Welcome! Texas Instruments New Product Update

- This webinar will be recorded and available at <u>www.ti.com/npu</u>
- Phone lines will be muted
- Please post questions in the chat or contact your sales person or field applications engineer

New Product Update: LED Illumination Drivers

Kenneth Du 2021.01.07

2

Agenda

- LED functions quick overview
- TI LED illumination drivers roadmap update
- Latest LED illumination driver TPS92200 introduction
 - Ultra-high efficiency
 - Flexible dimming method
 - Full protections
 - Applications

Agenda

- LED functions quick overview
- TI LED illumination drivers roadmap update
- Latest LED illumination driver TPS92200 introduction
 - Ultra-high efficiency
 - Flexible dimming method
 - Full protections
 - Applications

LED functions quick overview

LED indication

LED animation

LED illumination

TI POWER

LED backlight

Common LED Functions and LED Driver Design Considerations

Visit www.ti.com/LED

RGB LED drivers

Add animation or indication functionality to your polychromatic LED arrays with our RGB LED drivers. Our versatile, multichannel solutions are compatibile for a variety of common interfaces.

LED display drivers

Control individual LED strings with high integration and low-power consumption. Find a multi-channel LED driver for large or narrow pixel pitches, or a matrix solution for mini and micro-LED digital display signage applications.

Learn more

Learn more

Backlight LED drivers

View our large portfolio of step-up (boost) LED drivers that utilize precise dimming control for LCD panel backlighting. Light a wide range of screen sizes with maximum VIN options from 1.8 V to 45 V.

Illumination LED drivers

Enable illumination with infrared, multicolor or UV lights in your industrial or personal electronics designs with our step-down (buck) or multi-topology constant-current regulators.

Learn more

5

Agenda

- LED functions quick overview
- TI LED illumination drivers roadmap update
- Latest LED illumination driver TPS92200 introduction
 - Ultra-high efficiency
 - Flexible dimming method
 - Full protections
 - Applications

Buck/SEPIC LED illumination driver roadmap

lout

 Status

 Production
 Definition

 Development
 Creative Backlog

 0.5A, PWM Dimming 0.5A, PWM Dimming COT Control Buck Converter VSSOP-8, SO Power PAD-8 	 1A, PWM & Analog Dimming Current mode with adj fixed SW frequency Buck Converter SO Power PAD-8, WSON-8 	 I.S 42 V & 4.5 60V (IIV) Vin 1.5A, PWM & Analog Dimming Current mode with adj fixed SW frequency MSOP-10 	 PWM Dimming & Analog Dimming Fault Latch(00), Fault Hiccup(01) SOT23-6
LM3404/HV • 6-42V & 6-75V (HV) Vin • 1A, PWM Dimming • COT Control Buck Converter	 TPS92640/1 7-85V, Sync Buck Controller PWM Dimming & Analog Dimming, adj SW frequency Shunt FET Dimming Gate Driver (TPS92641) HTSSOP-14/16 TPS92510 3.5-60V Vin, Buck Converter 1.5A, PWM Dimming Current mode with adj 	 TPS92512/HV 4.5-42V & 4.5-60V (HV) Vin 2.5A, PWM & Analog Dimming Current mode with adj fixed SW frequency MSOP-10 	New! TPS92200D1/2 • 4-30V / 1.5A Sync Buck • PWM & Analog Dimming (D1) • Accurate Analog Dimming (D2)

Boost LED illumination driver roadmap

🜵 Texas Instruments

Agenda

- LED functions quick overview
- TI LED illumination drivers roadmap update
- Latest LED illumination driver TPS92200 introduction
 - Ultra-high efficiency
 - Flexible dimming method
 - Full protections
 - Applications

TPS92200 4-30V/1.5-A Synchronous buck LED driver with flexible dimming options

Features

- 4V to 30V Wide Input Range
- Integrated 150m $\Omega/90m\Omega$ MOSFETs for 1.5A Continuous Output Current
- 1MHz Switching Frequency
- Ultra-Low Shutdown Current: 1-µA
- Ultra-Low Output Discharge Current from Load: 1-µA (Charger application)
- Maximum Duty Cycle up to 99%
- High efficiency up to 97% (Vin = 12V, 6 IR LEDs in series at 1.5A)
- Flexible Dimming Options for different applications:
 - TPS92200D1: PWM Dimming with Digital Input and Analog Dimming with Analog Input
 - > TPS92200D2: Analog Dimming with Digital Input
- Ultra-low and Accurate FB Voltage: 99mV/+-3mV
- Peak Current mode with Internal Compensation

Full Protections:

- LED Open
- LED+ Short to GND
- LED+ / LED- Short Circuitry
- > Sense Resistor Open / Short Protection
- Thermal Shutdown
- SOT23-6 (2.8 x 2.9 mm), VQFN-HR-6 (1.5 x 2 mm)

Applications

- Video Surveillance IR LED Driver
- Facial Recognition IR LED Driver
- Stage Lighting LED Driver
- General Industrial and Commercial Illumination
- AA or Li-ion Battery Charger

Benefits

- Ultra-low FB voltage for higher Efficiency
- Ultra-low Shutdown Current (<1uA)
- Flexible Dimming Options for Various Applications
- · Ultra-low Output Discharge Current help to Save An Output Diode for Charger Application
- · Small and Few external component count to optimize board space and cost

Device	Dimming Type	Dimming Input Type	
TPS92200D1	PWM Dimming	Digital Signal (frequency: 100Hz – 2kHz)	
	Analog Dimming	Analog Voltage (amplitude: 0.65-1.2V)	
TPS92200D2	Analog Dimming	Digital Signal (frequency: 20kHz – 200kHz)	

Ultra-high efficiency

- Synchronous topology
- Low Rdson
- 99mV FB voltage

Flexible dimming method - TPS92200D1

Flexible dimming method - TPS92200D2

Analog dimming with PWM input

Full protections

Fault Type	Criterion	Behavior
LED Open Load	VFB close to 0mV	The device keeps maximum turn-on duty cycle
LED+ and LED- Short Circuit	VFB > VFB_OVP	When VFB > VFB_OVP, the device keeps operating at minimum on time, and starts the auto-retry timer
LED+ Short to GND	High-side or low-side NMOS current limit triggered	When the high-side or low-side NMOS current limit is triggered, the device starts the auto-retry timer
Sense Resistor Open Load	VFB > VFB_OVP	When VFB > VFB_OVP, the device keeps operating at minimum on time, and starts the auto-retry timer
Sense Resistor Short Circuit to GND	High-side or low-side NMOS current limit triggered	When the high-side or low-side NMOS current limit is triggered, the device starts the auto-retry timer
Thermal Shutdown	TJ > TTSD	The device is disabled when TJ > TTSD, the device is re-activate when TJ falls below the hysteresis level

Ultra-low shutdown and discharge current

Parameter	Description	Value	Benefit
ISD	When DIM = Low, the current flow into IN pin	1uA	Reduce system power consumption
IDISC	When DIM or IN = Low, the current flow into SW & BOOT pin	1uA	When used as a charger and load is battery, increase battery endurance time

Application I: as IR LED/White driver

Video surveillance IR/White LED driver

Stage lighting LED driver

Facial recognition IR LED driver

General industrial and commercial illumination

Application II: as battery charger

	Pre-charge	Full-charge	Constant voltage
Li-ion	YES with TPS92200 CC loop	YES with TPS92200 CC loop	YES with MCU CV loop
Ni-MH (2 cells)	Optional	YES with TPS92200 CC loop	No

System block diagrams ——CC/CV Battery charger solution

Advantage: Pure hardware CC/CV loop, low cost; Disadvantage: No Pre-charge mode

System block diagrams ——PC/CC/CV Battery charger solution

Advantage: Pure hardware PC/CC/CV loop, customized pre-charge current; Disadvantage: Need two channel amplifier + one channel comparator;

System block diagrams ——PC/CC/CV Battery charger solution3

Advantage: high precision and customized parameters; Disadvantage: Need one channel amplifier + MCU(ADC)

TIDA-050042

1-6s, up to 1.5A Li-ion Battery Charger Solution with Switching Constant Current Source

Features

- Support from 4-V to 30-V input voltage range(1 6s Li-ion Battery)
- Up to 1.5A maximum charging current .
- Pure hardware configurable 3-stage charging with TPS92200 •
 - Pre-Charge, CC & CV
 - CC & CV
- Small solution Size: 25mm x 30mm

Target Applications

Vacuum Robot

Electric shaver

Cordless vacuum cleaner

- Small appliances
- Power Tools

Tools & Resources

- Design Guide
- Design Files
- Simulation Files

- Device Datasheets:
 - TPS92200 - TLV9002
 - TLV7021

Benefits

- Size and Cost Optimized
 - Small PCB size, higher power density with 2-Layer layout
 - 1MHz switching frequency enables lower value and smaller size of inductor and capacitors
 - TPS92200(\$0.18@1Ku) TLV9002(\$0.16@1Ku) TLV7021(\$0.16@1Ku)
- Pure analog control topology
 - Implement pre-charge with simple analog circuit
 - Enables smooth and stable CC -> CV transition with internal compensation and simple control logic
- High Charge Accuracy(<±3%) enables maximum usable battery capacity
- High Charge Current 1.5-A enables fast charge

Visit <u>www.ti.com/npu</u>

For more information on the New Product Update series, calendar and archived recordings

22

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated