

HIGH VOLTAGE SEMINAR MAMADOU DIALLO HIGH POWER GATE DRIVERS

TROUBLESHOOTING GATE DRIVE CIRCUITS IN AUTOMOTIVE AND INDUSTRIAL APPLICATIONS

Acknowledgement

Jeff Mueller

Richard Herring

Derek Payne

Mateo Begue

Ritesh Oza

Wei Zhang

Don Dapkus

What will I get out of this session?

Purpose:

- Gate driver Fundamentals
- Common issues, solutions and design practices on:
 - 1. Bias/bootstrap supply
 - 2. Open functional pins or connect with Hi-Z
 - 3. Parasitics
 - 4. dv/dt noise
 - 5. Variance

Part numbers mentioned:

- UCC27282
- UCC27710
- UCC27284-Q1
- UCC27201
- UCC27524

Relevant applications:

- Motor drive
- Switch mode power supplies
- Solar inverters

Where are gate drivers used?

Fundamental Component in Power Electronics

Power Switches control flow of current in power electronic circuits by operating in 2 states (ON/OFF)

GATE (G) terminal controls ON/OFF status of switch

Si \rightarrow GaN and SiC

To turn ON: Apply a positive voltage, VGS > Threshold level To turn OFF: VGS < Threshold level

5

#1 What is wrong with VCC?

Causes

- Low capacitance on V_{CC}
- Capacitor placement/layout
- Biased capacitance (C vs. V)
- Temperature (C vs. temp)
- Capacitance aging
- Consequences
- × Driver malfunction
- × UVLO tripping
- × EMI noise

#1 VCC bias capacitor considerations

- Increase VCC bias capacitor
- Rule of Thumb: $C_{VCC} \ge 10 \times C_{boot}$
- Place the VCC bias capacitor very close to the VCC pin of the driver

Sizing VCC bypass capacitor

 $\Box \Delta V_{HB} = V_{CC} - V_{DF} - V_{HBL}$

$$\Box C_{BOOT} = Q_{Total} / \Delta V_{HB}$$

 \Box C_{Bias} >> C_{Boot}

□ High freq. filter capacitor

What is wrong with HO waveform?

Bootstrapleakage

#2 bootstrap capacitor considerations

- Increase Cboot
- Increase Rgs
- Place the boot capacitor very close to the HB-HS pins of the driver

Sizing bootstrap capacitor

- $C_{Boot} = Q_{Total} / \Delta V_{HB}$
- $Q_{Total} = Q_G + (I_{HBS} \times D_{Max}/F_{SW}) + (I_{HB}/F_{sw})$

#2 What is wrong with switch node waveform? Bias supply

Design guidelines

- Reduce R_{Boot}
- Minimum top switch ON time

× HS waveform – inconsistent HS signal

× Very short LO duty cycle – partially charged C_{Boot}

#3 Is this waveform normal?

Design guidelines

- Increase boot resistor
- Increase boot capacitor

× Fast HS slew rate \rightarrow noise and oscillation on HB

#4 Why is there NO gate driver output?

- High side boot supply is ready
- Driver IC is enabled
- PWM input HI&LI are ready
- The low side LO is good

#4 Why is there NO gate driver output?

- High side boot supply is ready
- Driver IC is enabled
- PWM input HI&LI are ready
- The low side LO is good
- X There is NO high side output
- □ <u>UVLO delay</u>: 5µs to 100µs depends on the driver

Bias supply

Design guidelines

- Turn-on low side to precharge boot capacitor
- Synchronize HI and LI

Synchronization LI and HI after bias supplies are both ready

#5 What is wrong with the waveform?

Design guidelines:

- Input filter to improve overall system performance
- Decrease loop inductance in PCB layout

Pin w/Hi-Z

#6 What causes glitches in PSFB at full load? Pin w/ Hi-Z

➤ Voltage waveform "VAB" has intermittent failure and glitches

#6 What causes glitches in PSFB at full load?

X Output A is being delayed by 1.2µs (which should be <50ns)

2501

1M p

Ζ 4.00μs

∎**→▼0.00000** s

Pin w/Hi-Z

Root cause

Design guidelines

- DT pin is left open and noise is coupled into the driver
- For dead time setting, bypass with ≥2.2nF close to DT pin DT(in ns) = 10×RDT (in kΩ)
- For overlapping or no DT, tie DT pin to VCCI

Do NOT leave functional pins open

Parasitics in gate driver sub-system

Parasitics

#7 What Is wrong when HO turns off?

- High voltage and IGBT applications
- Series gate and gate to source resistor
- Driver with Miller clamp

- High dV/dt and dl/dt causes D-G capacitor to charge and develop voltage
- × Voltage may be higher than $V_{gs(th)}$

Parasitics

🜵 Texas Instruments

#8 Why is the gate drive waveform oscillating?

- Slow down body diode reverse recovery
- FET with robust and low Q_{RR} body diode
- Soft switching ZVS

Parasitics

Minimize high current gate drive loops

Gate driver outputs carry high currents and therefore minimize the output loop
If totem pole buffer is used, then place it as close to the power MOSFET as possible

- Bypass capacitor needs to be as close to gate driver IC as possible
- V_{CC}, V_{DD}, input filter, DT, EN, DIS
- Value and package of the capacitor do matter

#9 What is wrong with my HO output?

• Case 1: output is shorter than input

× HO 80ns glitches at HI=high

- Double pulse on HI
- LI pulled down w/ $4.7k\Omega$

dv/dt

#9 What is wrong with my HO output?

• Case 2: output is longer than input

× HO stretched for 4µs more

- Double pulse on HI
- LI pulled down w/ $4.7k\Omega$

dv/dt

#9 What is wrong with my output?

Case 3: output on and off intermittent while HI is ON

× HO turns off intermittent

- Double pulse on HI
- LI pulled down w/ $4.7k\Omega$

dv/dt

The switch node CMTI is >200V/ns

dv/dt

- Slow down reverse recovery
- FET w/low Q_{RR} B-diode
- Soft switching ZVS

O

Layout: ground plane and switch node (SW) dv/dt

- Minimize or avoid overlapping switch node plane and ground plane
- Could create issues when switching frequencies are high
- As HS slew rates are high, overlap of ground plane and switch node plane might inject noise in other circuits on the board

#10 Would this waveform create any system problems?

Variance

×HO/LO might cross conduct

- × Shoot-through current
- × Excessive power dissipation
- × False overcurrent tripping

- Account for propagation delay and delay matching variation across temperature/voltage
- Account for drive strength variation across temperature/bias voltage

Summary

- Various issues encountered while designing switch-mode power supplies were discussed from the gate driver IC point of view and their resolutions were clearly identified
- Proper bypassing of the gate driver IC (as with many other ICs) is extremely critical to its performance
- When gate driver IC is used in half-bridge configuration, switch node slew rate plays an important role in the performance of the gate driver IC
- PCB layout plays important role in satisfactory performance of the gate driver IC and thus the whole system

SLYP754

©2021 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated