Driving SiC MOSFETs in auxiliary power supplies
Content

• Block diagram of end equipment with high-voltage bias power
• Flyback topology candidate comparison
• Design considerations of SiC flyback control circuitry
• Summary
SiC material properties + power system benefits

Intrinsic material properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
<th>Si</th>
<th>GaN</th>
<th>SiC – 4H</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g (eV)</td>
<td>Bandgap energy</td>
<td>1.12</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>E_{BR} (MV/cm)</td>
<td>Critical field breakdown voltage</td>
<td>0.3</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>v_s ($\times 10^7$ cm/s)</td>
<td>Saturation velocity</td>
<td>1.0</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>μ (cm2/V.s)</td>
<td>Electron mobility</td>
<td>1400</td>
<td>900-2000</td>
<td>900</td>
</tr>
<tr>
<td>λ (W/cm.K)</td>
<td>Thermal conductivity</td>
<td>1.3</td>
<td>1.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Properties leading to system benefits

- **Impact on operation**: Lower switching losses, System...
 1. Size, 2. Cost, 3. Weight Reduction
- **Impact on power stage**: High-voltage operation, Higher switching frequency + Smaller filters & passives
- **Impact on end equipment**: Fewer cooling needs
Aux power supplies in central PV inverter

- **Where:**
 - Typical power levels of 20 W to 150 W
 - Operating input voltage range: 1000 V to 1500 V DC

- **Why SiC?**
 - Higher VDS rating (1700 V SiC)
 - High efficiency
Aux power supply of electricity meter

• Where:
 – Typical power levels of 15 W – 20 W
 – Operating input voltage range: 300 V to 950 V DC

• Why SiC?
 – Higher VDS rating
Aux power supply in AC motor drive

- **Where:**
 - Typical power levels of 20 W – 60 W
 - Operating input voltage range:

<table>
<thead>
<tr>
<th>Grid voltage</th>
<th>Input voltage range</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 vac, 3phase</td>
<td>100 V – 400 V</td>
</tr>
<tr>
<td>380 – 480 vac, 3phase</td>
<td>200 V – 820 V</td>
</tr>
<tr>
<td>525-690 vac, 3phase</td>
<td>300 V – 1130 V</td>
</tr>
</tbody>
</table>

- **Why SiC?**
 - Higher VDS rating
 - Removal of heatsink

SiC Flyback Converter
Aux power supply in traction inverter of EV

- **Where:**
 - Redundant/back-up power supplies using Flyback topology
 - Typical power levels of 10 W to 20 W
 - Operating input voltage range: 50 V to 1 kV DC

- **Why SiC?**
 - Higher VDS rating (1700 V SiC)
 - High Efficiency
Traction inverter bias power supply configurations

Case 1: 12 V Vbatt to 24 V

Case 2: DC/DC (1~6) to SiC Flyback

Case 3: DC/DC (1~6) to SiC Flyback

Case 4: DC/DC (1~6) to SiC Flyback

SiC Flyback

800 V Vbatt (30 - 960 V)

12 V Vbatt

24 V

V_backup

DC/DC (1~6)

800 V Vbatt (30 - 960 V)

24 V

SiC Flyback

V_backup

800 V Vbatt (30 - 960 V)

DC/DC (1~3)

24 V

SiC Flyback

DC/DC (1~3)
Content

• Block diagram of end equipment with high-voltage bias power
• **Flyback topology candidate comparison**
• Design considerations of SiC flyback control circuitry
• Summary
Flyback Topology Candidate: Loss Comparison

Specifications: 800-V Vin to 15 Vout. Pout = 60 W, fsw=140 kHz, CCM, T_J=125°C, T_A=105°C

<table>
<thead>
<tr>
<th>Loss Type</th>
<th>Cascoded Si Flyback (900 V, 1.2 Ω, IPD90R1K2C3ATMA1 x 2)</th>
<th>SiC Flyback (1700 V, 1.2 Ω, SCT2H12NY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduction Loss</td>
<td>0.304 W for Rds(on) at 125°C = 2.1 Ω x 2</td>
<td>0.124 W Rds(on) at 125°C = 1.71 Ω</td>
</tr>
<tr>
<td>Turn-on Loss</td>
<td>0.84 W for 0-500V Eoss (0.42W x 2)</td>
<td>1.14 W for 0-1000V Eoss</td>
</tr>
<tr>
<td>Gate Driving Loss</td>
<td>0.176 W for 0-15V gate drive (88mW x 2)</td>
<td>0.035 W for 0-18V gate drive</td>
</tr>
<tr>
<td>Sum</td>
<td>1.62 W (not including gate clamp loss of cascade switch)</td>
<td>1.3 W</td>
</tr>
</tbody>
</table>
TIDA-00173 (Cascoded Flyback)

400-V to 690-V AC Input, 50-W Flyback Isolated Power Supply Reference Design for Motor Drives
Flyback Topology Comparison: BOM Difference

<table>
<thead>
<tr>
<th></th>
<th>Cascoded Si Flyback</th>
<th>SiC Flyback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(900 V, 1.2 Ω, IPD90R1K2C3ATMA1 x 2)</td>
<td>(1700 V, 1.2 Ω, SCT2H12NY)</td>
</tr>
<tr>
<td>MOSFET</td>
<td>$0.2 \times 2 = 0.4$</td>
<td>$1.0 \times 1 = 1.0$</td>
</tr>
<tr>
<td>Gate Clamp</td>
<td>$0.15 \times 2 = 0.3$</td>
<td>0</td>
</tr>
<tr>
<td>TVS diode</td>
<td>$0.01 \times 5 = 0.05$</td>
<td></td>
</tr>
<tr>
<td>HV resistor stack</td>
<td>470kΩ, 0.1W: $0.05 \times 2 = 0.1$</td>
<td></td>
</tr>
<tr>
<td>Clamp Capacitors</td>
<td>100pF, 500V, X7R:</td>
<td></td>
</tr>
<tr>
<td>Heatsink</td>
<td>513201B02500G: $0.5 \times 2 = 1.0$</td>
<td>513201B02500G: $0.5 \times 1 = 0.5$</td>
</tr>
<tr>
<td>Sum</td>
<td>1.85</td>
<td>1.5</td>
</tr>
</tbody>
</table>
TIDA-01505 (SiC Flyback) Automotive 40V-1000Vin, 15Vout, 60W Flyback Reference Design for 800-V Battery System

Design Features

- Wide-Vin isolated Flyback DC/DC converter over the Ultra wide input voltage range of 40 V to 1000 V DC, up to 1200 V transient.
- Regulated output voltage 15 V (<5% regulation) and output current up to 4 A.
- SiC MOSFET solution with high voltage rating, low gate charge and fast switching transients.
- SiC gate driver adaption from an integrated MOSFET gate driver utilizing center-tapped transformer.
- Constant switching frequency with duty cycle range from 15% to 80%.
- Current mode control with cycle-to-cycle over current limitation.
- Automotive Grade 1 qualified Transformer with Reinforced isolation (tested at 5.7 kV High-Pot).

Tools & Resources

- TIDA-01505 Tools Folder
- Test Data/Design Guide
- Design Files: Schematics, BOM and BOM Analysis, Design Files

Design Benefits

- Designed for isolated unidirectional power supplies in HEV/EV Traction Inverter systems.
- Support regenerative breaking with the minimum start-up voltage of 40V.
- Extendable to higher voltage and higher power range.
- Automotive Grade 1 qualified Transformer with Reinforced isolation.

![Flyback Controller Diagram](image-url)
Experimental Results of TIDA-01505 (SiC Flyback)

- Start-up
- Shutdown
- Load transient response
- Measured efficiency
Content

• Block diagram of end equipment with high-voltage bias power
• Flyback topology candidate comparison
• Design considerations of SiC flyback control circuitry
• Summary
General purpose PWM controllers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UCC28C4x</th>
<th>UCC280x UCC2813-x</th>
<th>UC284x A TL284xB</th>
<th>UC284x TL284x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process technology</td>
<td>BiCMOS</td>
<td>BiCMOS</td>
<td>Bipolar</td>
<td>Bipolar</td>
</tr>
<tr>
<td>Absolute maximum VDD</td>
<td>20 V</td>
<td>12 V</td>
<td>30 V</td>
<td>30 V</td>
</tr>
<tr>
<td>Supply current at 50 kHz</td>
<td>2.3 mA</td>
<td>0.5 mA</td>
<td>11 mA</td>
<td>11 mA</td>
</tr>
<tr>
<td>Startup current</td>
<td>50 μA</td>
<td>0.1 mA</td>
<td>0.5 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>Over-current propagation delay</td>
<td>50 ns</td>
<td>100 ns</td>
<td>150 ns</td>
<td>150 ns</td>
</tr>
<tr>
<td>Reference voltage accuracy</td>
<td>±1%</td>
<td>±2%</td>
<td>±2%</td>
<td>±2%</td>
</tr>
<tr>
<td>E/A reference accuracy</td>
<td>±25 mV</td>
<td>±60 mV</td>
<td>±80 mV</td>
<td>±80 mV</td>
</tr>
<tr>
<td>Maximum operating frequency</td>
<td>1 MHz</td>
<td>1 MHz</td>
<td>500 kHz</td>
<td>500 kHz</td>
</tr>
<tr>
<td>Output rise/fall times</td>
<td>35 ns</td>
<td>44 ns</td>
<td>50 ns</td>
<td>50 ns</td>
</tr>
<tr>
<td>UVLO turn-on accuracy</td>
<td>±1.0 V</td>
<td>±1.2 V</td>
<td>±1.5 V</td>
<td>±1.5 V</td>
</tr>
</tbody>
</table>

UC284x, TL284x, UCC280x, UCC2813-x, UCC28C4x are all P2P parts.

Improvements provide:
- Greatly reduced power requirement
- Eliminates bootstrap supply
- Fewer external components
- Lower junction temperature
- Reduced stress during faults
- No current sense R/C filter networks
- Faster response to faults
- Higher frequency operations
Aux power supply using UCCx8C4y

Secondary Side Regulated Auxiliary Power Supply

Soft start

Slope compensation

Si MOSFET

Copyright © 2016, Texas Instruments Incorporated

Copyright © 2016, Texas Instruments Incorporated
PWM Controller requirements for driving SiC MOSFET

<table>
<thead>
<tr>
<th>Ultra high-voltage (1700 V)</th>
<th>High-voltage (1200 V)</th>
<th>Mid-voltage (650 V to 900 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vgs Max Recommended: 20V</td>
<td>Vgs Max Recommended: 20V</td>
<td>Vgs Max Recommended: 18V</td>
</tr>
<tr>
<td>Cree C2M1000170D</td>
<td>STmicro SCT10N120</td>
<td>Rohm SCT3120AL</td>
</tr>
<tr>
<td>Rohm SCT2H12NY</td>
<td>Microsemi MSC080SMA120J</td>
<td>STmicro SCTH35N65G2V</td>
</tr>
<tr>
<td>Littlefuse LSIC1MO170E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vgs Max Recommended: 15V</td>
<td>Vgs Max Recommended: 18V</td>
<td>Vgs Max Recommended: 15V</td>
</tr>
<tr>
<td>Infineon IMBF170R1K0M1</td>
<td>Infineon IMW120R350M1H</td>
<td>Onsemi NTBG020N090SC1</td>
</tr>
<tr>
<td>Vgs Max Recommended: 15V</td>
<td></td>
<td>Cree E3M0280090D</td>
</tr>
<tr>
<td>Infineon IMW120R350M1H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- High sensitivity of SiC FET on-resistance calls for
 - Less variation in controller output voltage
- High zero temp-co voltage of SiC FET calls for
 - Higher UVLO-off threshold from controller
- Commercial off-the-shelf SiC FET Vgs Max rating varies from manufacturer to manufacturer
 - Controller VDD has to be > 20V
- Requires clamped voltage at the output of the controller
 - Multiple clamp options for different Vgs ratings

Rohm 1700 V, 1.0Ω SiC MOSFET
SiC-based aux power supply using UCCx8C4y

Pros:
- Voltage accuracy
- Efficient SiC drive

Cons:
- High system cost
- High BOM count

UVLO Comparator:
- Implements UVLO turn-off threshold externally
- Choose external turn-off threshold less than the internal turn-on threshold
- Choose open-drain comparator e.g. TLV2352

LDO:
- Regulates the voltage across VDD
- Choose LDO output voltage less than Max allowable Vgs of SiC MOSFET
- Choose low-iq LDO e.g. TPS76901

Gate Driver:
- Choose Gate Driver with VDD greater than Max allowable Vgs of SiC MOSFET e.g. UC2705

Copyright © 2016, Texas Instruments Incorporated
SiC-based aux power supply using UCCx8C4y

UVLO Comparator:
- Implements UVLO turn-off threshold externally
- Choose external turn-off threshold less than the internal turn-on threshold
- Choose open-drain comparator e.g. TLV2352

LDO:
- Regulates the voltage across VDD
- Choose LDO output voltage less than Max allowable Vgs of SiC MOSFET
- Choose low-iq LDO e.g. TPS76901

Pros:
➢ Voltage accuracy
➢ High system cost
➢ High BOM count
➢ Sub-optimal SiC drive

Cons:
➢ High system cost
➢ High BOM count
➢ Sub-optimal SiC drive
SiC-based aux power supply using UCCx8C4y

Pros:
➢ No optocoupler
➢ Low system cost

Cons:
➢ Poor voltage accuracy
➢ Sub-optimal SiC drive

UVLO Comparator:
• Implements UVLO turn-off threshold externally
• Choose external turn-off threshold less than the internal turn-on threshold
• Choose open-drain comparator e.g. TLV2352

Copyright © 2016, Texas Instruments Incorporated
Summary

• Silicon MOSFETs are not desirable in high-voltage auxiliary power supplies due to their poor figure of merit and high cost

• Single-switch flyback with SiC MOSFET is the preferred topology for high-voltage auxiliary power supplies

• SiC MOSFETs allow greater system-level benefits, such as low cost, small size and high efficiency

• Gate drive of SiC MOSFET needs careful consideration:
 – SiC MOSFET on-resistance is highly sensitive to the gate voltage
 – Driving SiC MOSFET with insufficient voltage leads to thermal runaway

• GP PWM controllers along with necessary external components, such as comparator/LDO/gate driver, can drive SiC MOSFETs reliably and efficiently in high-voltage auxiliary power supplies
Thank you
Backup
SIMetrix model with external UVLO comparator
SIMetrix simulation with external UVLO comparator
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated