Welcome! Texas Instruments New Product Update

- This webinar will be recorded and available at <u>www.ti.com/npu</u>
- Phone lines are muted
- Please post questions in the chat or contact your TI sales contact or field applications engineer

OPAX310: A 2-IN-1 AMPLIFIER TO IMPROVE YOUR APPLICATION'S DRIVE STRENGTH OR LOWER POWER CONSUMPTION

New Product Update

Bhuvanesh R K

- Systems Engineer

Robert Clifton

Applications Engineer

Agenda

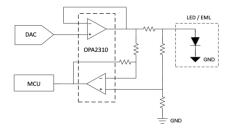
- Device Introduction
- Product Highlight 1 & Applications
- Product Highlight 2 & Applications
- How to get started with OPAx310

Please feel free to "chat" Bhuvanesh R K, Systems Engineer or Robert Clifton, Applications Engineer, who will be available to answer any questions you have throughout this presentation.

OPAx310: OPA310 / OPA2310 / OPA4310

1.5V – 5.5V Operation | 3 MHz | RRIO | High Output Current, Fast Enable Amplifier

Features


- High Output Current
- Fast Enable
- Fail-Safe Input Structure
- Low Offset over tempGain Bandwidth1.4 mV (max)3 MHz (typ)
- Quiescent Current 165 μA (typ)
- Low Noise 13 nV/√Hz @10KHz (typ)
- Supply Voltage 1.5 V to 5.5 V
- Small Size, PowerPAD Pkgs with Thermal Protection

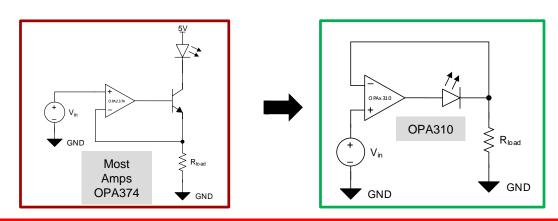
Applications

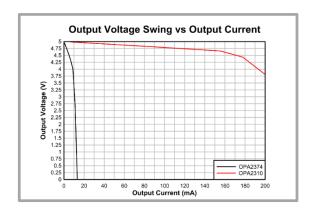
- Optical Module Laser Drivers and LED Drivers
- Discrete Howland Current Pumps
- DAC Buffers & Reference Buffers
- Low-Power, High-Performance Applications
- Building Automation, Portable Electronics / Medical

Benefits

- High output current helps easily bias Laser diodes, LEDs, photo diodes and drive audio pre-amplifiers, small speaker
- Low offset and Low Noise enables precision current, voltage sensing and use in signal chain applications
- EMI Filtered, Fail safe inputs with 8kV HBM ESD along with built in Power on reset ensures robust performance
- Stable across wide range of capacitive, resistive loads
- Excellent shutdown function with fast enable time for low power

LED / EML Biasing With Current Sense


High output current applications

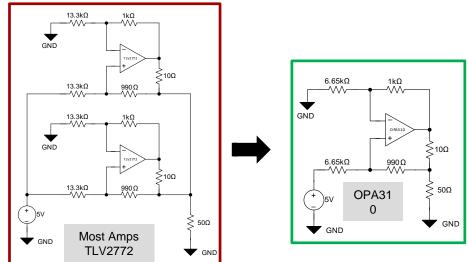

Improve drive strength

LED | Laser driver

- Many amps require an external transistor to properly drive the LED / Laser because of,
 - Limited output current at lower supply voltages
 - Limited output swing when directly driving the LED
- Example amp (OPAx374) has output voltage swing that is heavily limited even at a typical LED current of ±10mA requiring additional & external FET / BJT
- The OPAx310 can drive directly various LEDs / Lasers even at lower supply voltages with better output swing without additional external transistor, saving board area and cost.

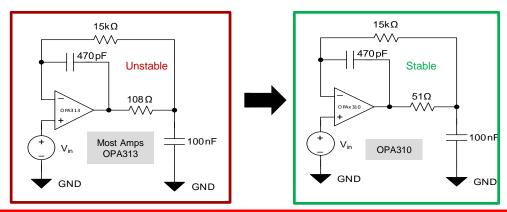
Howland current pump

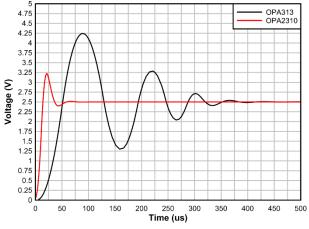
 For building current sources, higher output current amplifier helps reduce the need for higher channel count to drive the same load (with better voltage compliance)

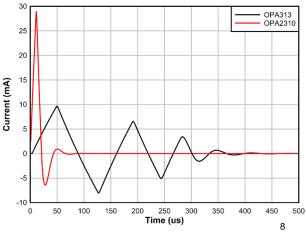

 In this example, a 50Ω load requires 75mA of current (4.5V at the amplifier output → 1V Headroom at Supply voltage of 5V)

- Most amps require two channels in parallel
- Single amp of OPAx310 drives this load

OPAx310 Solution Benefits:


Saves cost : Cheaper


Saves board area: Smaller



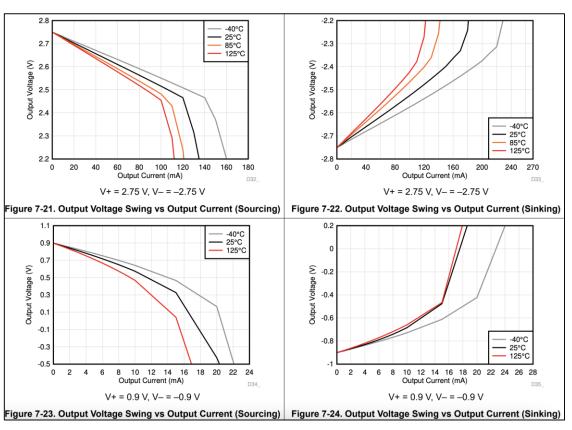
Reference buffer | shield amplifiers

- Amplifiers can struggle when driving large value capacitors that can experience switching voltage or current transients
 - These transients drive amp into current limit (non-linear operation) when used as reference buffers or guard / shield amps
- With OPA310's high output current & fast slew rate the application can have:
 - Linear operation (does not enter current limiting)
 - Less overshoot & Faster settling time

Electrical characteristics | Drive strength

1. Tested Swing with 50mA:

PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT
A _{OL} Open-loop voltage gain ⁽⁶⁾	$V_S = 3.3 \text{ V}, (V-) + 0.25 \text{ V} < V_O < (V+) - 0.25 \text{ V}, $ $T_A = 25^{\circ}\text{C}$	80	102		dB


2. Short Circuit Current:

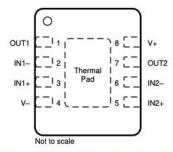
- 5.5V Supply: 110-mA (minimum) and 150-mA (typical)
- 1.8V Supply: 6-mA (minimum over temp) and 20-mA (typical)

3. Voltage Swing Closer to Rails:

	Voltage output swing from positive rail	$V_{\rm S}$ = 1.8 V, $R_{\rm L}$ = 2 k Ω to $V_{\rm S}$ / 2		10	21	
		$V_S = 1.8 \text{ V}, R_L = 10 \text{ k}\Omega \text{ to } V_S / 2$		2	11	
		$V_S = 1.8 \text{ V}, R_L = 2 \text{ k}\Omega \text{ to } V_S / 2$	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		51	
		$V_S = 1.8 \text{ V}, R_L = 10 \text{ k}\Omega \text{ to } V_S / 2$	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		26	
V _{OH}		$V_S = 5.5 \text{ V}, R_L = 2 \text{ k}\Omega \text{ to } V_S / 2$		3.5	20	mV
		$V_S = 5.5 \text{ V}, R_L = 10 \text{ k}\Omega \text{ to } V_S / 2$		0.75	9	
		$V_S = 5.5 \text{ V}, R_L = 2 \text{ k}\Omega \text{ to } V_S / 2$	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$		30	
		$V_S = 5.5 \text{ V}, R_L = 10 \text{ k}\Omega \text{ to } V_S / 2$	T _A = -40°C to 125°C		14	my

Typical characteristic curves | Drive strength

Enables much higher load currents at 5.5V

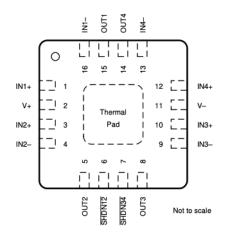

- 100mA I_{load} with 0.3V to rails (typical)
- –20% I_{load} accounts for process variations

Enables greater output swing at lower supply voltages of 1.8V

- 5mA I_{load} with 0.2V to rails (typical)
- -20% I_{load} accounts for process variations

10

OPAx310 PowerPAD | Small size packages



Connect exposed thermal pad to V–. See Section 8.3.10 for more information.

Figure 6-7. OPA2310 DSG Package 8-Pin WSON with Exposed Thermal Pad (Top View)

2CH: 2mm x 2mm

 $R_{\theta, IA} - 90.1 \, ^{\circ}\text{C} / \text{W}$

Connect thermal pad to V-.

Figure 6-12. OPA4310S RTE Package 16-Pin WQFN With Exposed Thermal Pad (Top View)

4CH: 3mm x 3mm

 $R_{A,IA} - 57.6 \, ^{\circ}\text{C} / \text{W}$

Lower power consumption

How to lower power consumption

Typical amplifier signal chain consists of Sensor / Gain Element / ADC

Sensors have longer latency and are usually left on

ADC can be operated in burst mode to save power

How to reduce amplifier power?

Use case for fast shutdown

Straight forward way to reduce amp power is to use low power amp

Amplifier	Quiescent Current when powered-on (nA)	Bandwidth (kHz)	Noise at 10kHz (nV/rt-Hz)	Output Impedance at 10kHz (Ohms)
TLV8541	500	8	264	8000
TLV379	1000	90	83	28000
TLV9041	10000	350	65	7500

Disadvantages: Lower bandwidth, Higher Noise, Hard to stabilize

- Better Approach: Use fast enable amplifier with better performance & turn off amplifier when not in use to lower power
 - Turn on amplifier just before ADC conversion start with enough time to account for enable time & settling time. OPAx310 is optimized for faster settling after enable
 - Example in the next slide comparing average power in 1ms for OPAx310 vs Other Amps

Use case for fast shutdown

OPAx310 achieves lowest duty cycle for 1ms example with fast enable & settling

Amplifier	Enable time (μs)	Settling time 0.01% (μs)	Total ON time over 1ms (μs)	Total SHDN time over 1ms (μs)	Minimum Duty Cycle D (%)
TLV9041	160	30	190	810	19
TLV9001	70	3	73	927	7.3
TLV9061	10	1	11	989	1.1
OPA310	1	1.6	2.6 = (1 + 1.6)	997.4 = (1000 – 2.6)	0.26 = (2.6 / 1000)

OPAx310 consumes lowest current in shutdown while providing faster enable time

Amplifier	Bandwidth (MHz)	Enable time (μs)	Quiescent Current when powered-on Q_ON (μΑ)	Quiescent Current in shut down Q_OFF (μΑ)
TLV9041	0.35	160	10	0.750
TLV9001	1	70	60	0.500
TLV9061	10	10	538	0.500
OPA310	3	1	165	0.265

15

1ms average quiescent current vs performance

Туре	Amplifier	Average Quiescent current in 1ms (μΑ)	Thermal noise floor (nV/rt-Hz)	Output Impedance at 10 kHz (Ohms)
Always ON	TLV8541	0.50	264	8000
ON / OFF	TLV9041	1.96	65	7500
ON / OFF	TLV9001	4.84	27	1200
ON / OFF	TLV9061	6.41	10	100
ON / OFF	OPA310	0.69 (165*0.0026 + 0.265*0.9974)	13	1000

OPAx310 enables duty cycling to achieve good power-performance balance,

Lower Noise

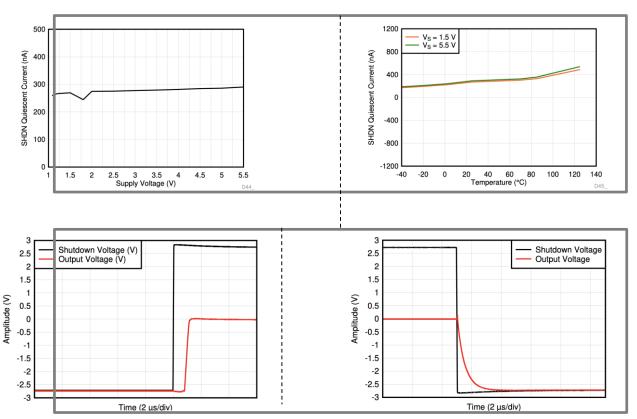
Better Stability

Lower Power

Electrical characteristics | Shutdown response

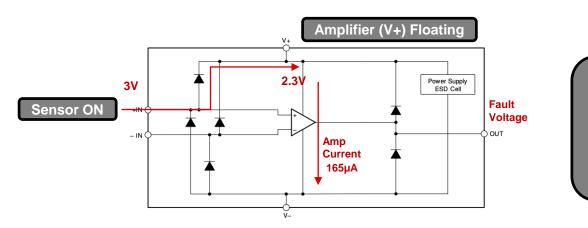
Fast Enable Time:

PARAMETER TEST CONDITIONS		MIN	TYP	MAX	UNIT	
t _{ON}	Amplifier enable time (full shutdown) (7) (1)	G = +1, $V_{CM} = V_S / 2$, $V_O = 0.9 \times V_S / 2$, R_L connected to V		1	1.6	μs
t _{OFF}	Amplifier disable time ⁽⁷⁾	G = +1, $V_{CM} = V_S / 2$, $V_O = 0.1 \times V_S / 2$, R_L connected to V		1		μs


Lower Shutdown Quiescent Current:

Shutdown		All amplifiers disabled, SHDN = V-, OPA4310S	0.100 0.150	μA
I _{Q_SHDN} current per amplifier	current per amplifier	All amplifiers disabled, SHDN = V-, OPA310S	0.265 0.475	μА
I _{Q_SHDN}	Shutdown current per amplifier	All amplifiers disabled, SHDN = V-, OPA2310S	0.200 0.375	μА
I _{Q_SHDN} Shutdown current per amplifier (1)		All amplifiers disabled, SHDN = V-, T _A = -40°C to 85°C, OPA4310S	0.300	μA
		All amplifiers disabled, SHDN = V-, T _A = -40°C to 85°C, OPA310S	0.700	μA
I _{Q_SHDN}	Shutdown current per amplifier ⁽¹⁾	All amplifiers disabled, SHDN = V-, T _A = -40°C to 85°C, OPA2310S	0.600	μА
Z _{OUT_SHDN}	Output impedance during shutdown	Amplifier disabled	43 11.5	GΩ pF

Typical characteristics | Shutdown response

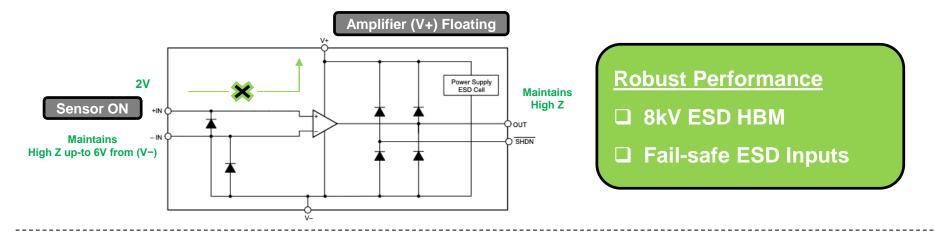

SHDN Quiescent Current, 1CH

Enable / Disable Response

Problem scenario | Why fail safe ESD?

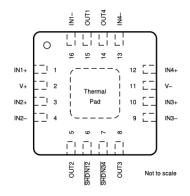
Fault Scenarios

- □ Separate power supplies between Amp & Sensor
- □ Power Sequencing


Most Amps: ESD diodes to V+

Fault Scenarios if Sensor output voltage is present before amplifier supply voltage

Amplifier "back-powering", sensor loading & fault signal at output


OPAx310 fail safe ESD

OPAx310 uses modified ESD Structure with No ESD diodes to V+ rails

- No Sensor Loading: Maintains High Z at inputs up to 6V from (V-)
- No Back Powering & Output Faults to ADC / Microcontroller

OPAx310S shutdown packages

Connect thermal pad to V-.

Figure 6-12. OPA4310S RTE Package 16-Pin WQFN With Exposed Thermal Pad (Top View)

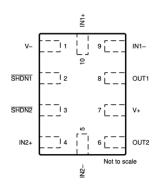


Figure 6-8. OPA2310S RUG Package 10-Pin X2QFN (Top View)

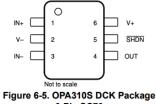


Figure 6-5. OPA310S DCK Packag 6-Pin SC70 (Top View)

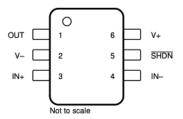


Figure 6-4. OPA310S DBV Package 6-Pin SOT-23 (Top View)

4CH: 3mm x 3mm

2CH: 2mm x 1.5mm

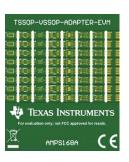
1CH: 2mm x 1.25mm

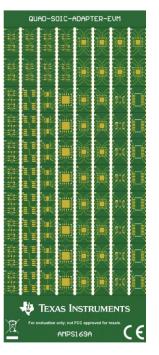
1CH: 2.9mm x 1.6mm

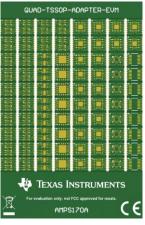
Getting started

You can start evaluating this device leveraging the following:

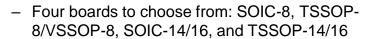
Content type	Content title	Link to content or more details
Product folder	OPAx310 product folder	https://www.ti.com/product/OPA310 https://www.ti.com/product/OPA4310 https://www.ti.com/product/OPA2310
Samples	Sampling page for OPA310, OPA2310, OPA4310	https://www.ti.com/product/OPA310#order-quality https://www.ti.com/product/OPA4310#order-quality https://www.ti.com/product/OPA2310#order-quality
Technical blog content or white paper	Various articles: Op Amp ESD Protection Structures Analysis of Improved Howland Current Pump Fast Enable Amplifier with Fail Safe Input ESD Benefits of Op-Amps with High Output Current	https://www.ti.com/lit/pdf/slvaex7 https://www.ti.com/lit/pdf/sboa437 To be published soon To be published soon
Selection and design tools and models	Spice models with Reference Design	https://www.ti.com/lit/tsc/sbomc55
Development tool or evaluation kit	SMALL-AMP-DIP-EVM evaluation module SURFACE-MOUNT-ADAPTER-EVM	https://www.ti.com/tool/SMALL-AMP-DIP-EVM https://www.ti.com/tool/SURFACE-MOUNT-ADAPTER-EVM

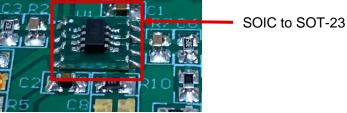



Surface-Mount-Adapter-EVM


https://www.ti.com/tool/SURFACE-MOUNT-ADAPTER-EVM

The Four Board Variants





Features:

- 42 adaption combinations
 - Examples: SOT-23, X2SON, WSON, etc.
- Optimized PCB designed to reduce parasitics
- PCB layout can be referenced for dual footprint designs
- Allow customer to evaluate devices in their system when specific package is not available
- Help transition from larger packages to new small modern ones

TSSOP to X2SON

© Copyright 2022 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated