HIGH VOLTAGE SEMINAR

MIKE O’LOUGHLIN
HIGH VOLTAGE CONTROLLERS

ACHIEVING HIGH POWER DENSITY AND ULTRA LOW STANDBY POWER IN FLYBACK CONVERTERS
Agenda

• Basic PSR flyback operation/problems and issues
• Wake-up monitoring (UCC24650) with PSR sampling initiation (UCC28730)
 • Speeds up transient response
 • Greatly reduces output capacitance ($\approx C_{OUT}/7$)
 • Can meet zero power ($< 5 \text{ mw}$)
• Device feature set
• Design tips and tricks
• Questions
Typical Primary Side Regulation (PSR)

➢ Uses N_A/N_S Turns ratio to sample V_{OUT}
 ✓ Control Reflected Output Voltage (V_{OUT})
 • Sampled during rectifier diode conduction @ Knee
 • Removes the need of TL431 feedback
 o Saves $\text{$$$$}$ and reduces standby power

\[
(V_{OUT} + V_F + I_S R_S) \frac{N_A}{N_S} \quad - \quad (V_{BLK}) \frac{N_A}{N_P}
\]
Uses FM, AM (I_{PP}), FM modulation to control duty cycle

- Controller Samples Auxiliary Winding (V_A) to Adjust Duty cycle
 - While Energy is being delivered to secondary (tc) when D_G is conducting
- Frequency Typically Varies from 1 kHz to 100 kHz

$$D = \frac{t_{ON}}{t_{ON} + t_C + t_D}$$
Negative side of PSR regulation

- This control scheme has a slow transient response
- When the Converter is Idle at $f_{\text{min}} = 1\,\text{kHz}$
 - Output is sampled and the Duty cycle is adjusted once every 1 ms.
 - The output capacitor (C_{OUT1}) must be sized to handle load transients

\[
C_{\text{OUT1}} \geq \frac{I_{\text{MAX}}}{dV \times f_{\text{min}}}
\]
Improving the load transient response with the UCC28730

- Wake-up monitoring (UCC24650) with PSR sampling initiation (UCC28730) for fast transient response.
 - UCC28730 PSR with output sampling initiation
 - Has all the features of traditional PSR controller
 - Can operate down to 32 Hz to meet < 5 mW Standby power
 - UCC24650 Secondary side wake-up monitoring
 - Monitors V_{OUT} and will activate PSR sampling if V_{OUT} drops out of regulation.
UCC24650 performance advantage

- UCC24650 Monitors V_{OUT}
 - If $V_{OUT} < 0.97 \times V_{OUT1}$
 - The secondary winding is shorted
 - 1us every 30 us with a current-limited switch

- UCC28730
 - Monitors the auxiliary winding (VA) during the deadtime
 - If a + pulse is observed
 - It Triggers PSR Sampling
 » Gate drive initiates a few sample pulses
 » V_{OUT} is sampled
 » The controller quickly responds
 » Adjusts I_{PP}, frequency and Duty cycle
 » Recovers and Maintains V_{OUT}
Faster transient response with wake-up

- Reduces the amount of \(C_{OUT} \)
- \(C_{OUT} \) needs to be sized for
 - Output transients (dV) and the V loop for stability

\[
\begin{align*}
C_{OUT_No_Wakeup} & \geq \frac{100 \times I_{MAX}}{V_{OUT} \times f_{max}} \\
C_{OUT} & \geq \frac{I_{MAX}}{dV \times f_{max}} \times 10
\end{align*}
\]
How much is C_{OUT} reduced with wake-up?

- Typical design
 - $f_{\text{min}} = 1$ kHz
 - $f_{\text{max}} = 80$ kHz

- Using a design with Wake-up
 - C_{OUT} is reduced by a factor of 6.5
 - Output C with Wake-up (C_{OUT2})
 - Output C without Wake-up (C_{OUT1})

\begin{align*}
 C_{OUT1} & \geq \frac{I_{\text{MAX}}}{dV \times f_{\text{min}}} \\
 C_{OUT2} & \geq \frac{I_{\text{MAX}}}{dV \times f_{\text{max}} / 10} \\
 C_{OUT2} & = 10 \times \frac{C_{OUT1} \times f_{\text{min}}}{f_{\text{max}}} = \frac{C_{OUT1}}{6.5}
\end{align*}
Reducing C_{OUT}

- Increases design’s power density
- Enables the design to operate at higher frequencies
- Reduces the cost of the design

\[
C_{OUT1} \geq \frac{I_{MAX}}{dV \times f_{min}}
\]

\[
C_{OUT2} \geq \frac{I_{MAX}}{dV \times f_{max}}
\]

\[
C_{OUT2} = 10 \times \frac{C_{OUT1} f_{min}}{f_{max}} = \frac{C_{OUT1}}{6.5}
\]
Transient response with and without wake-up

- 5 V/10 W Design was evaluated, \(f = 1.25 \text{ kHz} \) to 80 kHz
- The design was tested with a full load transient step (0 to 2A)
- Without wake-up, controller could not sample \(t_{\text{wait}} \) \(V_{\text{OUT}} \) for 600us, \(V_{\text{OUT}} \) drooped 3V 😞
 - \(t_{\text{wait}} \) could have been as long 800 us
- With wake-up, controller responded quickly no waiting, \(V_{\text{OUT}} \) only drooped 0.4v 😊
UCC24650 200-V wake-up monitor for fast transient PSR

1 Features
- Enables Excellent Load Transient Performance and Zero Standby Power
- Enables Smallest Output Capacitor for Tight ΔV_{OUT}
- No External Components Required
- <50 μA Device Current Consumption (Typical)
- 5-V to 28-V Output Monitoring Capability
- 3% Voltage Droop Detection (Patent Pending)
- 200-V Wake-Up Switch
- Enables and Disables SR Controller, Relay Control, or Other Secondary Circuits
- SOT-23 5-Pin Package

2 Applications
- <5-mW Zero-Power Standby Applications
- Adapters and Chargers for Consumer Electronics
 - Smart Phones, Tablets, Set-Top Box
- TV and Monitor Power Supplies
- Home Appliance SMPS
 - Refrigerator, Washing Machine, Air Conditioners
- Industrial Power Supplies for Lighting and Home Automation

Note: No opto feedback required
UCC28730 zero-power standby PSR flyback controller with CVCC and wake-up monitoring

1 Features
- Enables Zero-Power (<5 mW) Standby Consumption
- Smart Wake-Up Detection Enables Smallest Output Capacitance
- Primary-Side Regulation (PSR) Eliminates Optocoupler
- ±5% Voltage Regulation and Current Regulation Across Line and Load
- 700-V Start-up Switch
- 83-kHz Maximum Switching Frequency Enables Low Stand-by Power Charger Designs
- Resonant-Ring Valley-Switching Operation for Highest Overall Efficiency
- Frequency-Dither to Ease EMI Compliance
- Clamped Gate-Drive Output for MOSFET
- Over-Voltage, Low-Line, and Over-Current Protection Functions
- Programmable Cable Compensation
- SOIC-7 Package

2 Applications
- Adapters and Chargers for Smart Phones, Tablets, and Other Consumer Electronics
- TV and Monitor Power Supplies
- SMPS for Home Appliances and Industrial Automation
- Standby and Auxiliary Power Supplies

Simplified Application Schematic
UCC28730 Protection/fault activation

• Over Voltage Protection (OVP)
 – \((N_S/N_A) \times (4.62V/R_{S2}) \times (R_{S1}+R_{S2})-V_D\)

• Over Current Protection (I_{OCP}) \(V_{RCS} = 1.5\)V
 – \(I_{OCP}=1.5V/R_{CS}\)
 • Nominal Peak \(V_{RCS} = 0.74\)V

• Input Under Voltage Protection (UVLO)
 – \(V_{IN} > (N_P/N_A) \times (225uA \times R_{S1})\) to startup
 – \(V_{IN} < (N_P/N_A) \times (80uA \times R_{S1})\) to shutdown

• Thermal Shut Down (TSD = 165 C)
• All faults stop switching and reactivate soft start
VDD charged through HV Input:
- 3 small gate driver pulses are initiated @ UVLO_{ON}
- I_{PP} controlled to 1/3 max at startup
- If fault is detected UVLO/soft start initiated
- Will retry at UVLO_{ON}
Startup with input under voltage fault

➢ At UVLO\textsubscript{ON} three gate drive pulse are initiated:
 ▪ CS peak is controlled to 1/3 max (245 mV)
 ▪ Input UVLO detected UVLO restart is initiated
Startup with no faults

➢ At UVLO_{ON} three gate drive pulse are initiated:
 ▪ CS peak is controlled to 1/3 max (245 mV)
 ▪ No Faults have been detected so supply starts switching
 ▪ After 3rd initiated pulse I_{PP} is controlled to maximum threshold
 • (CS Controlled to 740mV)
UCC28730 zero power: reducing f_{SW}

- Control Law
 - Reduces f_{SW} @ Standby (32 Hz minimum)
 - Enables
 - Low bias current (50uA)
 - $P_{IN} < 5mW$ at Standby
At max frequency converter is close to critical conduction

When DRV turns off OFF, VS looks for + transition and activates a VS blanking delay (t_B)
 - Prevents false OVP from leakage spike (T_{LK_RESET})
 - t_B adjusts with loading
 - $V_{CS} = 0.74\text{V}$, $t_B = 2.25\ \mu\text{s}$; $V_{CS} = 0.245\text{V}$, $t_B = 750\ \text{nS}$
➢ After t_B times out
➢ VS sampling starts (t_S) detection for OVP and output control
➢ During t_S the VS pin is continuously sampled
 ▪ Will hold the last VS value sampled before LC tank (t_R) of switch node (M1 drain)
 ▪ This VS value is used to control the output
 • Helps remove errors caused by aux ringing
 • Ringing after delay needs to be < 100 mV p-p
After the controller has sampled the output at VS

- The switch node and aux winding will LC ring (t_R)
- The controller is looking for 0V transition of the Aux winding
 - When this occurs an internal timer/delay is triggered (t_D)
 - Once t_D has timed out DRV will turn back on
 - This added delay allows valley switching
Device timing/control (FM)

- $V_{E/A}$ 3.55V to 5V, $V_{CS} = 0.74V$
 - Fixed I_{PP} set at Max
 - A delay is added/adjusted (t_{EP}) to adjust D/frequency ($28 \text{ kHz} < 83 \text{ kHz}$)
 - Controller will not turn on M1 until VS zero is detected and t_D has timed out (150ns)
 - This achieves valley switching deep into DCM

$$D = \frac{t_{ON}}{t_{ON} + t_B + t_S + t_{EP} + t_R + t_D}$$

- 0V
- 0A
Device timing/control (AM)

- $V_{E/A}$ 2.2V to 3.35V, $V_{CS} = 0.74V$ to 0.245V
 - Converter is operating deeper into DCM
 - Frequency is Fixed 28 kHz (Excluding Dither)
 - Duty Cycle is Controlled by Adjusting CS amplitude (AM) from I_{PP} to $1/3 I_{PP}$
 - Was done to remove audible noise as load and f decrease

\[D = \frac{t_{ON}}{t_{ON} + t_{B} + t_{S} + t_{EP} + t_{R} + t_{D}} \]
Device timing/sensing (FM)

- $V_{E/A} = 1.3\text{V to } 2.2\text{V}$, $V_{CS} = 0.245\text{ V}$
 - Duty cycle is controlled by adjusting t_{EP} (VCO/fixed peak current again)
 - Frequency is adjusted from 28 kHz down to 1.92 kHz depending on E/A out
 - I_{PP} is fixed to $1/3 I_{PP\ MAX}$

\[D = \frac{t_{ON}}{t_{ON} + t_B + t_S + t_{EP} + t_R + t_D} \]
Device timing/sensing (FM)

- VE/A 0.75 V to 1.3 V, \(V_{\text{RCS}} = 0.245 \text{ V} \)
 - Frequency shifts to lower operating level as load gets lighter

\[D = \frac{t_{\text{ON}}}{t_{\text{ON}} + t_B + t_S + t_{\text{EP}} + t_R + t_D} \]
Device timing/sensing (FM)

➢ VE/A 0 V to 0.75 V, \(V_{RCS} = 0.245 \) V
 - Frequency bottoms out at 32 Hz

\[
D = \frac{t_{ON}}{t_{ON} + t_B + t_S + t_{EP} + t_R + t_D}
\]
System EMI reduction evaluation

- EMI comparison with and without dithering
 - Charger at 5V/1A: Vout return connected to earth
 - 2-5 dB reduction with EMI jittering scheme

![UCC28730 Conducted EMI Comparison](chart.png)
Frequency dithering affects output ripple

- Frequency jitter does cause a small amount of low frequency output ripple
 - Still meets USB specifications
 - CH2 = V_{OUT}
R_{LC} offset CS adjustment

- Adds offset to the CS signal
 - Provides Some VFF
 - Provides an adjustment to reduce I_{pp} over shoot
 - Caused by FET turnoff delays

$$R_{LC} = \frac{K_{LC} \times R_{S1} \times R_{CS} \times t_d \times N_{PA}}{L_p}$$
Design tips and recommendations

➢ VS Pin Recommendations

- No filtering/high impedance pin/noise sensitive
- Don’t probe the VS pin directly with a scope probe
 - Can estimate behavior at this pin from D_E
Design tips and recommendations

➢ CS pin recommendations
 ▪ Device has 225 ns of leading edge blanking
 ▪ Filtering should not be needed on the CS pin
 - If cap is added to CS input, RC delay will affect value of R_{LC}
➢ Leave place for a snubber on the output
 ▪ You may or may not need it
 ▪ Excessive ringing on VS pin could cause misbehavior
Transformer calculations

➢ T1 primary inductance (L_{PM}) set by f_{max}
 ▪ f_{max} target 38 kHz to 76 kHz

\[
\frac{N_P}{N_S} = \sqrt{\frac{L_{PM}}{L_{SM}}}
\]

\[I_{PP} = \text{Peak T1 Primary } I_P\]

\[L_{PM} = \frac{2 \times P_{OUT}}{\eta I_{PP}^2 \times f_{\text{max}}}\]
Transformer turns ratio \(\frac{N_P}{N_S} \)

\[D_{\text{MAX}} = \frac{t_{\text{ON}}}{T_{\text{SW}}} \]

\[D_{\text{MAG}} = \frac{t_{DM}}{T_{SW}} \quad D_{\text{MAG}} = 0.432 \]

\[D_{\text{MAX}} = 1 - D_{\text{MAG}} - \frac{t_r \times f_{\text{MAX}}}{2} \]

\[\frac{N_P}{N_S} = \frac{D_{\text{MAX}} \left(V_1 - I_{\text{PP}} (R_{\text{dson}}(Q_A) + R_{CS}) \right)}{D_{\text{MAG}} (V_{\text{OUT}} + V_{DG} + V_{CBC})} \]

- \(L_{PM} \) selected based on \(f_{\text{max}} \)
 - UCC28730 requires \(D_{\text{MAG}} \) of 0.432 by design
 - Calculate \(D_{\text{MAX}} \) based on \(D_{\text{MAG}} \) and \(\frac{1}{2} \) of LC tank \((t_r) \)
 - Use volt second balance to calculate \(\frac{N_P}{N_S} \)
Design tips and recommendations

- R_{CS} and R_{LC} adjusted to fine tune circuit for maximum current (I_{OCC}).
- Preloading (R_{PL}) is added/adjusted:
 - Keeps output in Reg. at no Load
 - f_{MIN} is 32 Hz
 - f_{MIN} is generally higher for other PSR controllers
Device features: UCC28730

Low Standby Power Integrated 700-V Start-up

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Less than 5mW standby power</td>
<td>▪ Exceeds energy star, coc tier 2, DOE level VI standards</td>
</tr>
<tr>
<td>▪ AM-FM modulation scheme, operates at low frequency at light loads (no burst mode)</td>
<td>▪ Maintains regulation across load range with minimal audible noise</td>
</tr>
<tr>
<td>▪ Internal 700-V startup switch with X-Cap Discharge</td>
<td>▪ Simplified fast start, lower standby power, and no leakage for bleed resistors</td>
</tr>
<tr>
<td>▪ DCM operation with FET valley switching</td>
<td>▪ Minimized switching losses to improve efficiency</td>
</tr>
<tr>
<td>▪ Frequency jitter scheme to reduce generated EMI/EMC</td>
<td>▪ Minimal external filtering to pass EMI</td>
</tr>
<tr>
<td>▪ Protection Functions: Over Voltage, Low Line & Over Current</td>
<td>▪ Intelligent protection with minimal external components</td>
</tr>
</tbody>
</table>

Applications

- Adapters and chargers for consumer electronics
- Home appliances
- Industrial automation
- Standby and auxiliary power supplies

![Diagram](image-url)

VIN

C

D

R

UCC28730

VDD

HV

DR

C

S

VSC

GND

36
Device features: UCC24650

200V Wake-Up Monitor for Fast Transient Primary Side Regulation (PSR) Controllers

Features
- Less than 50μA Iq
- Fast wake-up
- No external components
- Enables secondary circuitry like synchronous rectifier
- 5-V to 28-V output monitoring

Benefits
- Less than 0.6mW of power consumption
- Can help to reduce output capacitances to save cost and space
- Small solution size
- No need to control across isolation barrier
- Supports a wide range of output voltages

Applications
- Adapters and chargers for consumer electronics
- Home appliances
- Industrial automation
- Standby and auxiliary power supplies

![Diagram of UCC24650 device](image)
Summary: UCC28730 and UCC24650

- Fast transient response ($C_{OUT}/7$)
 - High power density
 - Save $$
- Industry’s first PSR controller that help enables zero-standby ($< 5 \text{ mW}$)
- Please use design tips to simplify your design process
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated