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Agenda 

• Applications driving >800-V DC-link voltages & trends

• The case for 650-V GaN switches

– Figure-of-merit for switching energy

• Power topologies enabling use of 650-V switches in 800-V 

converters

– Stacked half-bridge arrangements

– Multi-level power converters

• Conclusion
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800VDC600-1000VDC

3-phase AC 
L-L: 400VAC

L-N: 230VAC

High 

Voltage 

DC

2x parallel isolated DC/DC modules
3-ph PFC Vienna rectifier

Multi-kilowatt applications with 800-V DC-link
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DC/AC grid tie 

inverters

AC/DC battery 

chargers for energy 

storage

AC/DC onboard chargers, DC/AC 

vehicle-2-grid inverters, charging 

stations

Test & measurement 

equipment (eg. AC 

sources)



Trend for higher operating frequency 
• Shrink the passives i.e. inductors, 

transformers, storage capacitors to:

– Reduce component cost

– Reduce weight, height for better shock 

& vibration performance

– Enable smaller PCB foot-prints

– Create air-flow pathways for better 

cooling and higher efficiency  

– Better wave-shaping, lower distortion

– Allow surface mount technology (SMT) 

components for automated assembly

• Lower switching power loss & higher 

efficiency a pre-requisite for this 5

Electric vehicle onboard chargers

➢ power 6.6/7.2-kW to 11/22-kW 

with little-to-no increase in size

➢ density <2-kW/liter to >4-kW/liter

Photovoltaic or battery inverter

➢ <1% harmonic distortion



Do 650-V devices make sense with 800-V DC link?
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1200-V switches 650-V devices

Conventional wisdom

2-level converter 

Opportunities to differentiate 

stacked 1/2-bridges, multi-level converters 

L

>800 V

T

>800 V

L
N

>800 V



Power switch attributes influencing switching loss
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QG
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QOSS

QRR

Turn-on dIDS/dt loss ≈ Vds * IL /2 *tr1

Turn-on dVDS/dt loss ≈ Vds/2 * IL * tr2

Turn-on QRR, COSS loss = QOSS*Vds + QRR * Vbus

Turn-off d(IDS,VDS)/dt loss ≈ ∫ VDS(t) * IDS (t) * dt

VDS

tr1 tr2

Energy loss during hard-switching turn-on and turn-off

IDS

IL



Power switch attributes influencing switching loss
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• Other losses 

related to device 

output 

capacitance and 

stored reverse 

recovery charge 

Turn-on dIDS/dt loss ≈ Vds * IL /2 *tr1

Turn-on dVDS/dt loss ≈ Vds/2 * IL * tr2

Turn-on QRR, COSS loss = QOSS*Vds + QRR * Vbus

Turn-off d(IDS,VDS)/dt loss ≈ ∫ VDS(t) * IDS (t) * dt

Drain

Gate

Source

CG

QG

COSS

QOSS

QRR

Load 

current 

level

IDS

VDS

tr3

VDS

tr1 tr2

Energy loss during hard-switching turn-on and turn-off

IDS

IL

• Overlap losses 

influenced by 

gate-source, 

gate-drain charge 

& gate driver 

capability



VDS

Energy loss during soft-switching turn-on (ZVS) and turn-off

IDS

VDS

Power switch attributes influencing switching loss
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Drain

Gate

Source

CG

QG

COSS

QOSS

QRR

tr3

ISD

Turn-on dIDS/dt loss ≈ Vds * IL /2 *tr1

Turn-on dVDS/dt loss ≈ Vds/2 * IL * tr2

Turn-on QRR, COSS loss = QOSS*Vds + QRR * Vbus

Turn-off d(IDS,VDS)/dt loss ≈ ∫ VDS(t) * IDS (t) * dt

• Overlap losses 

influenced by 

gate-source, 

gate-drain charge 

& gate driver 

capability

ZVS turn-on

IL



Figure-of-merit for switching energy: GaN excels!
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Figure-of-Merit = Switching Energy (µJ) * RDS,ON@125C (m)

Turn-on Figure-of-Merit (turn-on and 
turn-off losses, plus Coss & QRR losses)

Turn-off Figure-of-Merit (turn-off 
losses only; ZVS at turn-on)
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TI GaN Results at 400 V 

900V SiC MOSFETs at 400 V

650V SiC MOSFETs at 400 V
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Load Current (A)

TI GaN Results at 400 V 

900V SiC MOSFETs at 400 V

650V SiC MOSFETs at 400 V

Load current (A) Load current (A)

The smaller, 

the better!
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Double Pulse Test

Switching energy loss increases with higher switch voltage rating as 

expected, since associated device capacitances increase 



Figure-of-merit for switching energy: GaN excels!
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Figure-of-Merit = Switching Energy (µJ) * RDS,ON@125C (m)

Turn-on Figure-of-Merit (turn-on and 
turn-off losses, plus Coss & QRR losses)

Turn-off Figure-of-Merit (turn-off 
losses only; ZVS at turn-on)
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Load Current (A)

TI GaN Results at 400 V 

900V SiC MOSFETs at 400 V

650V SiC MOSFETs at 400 V
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TI GaN Results at 400 V 

900V SiC MOSFETs at 400 V

650V SiC MOSFETs at 400 V

Load current (A) Load current (A)

The smaller, 

the better!
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Double Pulse Test

With lowest switching energy loss & zero reverse recovery, 650-V GaN 

offers the best opportunity for high-frequency operation!



GaN FET engineered for high-frequency, high-power
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DRAIN

RDRV

IN

LDO5V

Slew Rate Direct-Drive

VDD

OCP
OTP

UVLO

FAULT

SOURCE

600V 
GaN

Current

VNEG

Source
GaN

Gate driver

• Integrated gate driver offering 

up to 150-V/ns dVDS/dt

• 12x12mm QFN with lowest 

common source inductance

• Top-side thermal pad enables 

1.6-2C/W (>30W/package)

• Integrated protections 

~150 V/ns



Power topologies for 1200-V devices
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: 1200-V devices

L

Two level

Pros:
• Lowest device cost, fewest # of switches
• Well understood analysis and modulation

Cons:
• 1200-V devices needed, higher losses
• 100% of bus voltage on switch resulting in 

high voltage stress & switching losses
• Highest Volt-sec on inductor resulting in large 

magnetics

: 600-V devices
T type

L

: 1200-V devices

Pros:
• 50% Volt-sec on inductor (assuming same 

frequency) allows smaller magnetics
• Higher efficiency with same frequency
• Lower voltage distortion due to 3-level

Cons:
• 1200-V devices needed, higher losses
• Increased bus capacitance & # of switches
• Uneven loss distribution, more heatsink area

>800 V

>800 V



Power topologies for 650-V devices (multi-level)
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Pros:
• 50% of bus voltage  on FET allows for 

efficient 650-V devices 
• Low Volt-sec due to 2X equivalent frequency 

at 50% bus voltage enables smaller inductor 
with simplified isolation

• Lower voltage distortion due to 3-level
Cons:
• Increased bus capacitance, control 

complexity to balance neutral point
• Uneven loss distribution

Pros:
• 3X equivalent frequency on inductor at 33% 

bus voltage allows smallest inductors (4-level)
• 33% of DC bus voltage on each switch
• Even loss distribution, lower distortion

Cons:
• Increased conduction loss
• Increased control complexity

>800 V

>800 V

:650-V GaN devices

ANPC 

PWM3

L

11

FC4L

L

:650-V GaN devices



Target Applications

• Energy Storage Systems (Storage Ready Inverters)

• Bi-directional EV Charging Stations 

• Power stage for three phase DC-AC inverter & AC-DC power 

factor correction converter

• Uses 650-V GaN FETs switches in 800-V system due to 3-level 
operation

• Shunt based current sense (high accuracy & linearity over temp.) 

• Bidirectional operation with <1ms direction changeover

• C2000 DSP control

Features Benefits

• High power density due to 

• high switching frequency (100kHz) 

• high efficiency (>98% at full load) 

• Low component stress helps to improve system reliability

• Optimized control scheme needs 6 PWMs vs. 9 PWMs

• Reduced cost only 4 high-frequency FETs (out of 6) per leg

Tools & Resources

Devices used:

• UCC21530

• AMC3302

• UCC21541

• LMT87

• TLV9004

• TPS563200

• LP5907

• SN6501 

• OPA4376

• TMS320F28004x

800-V/6.6-kW 3-phase bi-directional ANPC 3-level 
converter
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http://www.ti.com/product/UCC21520


800-V/6.6-kW 3-phase bi-directional ANPC 3-level 
converter
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• ~98.5% efficiency above 1.5 kW with >90% efficiency at 200-W light load

– GaN vs SiC efficiency improvement: 0.5% @ full load, 2-3% at light loads

• Clean sinusoidal voltage waveforms with <3% THD (total harmonic distortion)

• Stable transient response, settling time ~5ms

• 80o phase margin and 18dB gain margin with around 200Hz loop bandwidth
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900-V/5-kW 3-phase bi-directional 4-level converter
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• AC voltage up to 480 V L-L, DC voltage up to 1400 V

• Peak efficiency of 99.2% 

• Convection cooled with no fan

• Scalable 4-level flying capacitor multi-level solution 

• Total harmonic distortion (THD) < 3%

• LMG3410R050 600-V, 50-mΩ GaN FET, TI C2000 DSP

Features Benefits

Typical Operating conditions IGBT SiC TI-GaN

Frequency (kHz) 20 100 140

Open-frame power density 

(W/in3)

73 170 211 

Efficiency (%) 98.3 98.9 99.2

• 3X power density improvement over IGBT and 1.25X over SiC
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https://training.ti.com/900v-gan-solution-grid-and-beyond

https://training.ti.com/900v-gan-solution-grid-and-beyond
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CH1: Fly capacitor 532 V
CH2: Fly capacitor 266 V
CH3: Grid voltage 270 V

CH4: Grid current 6 A

• Peak efficiency of 99.2% 

• Total harmonic distortion (THD) < 3%

900-V/5-kW 3-phase bi-directional 4-level converter
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3.8ns

480 V

464 V
472 V • 100V/ns dVDS/dt of GaN

FET contributes to low I-

V overlap losses during 

switching enabling 

10kHz operating 

frequency

• Low-inductance package 

mitigates voltage spikes 

during fast-switching 

transients

900-V/5-kW 3-phase bi-directional 4-level converter
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• Lowest system cost for 4-level solution, despite higher semiconductor cost

Inverter 
relative cost 
breakdown 

Inverter 
relative volume 

breakdown 

SiC HB SiC T type ANPC PWM3 FC4L (TI-GaN)

Heatsink

DC capacitor

AC capacitor

Inductor

EMI

SiC HB SiC T type ANPC PWM3 FC4L (TI-GaN)

Heatsink
X cap2
Y cap
CMC
Inductor
Electrolytic
DC film capacitor
Digital isolators
Analog isolators
Isolated supplies
Device

900-V/5-kW 3-phase bi-directional 4-level converter
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Power topologies for 650-V devices (stacked ½-br)

S1A

S3A

S2A

S4A

S3B

S2B

S4B

S1B

S2C

S1C S3C

S4C

S2D

S1D S3D

S4D

800-V 

battery

PFC Output

663V ~ 940V

L1A L1C

T1

C1A C1C

LB LD

T2

CB CD

>900C DC

• Split DC bus 

capacitors enables 

series stacked ½-

bridge arrangement of 

650-V GaN-FETs

• Output connection re-

configurable for series 

or parallel operation 

(800-V or 400-V 

batteries)



>900C DC
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800V 

battery
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T1

C1A
C1C

LB LD

T2

CB
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>900C DC
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11-kW 650-V GaN bi-directional OBC 11-kW 1200-V SiC bi-directional  OBC

5.6x5.6x2.1cm = 65cc transformer

5.1x5.1x4.8cm = 125cc transformer

• 2X 5.5-kW modules comprising equal number of transformers (2X) and switches (16X)

• Series stacked half-bridge approach with GaN FETs; lower RDS,ON for minimizing 

conduction losses due to higher current

• >3x frequency (~750kHz) enables 50% smaller planar transformers with GaN

11-kW onboard charger: 650-V GaN vs. 1200-V SiC
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>900C DC



• 1-phase AC, 6.6-kW 

onboard charger for 

800-V battery

500V-900V 
DC

400V DC
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Power topologies for 650-V devices (stacked ½-br)
• 1-phase AC, 6.6-kW 

onboard charger for 

400-V battery

400V DC

• Series stacked half-bridge approach on secondary side



Power topologies for 650-V devices (stacked ½-br)
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PFC Output

663V ~ 940V 800-V 

battery

>800V • Variant of series 

stacked half-bridge, 

with a completely 

symmetrical structure

• DC bus capacitor 

balancing needed 

simultaneously on 

both primary and 

secondary sides



Conclusions

• Superior switching performance of 650-V GaN FETs provide an 

exciting opportunity to increase converter operating frequency

– Challenge conventional approach to use 2-level converters with 1200-V 

IGBTs and SiC MOSFETs

– 650-V GaN bring merits to both hard-switching and soft-switching converters

• Clever manipulation of power topologies easily enables use of 650-V 

FETs in converters with very high DC-link voltages (>800-V)

– Fairly well-understood power topologies and related control algorithms

– Mature eco-system of DSP control solutions, isolation products (isolators, 

bias power supplies) and total reference designs becoming available
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