HIGH VOLTAGE SEMINAR RAMANAN NATARAJAN GALLIUM NITRIDE

THE BENEFITS OF 650-V GaN FETS FOR 800-V POWER CONVERTERS

Agenda

- Applications driving >800-V DC-link voltages \& trends
- The case for 650-V GaN switches
- Figure-of-merit for switching energy
- Power topologies enabling use of $650-\mathrm{V}$ switches in $800-\mathrm{V}$ converters
- Stacked half-bridge arrangements
- Multi-level power converters
- Conclusion

Multi-kilowatt applications with 800-V DC-link

 3-phase ACL-L: 400VAC
L-N: 230VAC

AC/DC battery chargers for energy storage

DC/AC grid tie inverters

Test \& measurement AC/DC onboard chargers, DC/AC equipment (eg. AC sources)
 vehicle-2-grid inverters, charging stations

Trend for higher operating frequency

- Shrink the passives i.e. inductors, transformers, storage capacitors to:
- Reduce component cost
- Reduce weight, height for better shock \& vibration performance
- Enable smaller PCB foot-prints
- Create air-flow pathways for better cooling and higher efficiency
- Better wave-shaping, lower distortion
- Allow surface mount technology (SMT) components for automated assembly
- Lower switching power loss \& higher efficiency a pre-requisite for this

Electric vehicle onboard chargers power 6.6/7.2-kW to 11/22-kW with little-to-no increase in size density <2-kW/liter to >4-kW/liter

Photovoltaic or battery inverter > <1\% harmonic distortion

Do 650-V devices make sense with 800-V DC link?

Conventional wisdom
2-level converter

Opportunities to differentiate

 stacked $1 / 2$-bridges, multi-level converters
$>800 \mathrm{~V}$

Power switch attributes influencing switching loss

Power switch attributes influencing switching loss

- Overlap losses influenced by gate-source, gate-drain charge \& gate driver capability

Energy loss during hard-switching turn-on and turn-off

- Other losses related to device
Turn-on $\mathrm{dV}_{\mathrm{DS}} / \mathrm{dt}$ loss $\approx \mathrm{V}_{\mathrm{ds}} / 2 * \mathrm{I}_{\mathrm{L}} * \mathrm{t}_{\mathrm{r} 2}$ output
Turn-on $\mathrm{Q}_{\text {RR }}, \mathrm{C}_{\text {oss }}$ loss $=\mathrm{Q}_{\text {oss }} \mathrm{V}_{\mathrm{ds}}+\mathrm{Q}_{\text {RR }} * V_{\text {bus }} \rightarrow$ capacitance and stored reverse
Turn-off $\mathrm{d}\left(\mathrm{l}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{DS}}\right) / \mathrm{dt}$ loss $\approx \int \mathrm{V}_{\mathrm{DS}}(\mathrm{t}) * \mathrm{I}_{\mathrm{DS}}(\mathrm{t}) * \mathrm{dt}$ recoverycharge

Power switch attributes influencing switching loss

- Overlap losses influenced by gate-source, gate-drain charge \& gate driver capability

Energy loss during soft-switching turn-on (ZVS) and turn-off

Turn-on $\mathrm{dH}_{\text {DS }} /$ dt loss $\left.\approx V_{d s} *\right|_{t} / 2 * t_{f 1}$

Turn on $d V_{p s} / d t$ loss $\approx V_{d s} / 2 * 1_{t} * t_{f 2}$
Furn-on $\theta_{\text {RR }}, \epsilon_{\theta S S}+\theta s s=\theta_{o s s} * \forall_{d s}+\theta_{\text {RR }} * V_{\text {but }}$
Turn-off $d\left(\mathrm{I}_{\mathrm{D}}, \mathrm{V}_{\mathrm{DS}}\right) / \mathrm{dt}$ loss $\approx \int \mathrm{V}_{\mathrm{DS}}(\mathrm{t}) * \mathrm{I}_{\mathrm{DS}}(\mathrm{t}) * \mathrm{dt}$

Figure-of-merit for switching energy: GaN excels!

Figure-of-Merit $=$ Switching Energy $(\mu \mathrm{J}){ }^{*} \mathrm{R}_{\mathrm{DS}, \mathrm{oN}} @ 125^{\circ} \mathrm{C}(\mathrm{m} \Omega)$

The smaller, the better!

Turn-on Figure-of-Merit (turn-on and turn-offlosses, plus Coss \& QRR losses)

Turn-off Figure-of-Merit (turn-off losses only; ZVS at turn-on)

Double Pulse Test

Switching energy loss increases with higher switch voltage rating as expected, since associated device capacitances increase

Figure-of-merit for switching energy: GaN excels!

Figure-of-Merit $=$ Switching Energy $(\mu \mathrm{J}){ }^{*} \mathrm{R}_{\mathrm{DS}, \mathrm{oN}} @ 125^{\circ} \mathrm{C}(\mathrm{m} \Omega)$

The smaller, the better!

Turn-on Figure-of-Merit (turn-on and turn-offlosses, plus Coss \& QRR Iosses)

Turn-off Figure-of-Merit (turn-off losses only; ZVS at turn-on)

Double Pulse Test

With lowest switching energy loss \& zero reverse recovery, 650-V GaN offers the best opportunity for high-frequencyoperation!

GaN FET engineered for high-frequency, high-power

- Integrated gate driver offering up to $150-\mathrm{V} / \mathrm{ns} d V_{D S} / d t$
- $12 \times 12 \mathrm{~mm}$ QFN with lowest common source inductance
- Top-side thermal pad enables $1.6-2^{\circ} \mathrm{C} / \mathrm{W}$ (>30W/package)
- Integrated protections

Power topologies for 1200-V devices

\square : 1200-V devices

\square : 600-V devices

T type

Pros:

- Lowest device cost, fewest \# of switches
- Well understood analysis and modulation

Cons:

- $1200-\mathrm{V}$ devices needed, higher losses
- 100% of bus voltage on switch resulting in high voltage stress \& switching losses
- Highest Volt-sec on inductor resulting in large magnetics

Pros:

- 50% Volt-sec on inductor (assuming same frequency) allows smaller magnetics
- Higher efficiency with same frequency
- Lower voltage distortion due to 3-level

Cons:

- 1200-V devices needed, higher losses
- Increased bus capacitance \& \# of switches
- Uneven loss distribution, more heatsink area

Power topologies for 650-V devices (multi-level)
 \section*{Pros:}

- 50% of bus voltage on FET allows for efficient $650-\mathrm{V}$ devices
- Low Volt-sec due to 2X equivalent frequency at 50% bus voltage enables smaller inductor with simplified isolation
- Lower voltage distortion due to 3-level

Cons:

- Increased bus capacitance, control complexity to balance neutral point
- Uneven loss distribution

Pros:

- 3X equivalent frequency on inductor at 33% bus voltage allows smallest inductors (4-level)
- 33% of DC bus voltage on each switch
- Even loss distribution, lower distortion

Cons:

- Increased conduction loss
- Increased control complexity

800-V/6.6-kW 3-phase bi-directional ANPC 3-level converter

Features

- Power stage for three phase DC-AC inverter \& AC-DC power factor correction converter
- Uses 650-V GaN FETs switches in $800-\mathrm{V}$ system due to 3 -level operation
- Shunt based current sense (high accuracy \& linearity over temp.)
- Bidirectional operation with $<1 \mathrm{~ms}$ direction changeover
- C2000 DSP control

Target Applications

- Energy Storage Systems (Storage Ready Inverters)
- Bi-directional EV Charging Stations

Benefits

- High power density due to
- high switching frequency (100 kHz)
- high efficiency (>98\% at full load)
- Low component stress helps to improve system reliability
- Optimized control scheme needs 6 PWMs vs. 9 PWMs
- Reduced cost only 4 high-frequency FETs (out of 6) per leg

800-V/6.6-kW 3-phase bi-directional ANPC 3-level converter

- ~98.5\% efficiency above 1.5 kW with $>90 \%$ efficiency at 200-W light load
- GaN vs SiC efficiency improvement: 0.5% @ full load, 2-3\% at light loads
- Clean sinusoidal voltage waveforms with $<3 \%$ THD (total harmonic distortion)
- Stable transient response, settling time $\sim 5 \mathrm{~ms}$
- 80° phase margin and 18 dB gain margin with around 200 Hz loop bandwidth

900-V/5-kW 3-phase bi-directional 4-level converter

Features

- AC voltage up to 480 V L-L, DC voltage up to 1400 V
- Peak efficiency of 99.2\%
- Convection cooled with no fan
- Scalable 4-level flying capacitor multi-level solution
- Total harmonic distortion (THD) $<3 \%$
- LMG3410R050 600-V, 50-m Ω GaN FET, TI C2000 DSP

Benefits

- 3X power density improvement over IGBT and 1.25Xover SiC

Typical Operating conditions	IGBT	SiC	TI-GaN
Frequency (kHz)	20	100	$\mathbf{1 4 0}$
Open-frame power density (W/in			
Efficiency (\%)	73	170	$\mathbf{2 1 1}$

https://training.ti.com/900v-gan-solution-grid-and-beyond

900-V/5-kW 3-phase bi-directional 4-level converter

- Peak efficiency of 99.2\%
- Total harmonic distortion (THD) < 3\%

900-V/5-kW 3-phase bi-directional 4-level converter

- $100 \mathrm{~V} / \mathrm{ns} d V_{D S} / d t$ of $G a N$ FET contributes to low IV overlap losses during switching enabling 10 kHz operating frequency
- Low-inductance package mitigates voltage spikes during fast-switching transients

900-V/5-kW 3-phase bi-directional 4-level converter

- Lowest system cost for 4-level solution, despite higher semiconductor cost

Power topologies for 650-V devices (stacked $1 ⁄ 2-b r$)

11-kW onboard charger: $650-\mathrm{V}$ GaN vs. $1200-\mathrm{V}$ SiC

- $2 \mathrm{X} 5.5-\mathrm{kW}$ modules comprising equal number of transformers (2X) and switches (16X)
- Series stacked half-bridge approach with GaN FETs; lower $R_{D s, O N}$ for minimizing conduction losses due to higher current
- >3x frequency ($\sim 750 \mathrm{kHz}$) enables 50% smaller planar transformers with GaN

Power topologies for 650-V devices (stacked ½-br)

- 1-phase AC, 6.6-kW onboard charger for 400-V battery
- 1-phase AC, 6.6-kW onboard charger for 800-V battery

- Series stacked half-bridge approach on secondary side

Power topologies for 650-V devices (stacked $1 ⁄ 2$-br)

- Variant of series stacked half-bridge, with a completely symmetrical structure
- DC bus capacitor balancing needed simultaneously on both primary and secondary sides

Conclusions

- Superior switching performance of 650-V GaN FETs provide an exciting opportunity to increase converter operating frequency
- Challenge conventional approach to use 2-level converters with 1200-V IGBTs and SiC MOSFETs
-650-V GaN bring merits to both hard-switching and soft-switching converters
- Clever manipulation of power topologies easily enables use of $650-\mathrm{V}$ FETs in converters with very high DC-link voltages ($>800-\mathrm{V}$)
- Fairly well-understood power topologies and related control algorithms
- Mature eco-system of DSP control solutions, isolation products (isolators, bias power supplies) and total reference designs becoming available

坞
 TEXAS INSTRUMENTS

©2021 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's Terms of Use, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

