. 

 

• Take for example the differential amplifier analysis below. A common mode voltage mismatch can be developed if the 

component tolerances of R1(Rg) and R2(Rf) are not tight. 

  

• Notice that beta (b) is the ratio of these two resistors on either side of the amplifier. Any mismatch here will cause the summing 

node Vacm to be slightly different as these resistors drift over the tolerance itself, the temperature variation and over life. 

  

• A difference in Vn & Vp will ultimately cause Vout+ and Vout- to be different on the amplifier’s outputs, giving rise to second 

order distortion.   

 

• To combat this, make sure the component tolerances are low (<1%). If accuracy is important, specialized resistor packs can be 

procured that offer low ppm drifts and tight tracking tolerances. One of the reasons TI puts matched resistor gain networks inside 

our high-speed amplifiers is for this reason.  

NOTE: Amplifiers 

with internal resistors 

are better matched 



Amplifier – balancing, cont. 
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NOTE: SLVA417 – DC output errors  

in a fully differential amplifier 



Frontend VCM - common mode voltage follies in ADCs 
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• Since converter supply ranges are between VDD and GND and the process nodes 

are getting smaller, this leave little room for headroom error. 

 

•The ADC’s analog inputs have an inherent common mode voltage (VCM) bias that 

establishes the “zero code” for the converter’s input signal to swing around. 

 

• Any deviation in the VCM voltage on either analog input, puts the converter’s 

performance in serious jeopardy… 

•Why? Because the VCM helps establish the input fullscale range of the 

converter 

•Any deviation allow for clipping or over-ranging to occur early  

 

•A quick review of the converter’s analog inputs signal is on the next slide…. 



 Frontend VCM – analog input signal review 
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Frontend VCM –  buffered vs. unbuffered ADCs 
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• Unbuffered converters (aka: switched-capacitor type) require an external VCM bias on 

the analog inputs, typically the VCM = AVDD/2 or half the analog supply 

 

• Buffered converters typically have self-biased analog inputs and are set by the 

converter’s internal buffer, VCM is typically half of  the supply, plus a diode drop above 

or AVDD/2+0.7V 

 

• DC coupled application notes: 

•Make sure the amplifier can meet the VCM requirement of the ADC 

•Any VCM mis-match between the amp and ADC or either input differential pin,       

 even if small, can create performance issues, ie – early clipping 

•Adding a buffer amp between the ADC and Amp is preferred 
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Frontend VCM – AC vs. DC coupled examples 
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Frontend VCM – “common” issues, baseline 
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Frontend VCM – “common” issues, VCM floating 
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Frontend VCM – “common” issues, VCM mismatch 
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Frontend VCM – “common” issues, VCM too high or low 
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Front-end eummary 
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• Understand and define the front-end design goals up front… 

 

• “Matching” is just a fancy RF word which translates to ADC optimization… 

 

• Understanding the application can zero in on the front-end amp or balun of choice…. 

 

• What’s your converter type? Buffered vs. unbuffered… 

 

• A good impedance curves vs. frequency can be estimated by the ADC AIN internal R||C… 

 

• Understand the AAF pitfalls and make sure your filters are filtering… 

 

• Check for balancing issues, might need a better balun! Or lower tolerance resistors around the amp… 

 

• Keep common modes common between amps and ADCs…don’t let them fight for VCM equilibrium… 

 

• It’s not really a mystery after all… 



Thank you 
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Useful converter equations 
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Theoretical Signal-to-Noise Ratio (SNR) 

RMS Signal =(FSR / 2)/ sqrt(2), RMS Noise = Qn = q/ sqrt(12) 

SNR (dB) = RMS Signal / RMS Noise = 20*log(2(n-1)*sqrt(6)) = 6.02*n + 1.76 

Signal-to-Noise Ratio and Distortion (SINAD) 

SINAD (dB) = -20*log (sqrt(10(-SNR W/O DIST/10) + 10(THD/10))) 

Total Harmonic Distortion (THD) 

THD (-dB) = 20*log (sqrt((10(-2ND HAR/20))2 + (10(-3RD HAR/20))2 +… (10(-6TH HAR/20))2 )  

Effective Number of Bits (ENOB) 

ENOB (BITS) = (SINAD – 1.76 + 20*log(FSR/ActualFSR))/ 6.02 

Theoretical Noise Floor 

Noise Floor (-dB) = 6.02*n + 1.76 + 10*log (N/2),  
(See Table1 ), Assume coherent sampling and no windowing 

 Noise Floor (-dB) = 6.02*n + 10*log (3*N/(p*ENBW)),  
Assume noncoherent sampling and no windowing 

 

FFT Points 12-BIT 14-BIT 16-BIT 

1024 101 113 125 

2048 104 116 128 

4096 107 119 131 

8192 110 122 134 

16384 113 125 137 

32768 116 128 140 

SNR (dB) 74.0 86.0 98.1 

Definitions / terms 

Fs = Sampling Rate (Hz) 

Fin = Input Signal Frequency (Hz) 

FSR = Full Scale Range (V) 

n = Number of Bits 

q = LSB Size 

Qn = Quantization Noise 

LSB = Least Significant Bit = FSR/2n 

N = Number of FFT Points 

ENBW = Equivalent Noise Bandwidth of window 

function (Example: Four-Term Blackman-Harris 

Window, ENBW = 2) 

 

Noise Spectral Density (NSD) 

NSD (dBFS/Hz) = SNR + 10*log (Fs/2), Fs = sampling clock rate 

Table 1 
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