

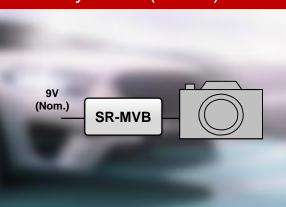
Agenda

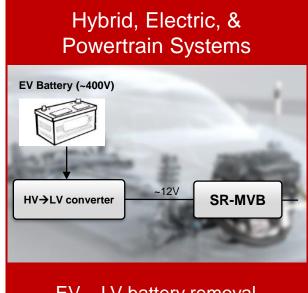
- TI SR portfolio
 - TPS6290x-Q1 / TPS6299x-Q1
- Where MVB sockets can be found
 - "PMIC attach"
- Use Case Examples:
 - ADAS (Advanced Driver Assistance Systems)
 - Powertrain
 - Zonal Architecture
- Q&A

2

TI's step-down DC/DC converter portfolio

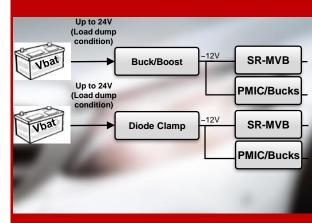
Where might an automotive Mid-Vin part be used?




Powering devices off coax

Popular Devices	Key Features		
TPS65400-Q1	Multi-channel, PMBus Lite		
TPS629210-Q1	Low I _q , small package		
TPS62903-Q1	Low I _q , wettable flanks		

Powering off 5V intermediate rail


Popular Devices	Key Features		
TPS65263-Q1	Multi-channel		
TPS62913-Q1	Low ripple, high efficiency		
TPS62903-Q1	Low I _q , wettable flanks		

EV – LV battery removal

Popular Devices	Key Features
TPS62903-Q1	QFN WF, Q1 Grade 1
TPS629210-Q1	Low I _q , small package
TPS62130A-Q1	Q1 Grade 2

Body Electronics and Lighting

Powering off regulated battery voltage

Popular Devices	Key Features
TPS65263-Q1	Multi-channel
TPS62913-Q1	Low ripple, high efficiency
TPS62903-Q1	Low I _q , wettable flanks

Control architectures

	Fixed-frequency	Constant on time (COT)		
When to use	When system predictability is most important	Fast transient response, reduced passive component count, avoiding loop compensation		
Example control modes	Voltage mode, current mode, advanced current mode (ACM)	D-CAP family, DCS		
Featured product	TPS54331-Q1, TPS62913-Q1	TPS629210-Q1, TPS6290x-Q1		
Typical applications	Filter out switching frequency for improving EMI; noise/ripple sensitive	Small solution size, ripple at output OK, need quick load change responses		

In development In definition Concept SR-MVB automotive buck converters roadmap AEC-Q100 Released New release Draco Sr. Auto 4 V-18 V, 20 A, ACM Sync, 2.2 MHz, 4.5x2.5 QFN ⋖ 8 **Finch Auto** 28 V, 95% Vout, 4 A, Sync, 2.2 MHz. 1.5x2 QFN WF \bigoplus **₽** \rightleftharpoons Vespa auto Little vespa auto \Rightarrow \Rightarrow TPS6217x-Q1 TPS6216x-Q1 TPS6215xA-Q1 TPS6290x-Q1 / TPS6299x-Q1 TPS629210/06/03-Q1 3-17 V, 0.5 A 17 µA lq, DCS 3 -17 V, 1 A 17 µA lq, DCS 3 -17 V, 1 A 17 µA Iq, DCS 17 V, 1 A/0.6 A/0.3 A , 4 μA I_O DCS 3~10 V/18 V, 1/2/3 A, 4 uA I_O, DCS, 2.25 MHz, 2x2 QFN 2.25 MHz, 2x2 QFN 2.5 MHz, 3x3 QFN 1-3 A 2.5 MHz, SOT583 2.5 MHz 1.5x2 QFN WF \Rightarrow \Rightarrow Oslo auto TPS62913-Q1 TPS54325/225-Q1 TPS6213xA-Q1 TPS560200-Q1 3-17 V, 3 A 17 µA lq, DCS 17 V, 0.5 A, DCAP2, 650 K 18 V, 3 A, 2 A, DCAP2, 650 K 3~17 V, 2/3 A, low noise/ripple, HTSSOP-16 2.5 Mhz, 3x3 QFN SOT23-5 2.5 MHz 2x2 QFN Multi-channel = \rightleftharpoons Next-gen TPS65xxx-Q1 TPS65400-Q1 TPS65263/-1 Q1 TPS65268-Q1 18 V, quad-channel, 2.2 MHz 18 V, 4 A/4 A/2 A/2 A, CM, 2 MHz 18 V, 3 A/2 A/2 A, CM, 2 MHz 18 V, 3 A/2 A/2 A, CM, 2 MHz 4.5 x 4.5 QFN 5x5 QFN 5x5 QFN PMBus lite, 7x7 QFN

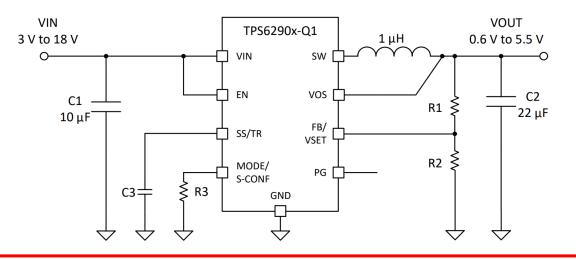
2021 2022 2023

Vespa auto | TPS6290x-Q1

3 V to 18 V, 3 A to 1 A, Low- I_Q , synchronous buck converter in QFN WF package

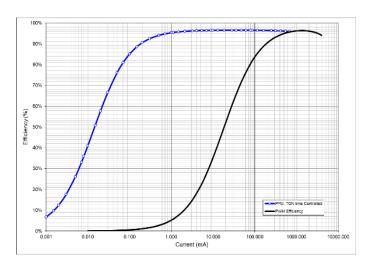
New release!

Features


- Input voltage: 3 V 18 V (20 V Abs Max)
- Output voltage: 0.4 V 5.5 V
 - Adj. via external divider, 0.6 V to 5.5 V
 - Internal divider: 16 options from 0.4 to 5.5 V
- 1% output accuracy with selectable forced-PWM operation
- T₁ up to 165°C
- · Precise-enable, CONFIG-pin, window-PG comparator
- 1 uH inductor, 22 uF cout, no external bootstrap
- Small 2.2 mmx2 mm QFN HR package with wettable flanks
- DCS-Control[™] with AEE
- 4 µA quiescent current
- Selectable output discharge
- · Highly flexible- & easy-to-use
 - Optimized pinout for single-layer routing
 - Precise enable input
 - Optional forced PWM- or auto-power-save-mode
 - Power good output and active output discharge

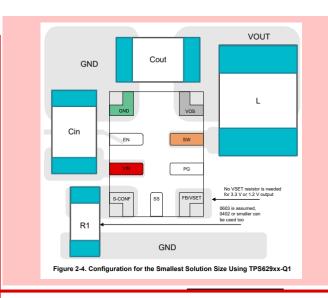
Applications

- ADAS Cameras, Domain Controllers
- Body Electronics Zonal Controllers
- Powertrain systems Traction Inverters, Battery Control Units
- Infotainment and cluster Displays
- Factory Automotion High-Temp SBC and Application Cards


Benefits

- Saves PCB area by smallest solution size
 - No bootstrap-C, fixed V_O options, 1 uH, 22 uF Co
 - Small QFN package with flexible single layer routing
- AEC-Q100 grade 1
 - DFMEA, FS capable (FIT and FMD documentation)
- Extended temperature variant available (-55°C 150°C)
- Output monitoring by window-PG comparator
- Input monitoring by precise EN-threshold and hysteresis (POC-filter)
- 1% accurate and low ripple output in forced-PWM configuration
- · High efficiency at light load
- 10Vin variant available for cost-effective applications (TPS6299x-Q1)

TPS6290x-Q1 value propositions



High efficiency

- 82% at 1 V/3 A
- 87% peak at 1 V/1 A
- 4 µA Quiescent Current
- 12 Vin @ 1 MHz
- L = 2.2 uH

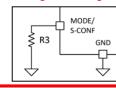
Content:

Comparison of TPS6290x vs. TPS621x0

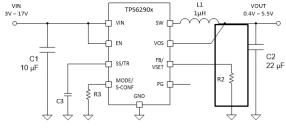
Small-size

2.2 mm x 2.0 mm QFN
HotRod with Wettable flanks
400 um lead length
250 um uniform lead width at
package boundary
High Fsw enables 1 uH
inductor
Single-layer PCB layout

Flexibility with SCONF (Smart-config-pin)


	Table 7-1. SmartConfig Setting Table							
#	LEVEL OR RESISTOR VALUE [Ω] (1)	FB/VSET- PIN	F _{SW} (MHz)	OUTPUT DISCHARGE	MODE (AUTO OR FORCED PWM)	DYNAMIC MODE CHANGE		
	Setting Options by Level							
1	GND	external FB	2.5	yes	Auto PFM/PWM with AEE	active		
2	HIGH (>V _{IH_MODE})	external FB	2.5	yes	Forced PWM			
	Setting Options by Resistor	r				•		
3	7.15 k	external FB	2.5	no	Auto PFM/PWM with AEE	_		
4	8.87 k	external FB	2.5	no	Forced PWM			
5	11.0 k	external FB	1	yes	Auto PFM/PWM			
6	13.7 k	external FB	1	yes	Forced PWM	not active		
7	16.9 k	external FB	1	no	Auto PFM/PWM			
8	21.0 k	external FB	1	no	Forced PWM			
9	26.1 k	VSET	2.5	yes	Auto PFM/PWM with AEE			
10	32.4 k	VSET	2.5	yes	Forced PWM			
11	40.2 k	VSET	2.5	no	Auto PFM/PWM with AEE			
12	49.9 k	VSET	2.5	no	Forced PWM			
13	61.9 k	VSET	1	yes	Auto PFM/PWM			
14	76.8 k	VSET	1	yes	Forced PWM			
15	95.3 k	VSET	1	no	Auto PFM/PWM			
16	118 k	VSET	1	no	Forced PWM			

Selectable device setting via Resistor


- Vout set by FB/VSET (Adj / fixed)
- MODE (Auto-Mode / FPWM)
- Active discharge (YES / NO)
- **FSW** (1 MHz / 2.5 MHz)

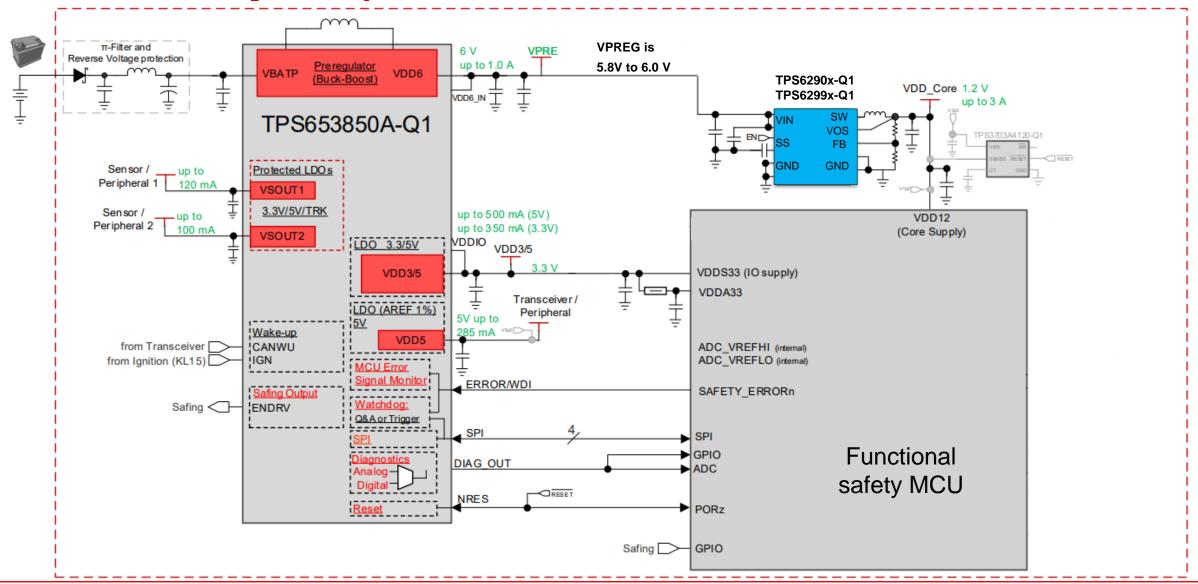
Content:

- Multi-Function Pins for Easy Designing
- Which pinout is best? How individual, multifunctional and trimmed pinouts help address design challenges

VIN 3V-17V TPS6290X 11 1µH VOUT 0.5V-5.5V VIN SW VIN SW R1 VIN C2 22 µF R3 R3 SS/TR F8/ VSET R2 VIN R2 VIN

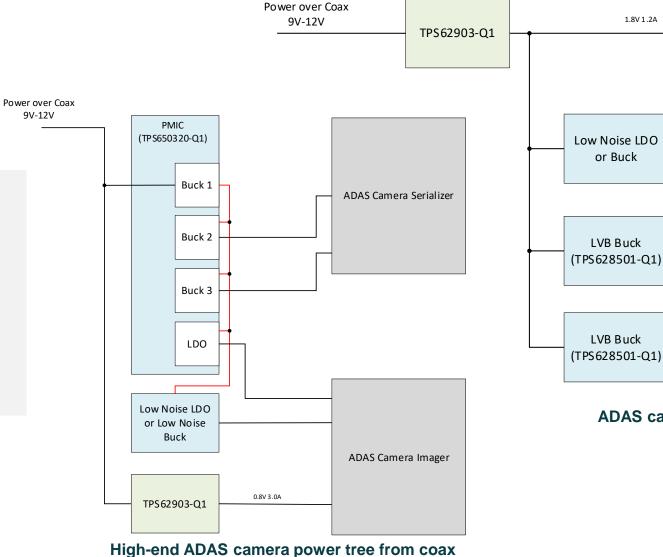
Set Vout by FB(Adj) or VSET

Adjustable Version for


- High flexibility (Vout)
- LED application
- Customers are familiar

VSET version for

- higher accuracy1% VOUT directly
- lower system I_Q
 4 µA
- Smaller & cheaper solution up to 2 components less



Functional safety MCU power with PMIC + TPS6290x-Q1 / TPS6299x-Q1

Use case | ADAS

- Low quiescent current
- Small solutions size, reduced number of passives
- Out of AM range (2 MHz+)

ADAS Camera Imager

ADAS Camera Serializer

1.8V 1.2A

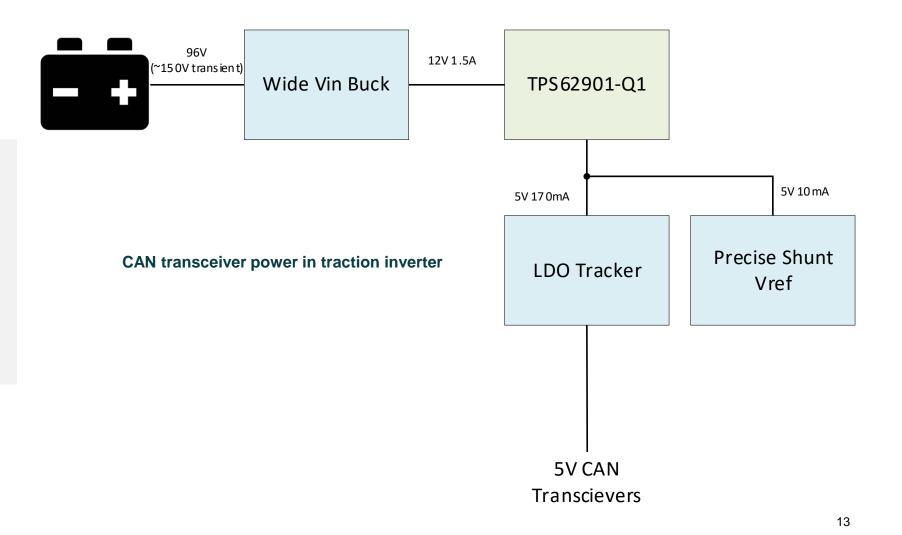
or Buck

LVB Buck

LVB Buck

1.8V 100mA /

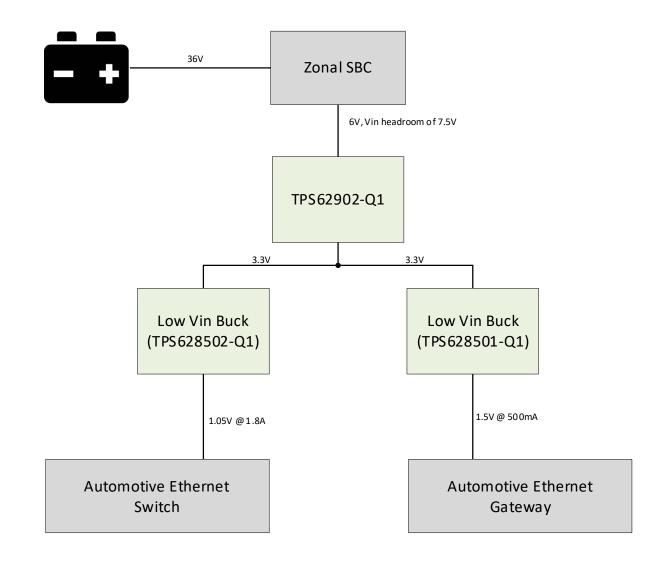
1.1V 100mA


1.8V 100mA

1.0V 100mA

ADAS camera power tree from coax

Use case | Powertrain


- QFN wettable flanks package
- Efficiency at load
- High thermal spec (grade 1+)

Use case | Zonal

- Low quiescent current
- Efficiency
- Small solutions size, reduced number of passives
- Device flexibility and configuration

Zonal module ethernet power tree

14

Little vespa (TPS629210 / 06 /03-Q1)

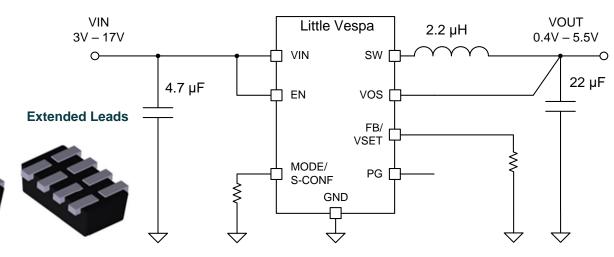
SOT583

┕┦╌┦╌┦╌

0.3 A/0.6 A/1 A, high efficiency, low I_o and small size automotive and commercial buck converter family

Features

- Input voltage: 3 V 17 V
- Output voltage: 0.4 V 5.5 V
 - · Adj. via external divider, fixed Voltage options
- 1 A/0.6 A/0.3 A
- 1% output accuracy
- Selectable forced-PWM or auto-PFM operation
- T_J up to 150°C
- Precise-enable, CONFIG-pin, window-PG comparator
- Small SOT583 package (2.1 x 1.6 mm)
- DCS-Control[™] with AEE
- 4 μA Quiescent Current


Applications

- ADAS systems
- Factory, building automation
- Grid infrastructure

Benefits

Standard

- Saves PCB area by smallest solution size
 - no Bootstrap-C, fixed V_O options, 2.2 μH, 22μF Co
 - Small SOT583 with flexible single layer routing
- Q100-qualified version available
- Extended leads package available: TPS629210QDYCRQ1
- Output monitoring by window-PG comparator
- Input monitoring by precise EN-threshold and hysteresis (POC-filter)
- 1% accurate and low ripple output in forced-PWM configuration
- Optimizes battery lifetime & energy budget

Visit <u>www.ti.com/npu</u>

For more information on the New Product Update series, calendar and archived recordings

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated