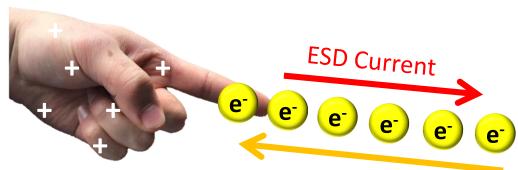
TI'S ESD PROTECTION DEVICES AND NEW DEDICATED SOLUTIONS FOR CAN & LIN

New Product Update

Sebastian Muriel

- Applications Engineer


Agenda

- Introduction to ESD protection
 - What is electrostatic discharge (ESD) and where is ESD protection used?
 - Key parameters of ESD protection devices and their impact on system performance
 - How to choose an ESD device for any application
- Device family overview of ESD protection solutions for controller area network (CAN) & local interconnect network (LIN) in industry standard packages

Please feel free to "chat" Matthew Smith, Systems Engineer, who is available to answer any questions you have throughout this presentation.

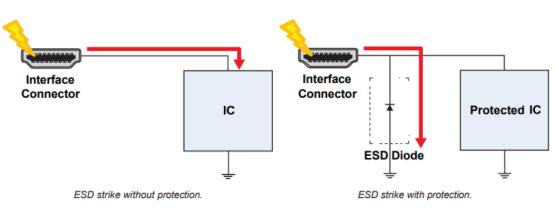
What is ESD?

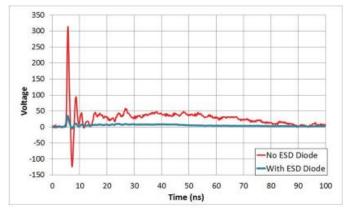
Electrostatic discharge (ESD) is the release of stored static electricity.

The discharge can produce very high voltages that can damage ICs

Source of ESD Voltage	Typical ESD Voltage at 20% Relative Humidity	
Triggering a vacuum solder remover	8 kV	
Walking across Vinyl floor	12 kV	
Removing plastic tape for a PC board	12 kV	
Removing shrink film from PC board	12 kV	
Spraying aerosol freezer spray	15 kV	
Arising from a foam cushion	18 kV	
Sliding plastic box on carpet	18 kV	
Opening a plastic bag	20 kV	

ESD voltage will typically be lower in higher humidity environments


Integrated Circuit



Where to place ESD protection

ESD suppressors should be placed in parallel between the source of ESD (typically an exposed interface connector) and the IC that needs protection.

Voltage waveforms with and without ESD protection.

Where is ESD protection used?

Automotive

Interfaces: CAN, CAN-FD, CAN-XL, LIN, LVDS, SDIO, FPD-Link/ SERDES

Applications

- ADAS domain controller
- Medium/short range radar
- Body control module (BCM)
- Traction inverter
- Electric power steering
- · Battery pack passive balancing
- Head unit

Industrial/ Comms

Interfaces: Audio, Display, Display Port, Ethernet, RS-485/432/232/422, I2C

Applications

- · Electric meter
- String inverter
- · Battery storage system
- HVAC controller
- Vacuum robot
- Cordless power tool
- Rack server
- SSD

General Purpose

Interfaces: LCD, Keypad, Push Button, USB-PD

Applications

- Notebook PC
- Gaming controller
- Smart speaker
- Streaming media player
- Router
- WiFi access point
- Digital input module
- STB & DVR

High Speed

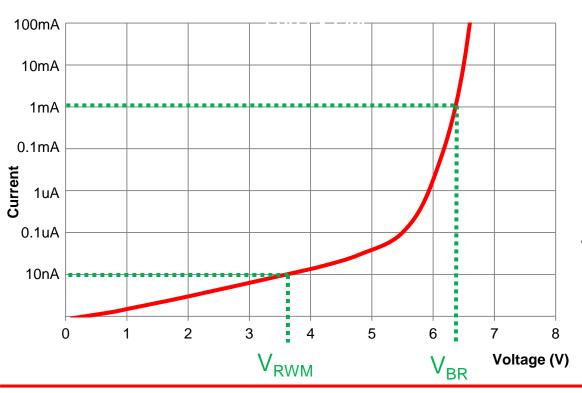
Interfaces: HDMI 1.3/1.4, HDMI2.x, PCIe, Antenna, USB2.0, USB3.2, USB Type C

Applications

- Desktop PC
- Notebook PC
- Smartphone
- TV
- · Data center switch
- Network interface card

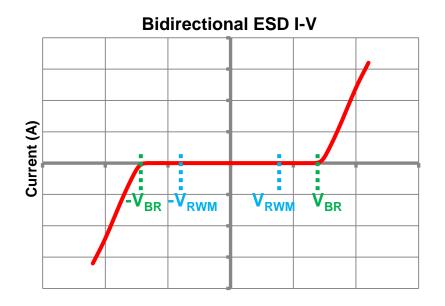
At a glance | recommended protection devices

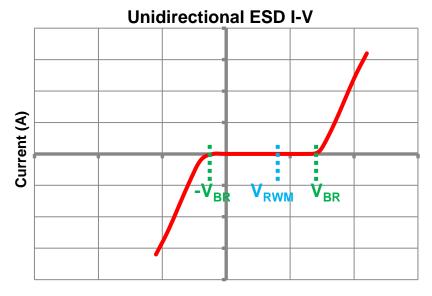
	-								
			Recommend de	evice by interface	(Left to right: Decr	easing Interface S	Signal Speed)		
Category & End Equipment	Antenna	HDMI, DisplayPort	PCle	USB 2.0, 3.x	Ethernet	CAN, LIN, FPD Link	GPIO, I2C, Audio JTAG, Keypad	RS-485, RS- 232	Power line, USB-PD, 4-20mA
Advanced driver assistance system (ADAS) Medium/Short Range Radar, ADAS Domain Controller, Camera Module	TPD1E01B04-Q1		TPD4E02B04-Q1	TPD2E2U06-Q1	TPD4E02B04-Q1	ESD2CAN24-Q1	TPD1E05U06-Q1	ESD752-Q1	TPD1E10B06-Q1
Body Electronics & Lighting Body Control Module (BCM), Headlight, Automotive Gateway	TPD1E01B04-Q1		TPD4E02B04-Q1	TPD1E10B06-Q1	TPD4E02B04-Q1	ESD1LIN24-Q1	TPD1E10B06-Q1	ESD762-Q1	ESD1LIN24-Q1
Hybrid, electric & powertrain systems Traction Inverter, Electric Power Steering, Battery Pack Passive Balancing	TPD1E01B04-Q1			TPD4E05U06-Q1	TPD4E02B04-Q1	ESD2CAN36-Q1	TPD1E05U06-Q1	ESD761-Q1	TPD1E10B06-Q1
Infotainment & Cluster Head Unit, USB Charging, Digital Cockpit Processing Unit, Info Display	TPD1E01B04-Q1		TPD4E02B04-Q1	TPD2E2U06-Q1	TPD4E05U06-Q1	ESD761-Q1	TPD1E10B06-Q1	ESD752-Q1	TPD1E10B06-Q1
Grid Infrastructure Electric Meter, Battery Storage System, Data Concentrator, String Inverter	TPD1E01B04			ESD122	ESDS304	ESD2CAN24-Q1	ESD351	ESD752	TVS1800 /01
Building Automation IP Network Camera, Video Recorder, HVAC Controller	TPD1E01B04	ESD204	ESDS314	ESD224	TPD4E05U06	ESD2CANFD24-Q1	TPD1E05U06	ESD762	TSM36A
Appliances Vacuum Robot, Cordless Power Tool, AC unit, Battery Charger	TPD1E01B04			ESD401	TPD4E02B04	ESD1LIN24-Q1	TPD1E10B06	ESD751	TVS2700 /01
Personal Electronics Notebook PC, Motherboard, Smartphone, TV	TPD1E0B04	TPD4E02B04	TPD4E02B04	ESD321	ESD204		ESD341		TVS2200 /01
Wired Networking Data Center Switch, WLAN/WI-FI Access Point, Router	TPD1E01B04		TPD4E02B04	TPD2E2U06	ESDS314		TPD4E05U06	ESD752	TVS0701
Datacenter & Enterprise Computing Rack Server, Network Interface Card, SSD		ESD224	TPD4E02B04	TPD4E1U06	ESDS304		ESD401	ESD762	TVS1400 /01
Factory Automation Single Board Computer, Digital Input Module	TPD1E0B04	ESD204	TPD4E02B04	TPD1E05U06	ESDS312	ESD762	TPD1E10B06	ESD752	TVS3300 /01
Home Theater & Entertainment STB & DVR, Streaming Media Player, Smart Speaker	TPD1E01B04	TPD4E02B04		TPD6E05U06	ESDS314		TPD1E10B09		TVS2700 /01

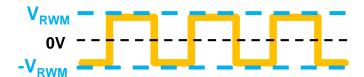

Low cap. <=0.5pF

Small size

Multi-Ch

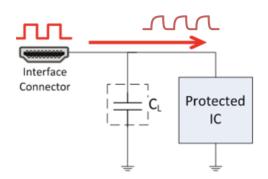


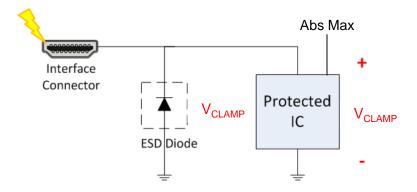

Key parameters – working voltage (Vrwm)



- V_{RWM} is defined as the maximum positive and negative voltage where current flowing through the diode does not exceed a certain amperage, typically low nA range.
 - The V_{RWM} should encompass the entire interface's voltage range to minimize leakage during operation
- Once the voltage exceeds V_{RWM}, it approaches the breakdown voltage (V_{BR}), which is defined as the voltage where current through the diode exceeds 1mA

Key parameters - polarity

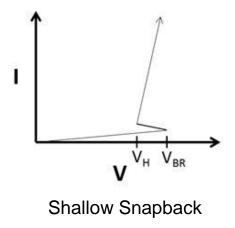


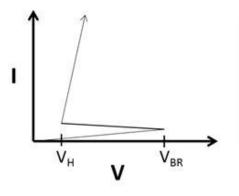


Key parameters - clamping voltage

During regular operation, the diode is reverse biased and behaves like a capacitor

Ideally, the diode is invisible to the system

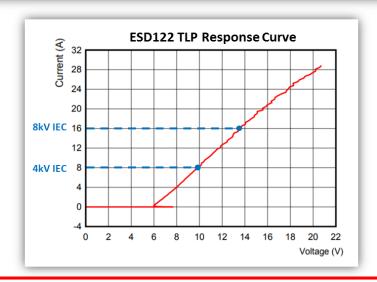

During an ESD strike, the diode breaks down and steers "all" of the ESD current to ground.


The diode should ideally clamp at or below the abs max rating of the protected IC pins.

Key parameters - snapback

Some ESD protection devices can exhibit a temporary negative resistance and "snap back" the voltage to the holding voltage (V_H).

The difference between the breakdown voltage and holding voltage can be small (shallow snapback) or very large (deep snapback)


Deep Snapback

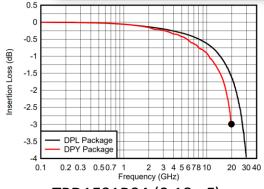
Our portfolio currently offers shallow snapback devices across multiple voltage nodes.

Key parameters – TLP

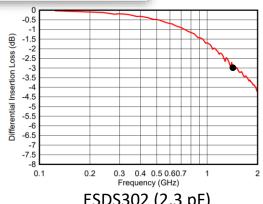
A transmission line pulse (**TLP**) can be used to characterize the diodes IV curve during an ESD strike. TLP is useful because it has similar characteristics to an IEC 61000-4-2 ESD strike. Thus you can correlate TLP current with IEC ESD.

Below is the TLP I-V curve of one of our shallow snap back devices.

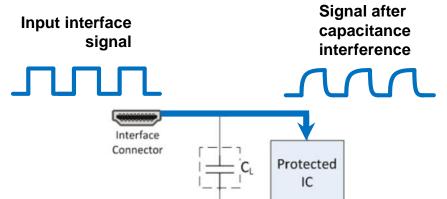
- A 2kV IEC strike = 4A TLP.
- A 4kV IEC strike = 8A TLP.
- A 6kV IEC strike = 12A TLP.
- A 8kV IEC strike = 16A TLP.

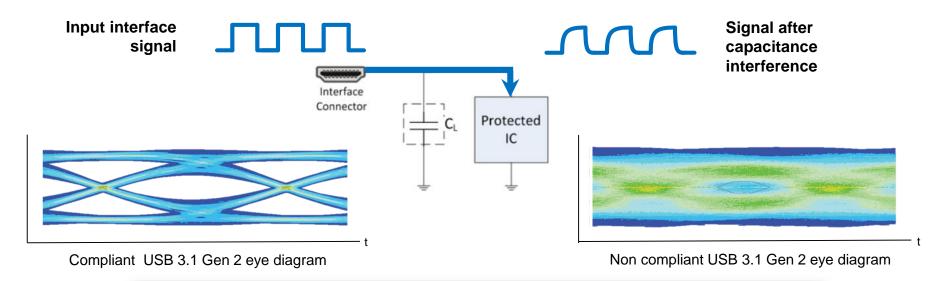

11

Key parameters – capacitance


Capacitance of the diode must be low enough to not degrade the signal integrity of the protected line.

Capacitance requirements will vary from system to system, thus capacitance recommendations are broad.

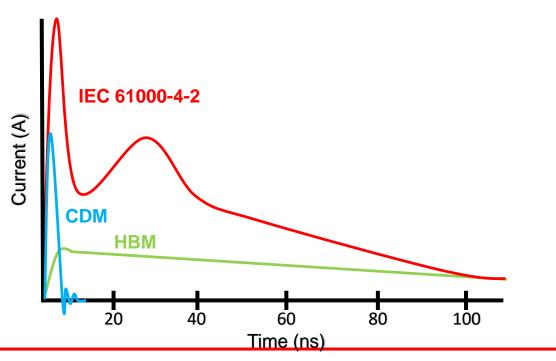

TI's low capacitance diodes will typically have an insertion loss graph in the datasheet, you can reference this to see what signal speeds the diode can support and the insertion loss at those frequencies.



ESDS302 (2.3 pF)

- The general rule of thumb is to protect signals with speeds up to the -3dB point.
- Diodes with a lower capacitance will cause less insertion loss at higher frequencies.

Key parameters – capacitance

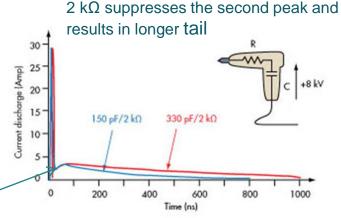


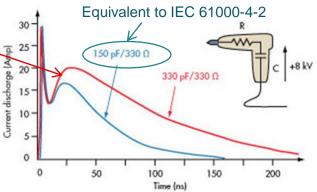
- The eye diagrams above show a compliant USB3.1 eye diagram and a non compliant USB
 3.1 eye diagram due to high capacitance on the trace.
- High-speed signals for interfaces such as USB or HDMI will require low capacitance diodes to remain within compliance with interface standards.
- TI's low capacitance diode datasheets offer eye diagrams for common interfaces.

ESD standards: IEC 61000-4-2

6.2 ESD Ratings

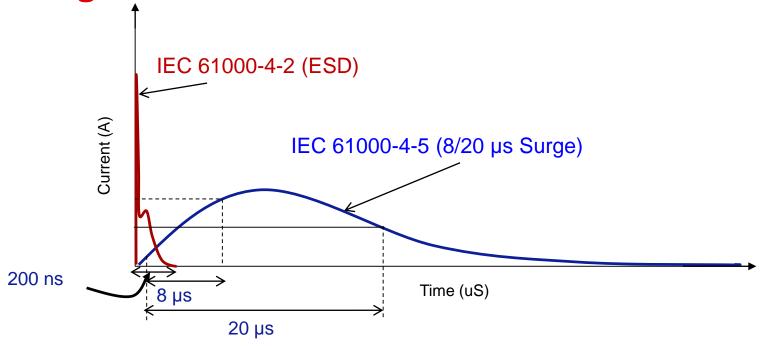
			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	68	
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V



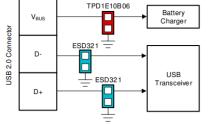

ESD standards: ISO 10605 vs. IEC 61000-4-2

ISO 10605 is required for automotive qualifications

	IEC 61000-4-2 Contact	ISO 10605 Contact
Resistor & Capacitor Combo	R = 330 Ω C = 150 pF	R = 330Ω OR 2 kΩ C = 150 pF QR 330 pF


330 pF / 330 Ω is stricter and widely used 10605 standard

 $330~\Omega$ network results in higher peak and shorter tail


Surge vs ESD: current waveforms

Surge pulses contain significantly more energy than ESD pulses and require more protection

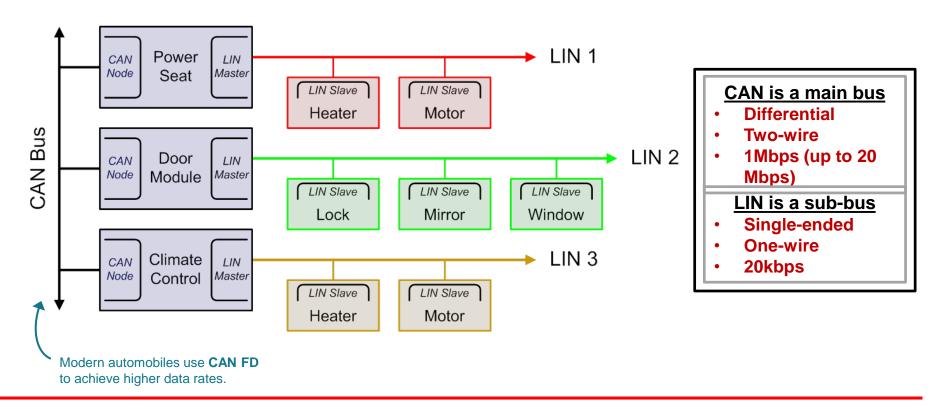
Choosing an ESD Diode

Diode Spec	TPD1E10B06	ESD321
Working Voltage (V _{RWM}) Learn More: <u>Video Article</u>	5.5V	3.6V
Bi-/Uni-directional Learn More: <u>Video</u> <u>Article</u>	Bi	Uni
Clamping Voltage (V) Learn More: Video Article	10V	6.3V
Capacitance (Typ.) Learn More: Video Article	12pF	0.9pF
IEC 61000-4-2 (ESD) Learn More: Video Article	±30/30kV	±30/30kV
IEC 61000-4-5 (Surge) (tp - 8/20 μs) Learn More: <u>Video</u> <u>Article</u>	6A	6A
	Working Voltage (V _{RWM}) Learn More: Video Article Bi-/Uni-directional Learn More: Video Article Clamping Voltage (V) Learn More: Video Article Capacitance (Typ.) Learn More: Video Article IEC 61000-4-2 (ESD) Learn More: Video Article IEC 61000-4-5 (Surge) (tp - 8/20 μs)	Working Voltage (V _{RWM}) Learn More: Video Article Bi-/Uni-directional Learn More: Video Article Clamping Voltage (V) Learn More: Video Article Capacitance (Typ.) Learn More: Video Article IEC 61000-4-2 (ESD) Learn More: Video Article IEC 61000-4-5 (Surge) (tp - 8/20 μs) 5.5V Bi 10V 12pF ±30/30kV

Data Line Protection

6.6 Electrical Characteristics

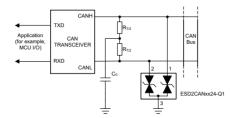
At TA = 25°C unless otherwise noted


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{RWM}	Reverse stand-off voltage	I _{IO} < 50 nA, across operating temperature range			3.6	٧
I _{LEAKAGE}	Leakage current at 3.6 V	V _{IO} = 3.6 V, I/O to GND		0.1	10	nA
V _{BRF}	Breakdown voltage, I/O to GND (1)	I _{IO} = 1 mA	4.5		7.5	V
V _{FWD}	Forward Voltage, GND to I/O (1)	I _{IO} = 1 mA		0.8		V
V _{HOLD}	Holding voltage, I/O to GND (2)	I _{IO} = 1 mA		5.1		V
	Clamping voltage	I _{PP} = 6 A (8/20 μs Surge), I/O to GND		6.3		V
V _{CLAMP}		I _{PP} = 16 A (100 ns TLP), I/O to GND		6.8		V
		I _{PP} = 16 A (100 ns TLP), GND to I/O		4.7		V
В	Dynamic resistance	I/O to GND, 100 ns TLP, between 10 to 20 A Ipp		0.13		Ω
R _{DYN}		GND to I/O , 100 ns TLP, between 10 to 20 A Ipp	0.2		77	
C _{LINE}	Line capacitance, IO to GND	V _{IO} = 0 V, V _{p-p} = 30 mV, f = 1 MHz		0.9	1.1	pF

			VALUE	UNIT	
V Electrostatic discharge	IEC 61000-4-2 Contact Discharge, all pins		±30000		
V(ESD)	Electrostatic discharge	IEC 61000-4-2 Air Discharge, all pins	±30000		

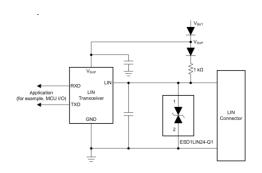
Surge Pulse	IEC 61000-4-5 Surge (tp 8/20 μs) Peak Power at 25 °C	40	W
Surge Fulse	IEC 61000-4-5 Surge (tp 8/20 μs) Peak Current at 25 °C	6	Α

CAN & LIN in automotive applications



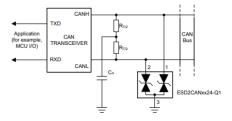
CAN/LIN protocols – data rates

CAN

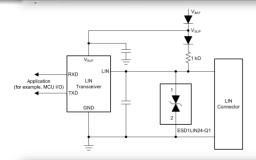

The CAN protocol has evolved over time with new versions enabling higher data rates.

- Low speed (LS CAN): Up to 125 Kbps
- High speed (**HS CAN**): Up to 1 Mbps
- Flexible data rate (CAN FD): Up to 5 Mbps
- Signal Improved capable CAN (CAN SIC): Up to 8 Mbps
- CAN XL: Up to 10-20 Mbps

LIN


The LIN protocol is limited to <20Kbps

All of TI's CAN/LIN ESD diodes have low capacitance and can support data rates of ~1 Gbps, thus any of these devices can be used with any CAN/LIN protocol.


CAN/LIN protocols – signal voltages

The CAN data lines are low voltage however in vehicles there is a common mode voltage present on the BUS that is dependent on the battery voltage. This will require a diode with a higher working voltage to avoid the diode breaking down during normal operation.

The CANH and CANL pins max voltage ratings will vary depending on the CAN transceiver used. These ratings can range from ±14 V all the way up to ±70 V for newer TI CAN transceivers.

The LIN data lines can range from 9 – 18 V. There is also a common mode voltage present on the BUS that is dependent on the battery voltage in vehicles. This will require a diode with a higher working voltage to avoid the diode breaking down during normal operation.

The LIN communication pin max voltage ratings will vary depending on the LIN transceiver. These ratings can range from ±40 V up to ±60 V for TI's newer LIN transceivers.

CAN/LIN interface requirements

Interface Spec	CAN	CANFD	CAN-XL	Diode Spec	Recommendations			
Interface voltage (V)		+3.3-5 V		Working voltage (V _{RWM})	24 V for a 12 V battery system to protect from miswiring.			
# of wires	2			wires 2			# channels	2 channel diode to protect CANH and CANL lines
Signal architecture		Differential		Configuration	Bi-directional to protect from line faults and miswiring			
CAN transceiver max voltage ratings Abs Max Rating of CANH/CANL Pins	±14-70 V 16A TLP clamping voltage		±14-70 V		<70 V			
Max data rate	1Mbps	5 Mbps	10-20Mbps	Capacitance	< 20 pF			

Interface Spec	LIN	Diode Spec	Recommendations
Interface voltage (V)	+9-18 V	Working coltage (V _{RWM})	24 V for a 12 V battery system to protect from miswiring.
# of wires	1	# channels	1 channel diode to protect LIN bus
Signal architecture	Single ended	Configuration	Bi-directional to protect from line faults and miswiring
LIN transceiver max voltage ratings Abs Max Rating of LIN Pins	±40-60V	16A TLP clamping voltage	<60 V
Max data rate	20kbps	Capacitance	< 40 pF

ESD2CAN24-Q1

Key EEs: Infotainment & cluster | Body electronics & lighting | Hybrid, electric & powertrain | ADAS

Features

- 24 V working volatge, 2 channel, SOT23 & SC70 package
- Outstanding protection
 - Low clamping voltage
 - IEC 61000-4-2, level 4 (ESD)
 - IEC 61000-4-5 (surge)
 - ISO 10605
- Ultra low leakage current
- Low line capacitance
- AEC-Q101 qualified

$V_{CI} = 35 \text{ V (TLP 16A)}$

30 kV

 $I_{PP} = 5.7A @ t_p = 8/20 \mu s$

30 kV

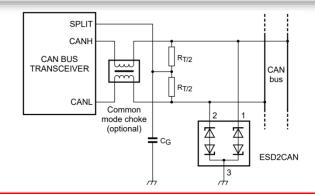
 $I_{RM} < 5 \text{ nA}$

3 pF (typ) / 5pF (max)

Benefits

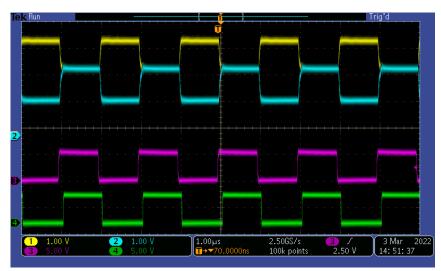
- Maximum ESD/surge robustness per the IEC standard
- Maximum ESD robustness per the ISO10605 standard
- Protects 12 V systems without failing due to jumpstart issue or DC faults
- Small, leaded SOT Surface-Mounted Device (SMD) allows low cost automatic optical inspection (AOI)
- 2-ch device provides complete ESD protection with single component
- Low clamping voltage protects downstream components
- Well-matched capacitance matching provides CAN bus signal integrity
- Pin-to-pin compatible with most competitor solutions

Applications


- Automotive In-vehicle Networks
 - CAN / CAN-FD / CAN-XL
 - Low and High-speed CAN
 - Fault Tolerant CAN
- Industrial Control Networks
 - DeviceNet™ IEC 62026-3
 - CANopen CiA 301/302-2 and EN 50325-4

SOT23-3 2.92 x 2.37 x 1.05 mm

SC-70 2.1 x 2 x 1 mm



ESD2CAN24-Q1 + TCAN1042V Signal Integrity @ 500 kHz (1 Mbps)

No diode

2 1 1.00 V 2 1.00 V 1.00 µs 2.50 SS/s 3 / 3 Mar 2022 3 5.00 V 4 5.00 V 1.00 µs 2.50 SS/s 2.50 V 14:44:52

With ESD2CAN24-Q1

ESD1LIN24-Q1

Key EEs: Infotainment & cluster | Body electronics & lighting | Hybrid, electric & powertrain | ADAS

Features

- 24 V working voltage ,1 CH, SOD323 package
- Bidirectional polarity
- Low clamping voltage
- IEC 61000-4-2 ESD
- ISO 10605 ESD protection
- IEC 61000-4-5 (Surge)
- Ultra low leakage current
- Low line capacitance

 $V_{CL} = 40 \text{ V (TLP 16A)}$

30kV 30kV

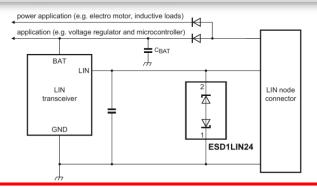
00KV I = 42A att = 9.

 $I_{PP} = 4.3A$ at $t_p = 8/20 \mu s$

 $I_{RM} < 5 \text{ nA}$

2.3 pF (typ) / 5 pF (max)

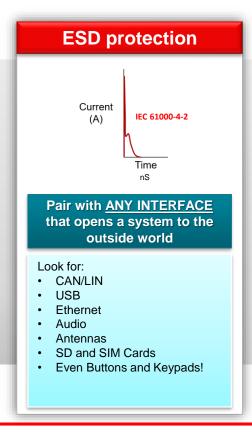
Applications

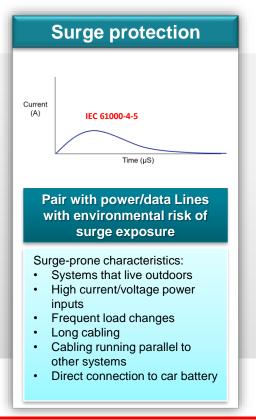

- Automotive In-vehicle Networks
 - LIN-bus protection
 - CAN-bus protection
 - FlexRay
- Industrial Control Networks
 - DeviceNet™ IFC 62026-3
 - Smart Distribution Systems (SDS)

Spec Justification

- Protects 12 V systems without failing due to jumpstart issue or DC faults
- LIN standard calls for positive & negative working voltages
- Leaded package allows for optical inspection during PCB assembly
- Low clamping voltage protects downstream components
- Maximum ESD Robustness per the IEC standard
- Maximum ESD Robustness per the ISO10605 standard
- Immunity to protect from surge events
- Low leakage current
- Low cap for signal integrity, maintain less than ~250pF total bus capacitance
- AEC-Q101 automotive qualified and PPAP capable

SOD323 2.5 x 1.25 x 0.95 mm


CAN/LIN ESD families


Devices	ESD2 CAN 24-Q1	ESD2 CANFD 24-Q1	ESD2 CANXL 24-Q1	ESD1LIN24-Q1	ESD751-Q1	ESD761-Q1	
Working Voltage (V _{RWM})		±24V		±24V			
# Channels		2			1		
Configuration			Bidirectio	nal			
16A TLP Clamping Voltage Indicates how well solution protects from 8kV ESD strike Learn More: Video Article	35 V	36 V	38 V	40 V	41.5 V	42.5 V	
Capacitance Impacts System Bandwidth Learn More: Video Article	3pF	2.3pF	1.7pF	2.3pF	1.6pF	1.1pF	
IEC 61000-4-2 (ESD) System Level ESD Immunity Standard Learn More: Video Article	±30kV	±25kV	±20kV	±30kV	±22kV	±20kV	
ISO 10605 (ESD) 330 pF / 330 Ohms Automotive System Level ESD Immunity Standard Learn More: Article	±30kV	±25kV	±20 kV	±30kV	±22kV	±20kV	
IEC 61000-4-5 (Surge) (tp=8/20us)	5.7 A	3.5 A	2.5 A	4.3 A	2.8 A	1.8 A	
Packages	DBZ (SOT-23), DCK (SC-70)	DBZ (SOT-23)	DBZ (SOT-23)	DYF (SOD-323)	DYA (SOD-523)	DPY (0402)	

The main spec to compare between these devices is the ESD rating, the lower capacitance variants of the 1 and 2-ch devices have lower ESD ratings and will be offered at a lower cost.

Where to use protection devices

26

At a glance | recommended protection devices

	-								
			Recommend de	evice by interface	(Left to right: Decr	easing Interface S	Signal Speed)		
Category & End Equipment	Antenna	HDMI, DisplayPort	PCle	USB 2.0, 3.x	Ethernet	CAN, LIN, FPD Link	GPIO, I2C, Audio JTAG, Keypad	RS-485, RS- 232	Power line, USB-PD, 4-20mA
Advanced driver assistance system (ADAS) Medium/Short Range Radar, ADAS Domain Controller, Camera Module	TPD1E01B04-Q1		TPD4E02B04-Q1	TPD2E2U06-Q1	TPD4E02B04-Q1	ESD2CAN24-Q1	TPD1E05U06-Q1	ESD752-Q1	TPD1E10B06-Q1
Body Electronics & Lighting Body Control Module (BCM), Headlight, Automotive Gateway	TPD1E01B04-Q1		TPD4E02B04-Q1	TPD1E10B06-Q1	TPD4E02B04-Q1	ESD1LIN24-Q1	TPD1E10B06-Q1	ESD762-Q1	ESD1LIN24-Q1
Hybrid, electric & powertrain systems Traction Inverter, Electric Power Steering, Battery Pack Passive Balancing	TPD1E01B04-Q1			TPD4E05U06-Q1	TPD4E02B04-Q1	ESD2CAN36-Q1	TPD1E05U06-Q1	ESD761-Q1	TPD1E10B06-Q1
Infotainment & Cluster Head Unit, USB Charging, Digital Cockpit Processing Unit, Info Display	TPD1E01B04-Q1		TPD4E02B04-Q1	TPD2E2U06-Q1	TPD4E05U06-Q1	ESD761-Q1	TPD1E10B06-Q1	ESD752-Q1	TPD1E10B06-Q1
Grid Infrastructure Electric Meter, Battery Storage System, Data Concentrator, String Inverter	TPD1E01B04			ESD122	ESDS304	ESD2CAN24-Q1	ESD351	ESD752	TVS1800 /01
Building Automation IP Network Camera, Video Recorder, HVAC Controller	TPD1E01B04	ESD204	ESDS314	ESD224	TPD4E05U06	ESD2CANFD24-Q1	TPD1E05U06	ESD762	TSM36A
Appliances Vacuum Robot, Cordless Power Tool, AC unit, Battery Charger	TPD1E01B04			ESD401	TPD4E02B04	ESD1LIN24-Q1	TPD1E10B06	ESD751	TVS2700 /01
Personal Electronics Notebook PC, Motherboard, Smartphone, TV	TPD1E0B04	TPD4E02B04	TPD4E02B04	ESD321	ESD204		ESD341		TVS2200 /01
Wired Networking Data Center Switch, WLAN/WI-FI Access Point, Router	TPD1E01B04		TPD4E02B04	TPD2E2U06	ESDS314		TPD4E05U06	ESD752	TVS0701
Datacenter & Enterprise Computing Rack Server, Network Interface Card, SSD		ESD224	TPD4E02B04	TPD4E1U06	ESDS304		ESD401	ESD762	TVS1400 /01
Factory Automation Single Board Computer, Digital Input Module	TPD1E0B04	ESD204	TPD4E02B04	TPD1E05U06	ESDS312	ESD762	TPD1E10B06	ESD752	TVS3300 /01
Home Theater & Entertainment STB & DVR, Streaming Media Player, Smart Speaker	TPD1E01B04	TPD4E02B04		TPD6E05U06	ESDS314		TPD1E10B09		TVS2700 /01

Getting started

You can start evaluating this device leveraging the following:

Content type	Content title	Link to content or more details
E2E design support forums	Interface	https://e2e.ti.com/support/interface- group/interface/f/interface-forum/
	ESD fundamentals training	https://e2e.ti.com/support/interface- group/interface/f/interface-forum/1090733/faq- esd-fundamentals-training
Technical content	System level ESD guide CAN bus ESD protection	https://www.ti.com/lit/sg/sszb130d/sszb130d.pdf https://www.ti.com/lit/an/slvafc1/slvafc1.pdf
Product folder	ESD2CAN24-Q1 product folder ESD1LIN24-Q1 product folder	https://www.ti.com/product/ESD2CAN24-Q1 https://www.ti.com/product/ESD1LIN24-Q1
Development tool or evaluation kit	Generic ESD evaluation module for common single and multi-channel packages in our portfolio.	https://www.ti.com/tool/ESDEVM

Visit <u>www.ti.com/npu</u>

For more information on the New Product Update series, calendar and archived recordings

© Copyright 2022 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated