Using integrated GaN FETs to achieve high power density and efficiency in power factor correction (PFC) and high-voltage DC/DC converters.
Outline

• TI GaN: Engineered for high-frequency operation
• Applications driving for higher efficiency and density
 – Information technology power supplies
 – Automotive onboard chargers
• TI GaN for power factor correction (PFC) design
• TI GaN for DC/DC converter design
• TI GaN reference design and tools
GaN device: key advantages

Low C_G, Q_G gate capacitance/charge (1 nC-Ω vs Si 4 nC-Ω)
✓ faster turn-on and turn-off, higher switching speed
✓ reduced gate drive losses

Low C_{OSS}, Q_{OSS} output capacitance/charge (5 nC-Ω vs Si 25 nC-Ω)
✓ faster switching, high switching frequencies
✓ reduced switching losses

Low R_{DSON} (5 mΩ-cm² vs Si >10 mΩ-cm²)
✓ lower conduction losses

Zero Q_{RR} No ‘body diode’
✓ No reverse recovery losses
✓ Reduces ringing on switch node and EMI
Low switching loss in TI GaN

- GaN offers best performance

Hard switching Figure-of-Merit
(turn-on and turn-off losses)

Soft-switching Figure-of-Merit
(turn-off losses, ZVS at turn-on)
High-frequency design challenges with discretes

- **Common Source Inductance (CSI)**
 - Slows V_{DS} transitions.
 - Higher overlap losses (Hard-Switching).
 - Longer dead-times (Soft-Switching).

- **Gate Loop Inductance**
 - Limit peak gate current: slow down gate drive and induce high overlap losses in hard switching.
 - Gate over-stress reliability risk.
 - Miller shoot-through risk.

- **White paper:** Optimizing GaN performance with an integrated driver
TI GaN engineered for high-frequency

- SMD (QFN) multi-chip module package offers **lowest parasitic inductance** for high frequency operation.

<table>
<thead>
<tr>
<th>Standard Power Package</th>
<th>Kelvin Source Power Package</th>
<th>TI: GaN FET + Gate driver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Source: 2nH -10nH</td>
<td>Common Source: <1nH</td>
<td>Common Source: <1nH</td>
</tr>
<tr>
<td>Gate loop: 5nH – 20nH</td>
<td>Gate loop: 5nH – 20nH</td>
<td>Gate loop: 1nH – 4nH</td>
</tr>
</tbody>
</table>
TI GaN: Integrated for high frequency and robustness

Integrated GaN FET, gate driver, protection, reporting
- <1 nH common source inductance, <4 nH gate loop inductance
- On-chip V/I/T sensing, protections & reporting
- Advanced power management features

Compact SMD package
- Low parasitic lead inductance
- Enhanced thermal management with top/bottom-side cooling

Design simplicity & confidence
- Demonstrated \(\frac{dV}{ds} / dt \) capability of 150 V/ns
- \(\frac{dV}{ds} / dt \) adjustable between 30-150 V/ns for EMI vs efficiency
- Compact PCB footprint
TI GaN integration simplifies BOM and cost

TI GaN

- FETs + Driver + Protection
- Only single 12-V unregulated supply needed
- Min area: 24x29mm

Discrete GaN

- Gate drive circuitry
- External power supply needed
- External protection needed
- Min area: 50x40mm
TI GaN FET portfolio

Gen-I

2x the power

- RDS: 50/70/150 mΩ
- Size: 8mm x 8mm
- Cooling: Bottom
- $R_{\text{j-s}}$: <5.5 C/W
- Power Loop Inductance: <2.3 nH

https://www.ti.com/product/LMG3411R050

Gen-II Industrial

- RDS: 30/50 mΩ
- Size: 12mm x 12mm
- Cooling: Bottom
- $R_{\text{j-s}}$: <2.6 C/W
- Power Loop Inductance: <2.8 nH

https://www.ti.com/product/LMG3422R030

Gen II Automotive

- RDS: 30 mΩ
- Size: 12mm x 12mm
- Cooling: Top
- $R_{\text{j-s}}$: <2.3 C/W
- Power Loop Inductance: <2.1 nH

https://www.ti.com/product/LMG3522R030-Q1

https://www.ti.com/product/LMG3422R030

https://www.ti.com/product/LMG3522R030-Q1
LMG342x/352x: TI Gen-II GaN FETs

- >150 V/ns Drain-Source Slew rate capability; adjustable from 30 V/ns to 150 V/ns
- Integrated 2.2-MHz gate driver with industry lowest CSI
- Overcurrent protection Cycle-by-Cycle
- Short circuit protection Latched
- 5-V regulated output for powering digital isolator
- GaN FET temperature digital PWM reporting for active power management
- V/VT fault reporting
- LMG342x: 600-V GaN FET
- LMG352x: 650-V GaN FET
- LMG3425/3525 Ideal diode mode reduces reverse conduction losses
- Wettable flanks
- NEW
- NEW
- NEW

https://www.ti.com/product/LMG3422R030
https://www.ti.com/product/LMG3522R030-Q1
Outline

• TI GaN: Engineered for high-frequency operation
• Applications driving for higher efficiency and density
 – Information technology (IT) AC/DC power supplies
 – Automotive onboard chargers
• TI GaN for power factor correction (PFC) design
• TI GaN for DC/DC converter design
• TI GaN reference design and tools
Multi-kW applications demanding high efficiency & density

AC/DC power supply for datacenter, telecom, medical and industrial (up to 10 kW)

Automotive HEV/EV powertrain
AC/DC trends in datacenter and telecom

Energy Efficiency
Beyond 80+ Titanium @ 50% & 100% load

<table>
<thead>
<tr>
<th>80 PLUS Certification</th>
<th>115V Internal Non-Redundant</th>
<th>230V Internal Redundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Rated Load</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>80 PLUS</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>80 PLUS Bronze</td>
<td>82%</td>
<td>85%</td>
</tr>
<tr>
<td>80 PLUS Silver</td>
<td>85%</td>
<td>88%</td>
</tr>
<tr>
<td>80 PLUS Gold</td>
<td>87%</td>
<td>90%</td>
</tr>
<tr>
<td>80 PLUS Platinum</td>
<td>90%</td>
<td>92%</td>
</tr>
<tr>
<td>80 PLUS Titanium</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- **PSU efficiency spec 2021:**
 - ITE-level PSU >96.5%
 - Rack-level PSU peak efficiency > 97.5% @ 230Vac

High power & Power density
3kW/4kW/5kW & >100W/in³

ITE-level PSU going up to 3kW+ in same FF

Rack-level PSU going up to 4kW+ in same form factor
- Power density: >100W/in³ by Y23
Automotive trends in onboard charger & HV DC/DC

<table>
<thead>
<tr>
<th>High power density</th>
<th>Lower cost</th>
<th>Faster to market</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-2 kW/L ➔ 3-5 kW/L)</td>
<td>Smaller and cheaper magnetic components</td>
<td>Solutions that easily scale from 3.3-22 kW and address both 400-V and 800-V battery systems, while delivering on performance metrics.</td>
<td>Component level and application level reliability</td>
</tr>
<tr>
<td>Requires new topologies and design approaches:</td>
<td>Integrated magnetics (eg, inductor + transformer)</td>
<td></td>
<td>Confidence for adopting new technologies or design approaches</td>
</tr>
<tr>
<td>• PFC: Totem-pole topology to achieve 2x density improvement</td>
<td>Lower BoM with highly integrated devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• DC/DC: >10x increase in switching frequency to achieve significant reduction in magnetics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outline

• TI GaN: engineered for high-frequency operation
• Applications driving for higher efficiency and density
 – Information technology power supplies
 – Automotive onboard chargers
• TI GaN for power factor correction (PFC) design
• TI GaN for DC/DC converter design
• TI GaN reference design and tools
Hard-switching loss breakdown: TI GaN solution

- Hard-switching loss occurs in CCM Totem Pole PFC.

Low C_{oss} output capacitance in TI GaN given its better Figure of Merit (FOM).

Integrated gate drive that is capable of providing >150 V/ns switching speed for TI GaN.

No body diode conduction and there is no Reverse Recovery loss in TI GaN device.

Integrated gate drive that provides a strong gate drive to turn-off.

Ideal Diode Mode enables automatic synchronous FET operation, and adapts to load current.
Bridgeless PFC comparison: Si vs. SiC vs. TI GaN

- **Dual-boost bridgeless PFC with Si MOSFET + SiC Schottky diode**: Si MOSFET has high C_{oss} loss and overlap loss, while SiC diode has high conduction loss.

- **SiC MOSFET totem-pole (TP) bridgeless PFC (w/o anti-parallel Schottky diode)**: SiC MOSFET still has reverse recovery loss and high dead time loss.

- **TI GaN totem-pole (TP) bridgeless PFC**: lowest loss, zero reverse recovery, minimal overlap.

Loss comparison at 1 kW, 100 kHz

Reduction in component count

Technical article: [Wide-bandgap semiconductors: Performance and benefits of GaN versus SiC](#)
Adjustable slew rate

- High slew-rates with minimal ringing and voltage overshoot
- Tested in Buck converter at 400 V, and the turn-on dv/dt can be adjusted according to different R_{drv} resistances.
- The slew rate is defined from 20% to 80% at a bus voltage of 400 V.
Impact of slew rate on device loss

- Analysis at 4 kW, 230 V V_{ac_RMS}, 400 V bus, 55°C ambient and $f_{sw} = 200$ kHz
 - Full load (4 kW) is considered for thermal design, and the steady-state loss is obtained.
 - With TI GaN’s 150 V/ns slew rate, the device is cooler and the system is more efficient.

Impact of slew rate on device loss

- Conduction Loss $P_c(T_j)$ + Switching Loss $P_{sw}(T_j)$
- Thermal Model $R_{th,th} + R_{th,ha}$
- Total Power Loss
- Ambient Temperature T_a
- Steady State T_j and Power Loss

38% loss reduction
Case study: CCM TP PFC $R_{ds,on}$ v.s C_{oss} trade-off

- 30 mΩ and 50 mΩ comparison at different f_{sw} with 100 V/ns slew rate
 - 230 V V_{ac_RMS} and 400 V bus. Ambient temperature is 55°C.
 - 30-mΩ device shows lower loss at full power (4 kW).
 - At 50% load, the 50-mΩ device indicate lower loss when the switching frequency is beyond 100 kHz.

Loss Comparison at 50% Load: 2kW

Loss Comparison at Full Load: 4kW

Thermal Design at Full Power
4-kW single-phase CCM totem-pole PFC

Key parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input range</td>
<td>200 V<sub>AC</sub>-277 V<sub>AC</sub></td>
</tr>
<tr>
<td>Nominal input</td>
<td>230 V<sub>AC</sub></td>
</tr>
<tr>
<td>DC link voltage</td>
<td>400 V<sub>DC</sub></td>
</tr>
<tr>
<td>GaN HEMT (Q1/Q2)</td>
<td>LMG342xR030</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>50 kHz</td>
</tr>
</tbody>
</table>
Phase shedding for higher light load efficiency

Features

- **TI GaN-based** 3-phase interleaved totem pole bidirectional PFC
- Rated Power: 3.3 kW (at 230 V_{rms})
- Peak efficiency: 98.7% (at 230 V_{rms})
- Total Harmonic Distortion (THD) < 2% (at low line)
- PWM switching frequency: 100 kHz
- Phase shedding control for higher efficiency

Bidirectional 3.3kW CCM Totem Pole PFC
Summary: CCM TP PFC Design with TI GaN

- TI GaN provides different QFN package variants for optimized thermal design at full power and max T_a.
- TI GaN's 30 V/ns to 150 V/ns adjustable slew rate provides a design flexibility to optimize the system efficiency and help on thermal design.
- TI GaN provides a variety of on-resistance to optimize the system design at different switching frequency.

Thermal Model

\[
\text{Total Power Loss} = P_c(T_j) + P_{SW}(T_j)
\]

\[
R_{th,jh} + R_{th,ha}
\]

Ambient Temperature T_a

Steady State?

- No: Updated T_j and Power Loss
- Yes: Steady State T_j

TI GaN with Different $R_{ds,on}$

Up to 150 V/ns Slew Rate
Outline

• TI GaN: Integrated for high-frequency operation
• Applications driving for higher efficiency and density
 – Information technology power supplies
 – Automotive onboard chargers
• TI GaN for power factor correction (PFC) design
• TI GaN for DC/DC converter design
• TI GaN reference design and tools
TI GaN: superior solution for soft-switching DC/DC

- **Reduced output capacitance** C_{OSS}
 - Reduces dead-time, increasing the time when current delivered to the output
 - Low transformer magnetizing current to minimize circulating current loss & eddy loss.

- **Reduced gate driver losses**

- **High power density in system**
 - GaN enables higher switching frequency to reduce magnetic components, and enables further magnetic integration.
1-MHz Isolated LLC DC/DC converter with TI GaN

Compared with 100-kHz LLC design, the 1 kW transformer is **6X smaller**

Design target

<table>
<thead>
<tr>
<th>Design target</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (V)</td>
<td>380 ~ 400 V</td>
</tr>
<tr>
<td>Output voltage (V)</td>
<td>48 V Nom unregulated</td>
</tr>
<tr>
<td>Power (W)</td>
<td>1000 W</td>
</tr>
<tr>
<td>Integrated Transformer size (mm)</td>
<td>33 x 53 x 43</td>
</tr>
<tr>
<td>Power density</td>
<td>140 W/in3 (8.5 W/cm3) High power density</td>
</tr>
<tr>
<td>Efficiency</td>
<td>>97.5% High Efficiency</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>1 MHz High Frequency</td>
</tr>
</tbody>
</table>

1 MHz Integrated transformer design

100 kHz transformer design

>650 Grams

<100 Grams

[Link to PMP20637]
6.6 kW Bidirectional On-Board Charger with TI-GaN

Design Features
- Single TI C2000 used for control (TMS320F28388D)
- Two phase Interleaved CCM totem-pole bridgeless PFC converter (125kHz)
- CLLLC DC-DC Converter (200-800 kHz), <100ns dead-time
- 250 to 450V output (battery voltage range)
- Liquid cooled heatsink
- Integrated active EMI filter circuit
- Total Size ~ 113mm (w) x 271mm (l) x 58.4mm (h)

Design Benefits
- Higher power density and lower solution cost than SiC.
- 59% smaller DC/DC magnetics offering lower cost.

<table>
<thead>
<tr>
<th>Typical Operating conditions</th>
<th>SiC</th>
<th>Ti-GaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC Switching Frequency (kHz)</td>
<td>67</td>
<td>125</td>
</tr>
<tr>
<td>DC-DC Switching Frequency (kHz)</td>
<td><300</td>
<td>~500</td>
</tr>
<tr>
<td>Open frame Power Density (W/in³)</td>
<td>54</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>(kW/liter)</td>
<td>3.3</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>96.5</td>
<td>97+</td>
</tr>
</tbody>
</table>

Operation

- CCM Totem Pole PFC
- Resonant CLLLC

Magnetic volume
- 65kHz Totem Pole PFC: 149 cm³
- 120kHz Totem Pole PFC: 119 cm³ (~25% smaller)
- 150-300kHz CLLLC: 166 cm³
- 200-800kHz CLLLC: 69 cm³ (~60% smaller)
Soft switching waveforms in CLLLC

- Conditions: \(V_{in} = 400 \, \text{V} \), \(V_{out} = 354 \, \text{V} \), \(I_{out} = 10 \, \text{A} \), \(f_{sw} = 500\, \text{kHz} \).

Low \(C_{OSS(tr)} \) of TI GaN enables ZVS with \(\sim 60 \, \text{ns} \) deadtime.
Cooling design for top-cooled device: 6.6kW OBC

- 12 GaN FETs (tsQFN12x12), 4 Si FET (TO-247), PFC inductor and DC/DC transformer are cooled by one aluminum coldplate.
Additional resources and tools

App notes
- Ti GaN Ideal Diode Mode ([Link](#))
- Ti GaN 3rd Quadrant Operation ([Link](#))
- Ti GaN Direct Drive ([Link](#))
- Thermal Design ([Link](#))

Training videos
- Ti GaN: Built for Lifetime Reliability ([Link](#))
- GaN: From Watts to Kilowatts ([Link](#))
- Ti GaN Enabling 900-V Multi-kW Grid Converters ([Link](#))
- Designing with GaN High Density Power Supplies ([Link](#))
- Motor Drive Training ([Link](#))

Design tools
- GaN reference designs
 - 99% efficient 3-phase inverter
 - 1MHz 1.6kW CrM Totem Pole PFC
 - Bidirectional 3.3kW CCM Totem Pole PFC
- GaN plug-in daughter cards
 - LMG3411R050 Daughter Card
 - LMG3422R030 Daughter Card
 - LMG3522R030 Daughter Card
- GaN Buck-Boost Motherboard

ti.com/gan
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated