Webinar

Revolutionizing factories with real-time communication

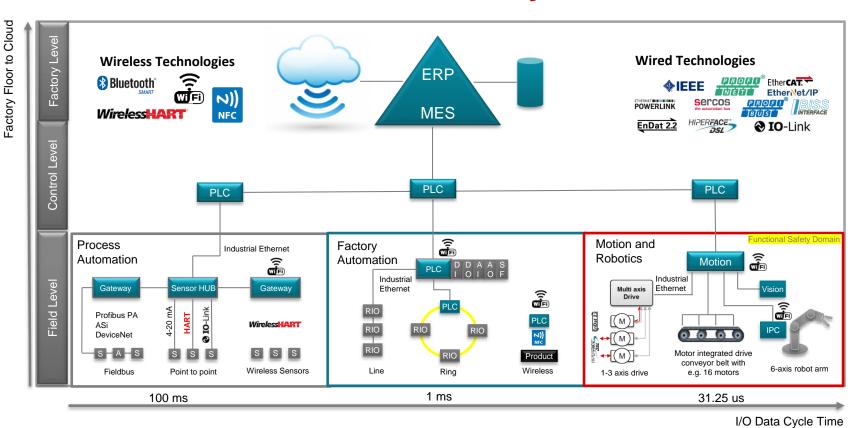
Thomas Mauer

Factory Automation and Control System Engineering & Marketing

Agenda

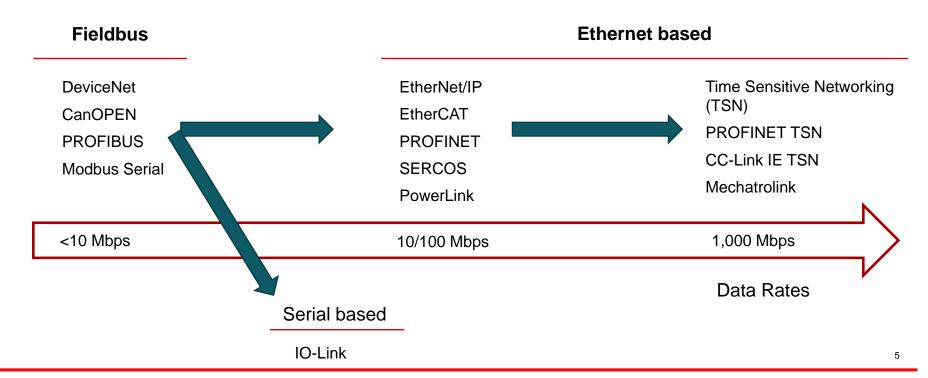
- Factory real-time communication introduction
- Benefits of real-time communication
- Industrial protocols and emerging protocol trends
- Use case examples
- Future trends
- Summary and conclusion
- Live Q&A

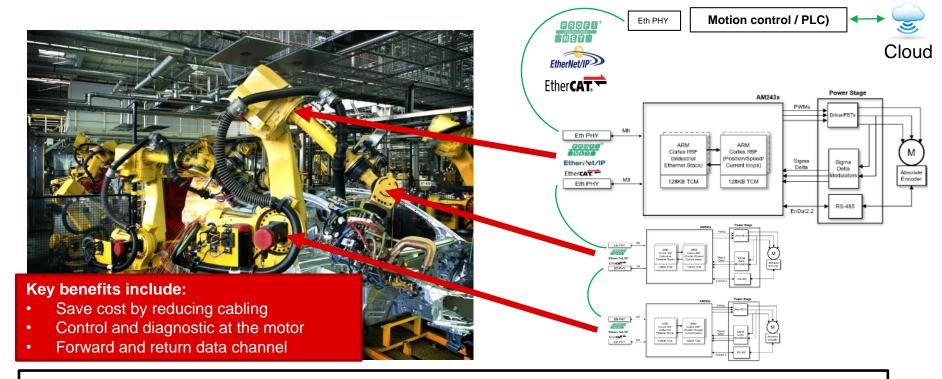
Intro | Factory real-time communications


Industrial networks found in factories include communication technology that improves data communication quality, reliability and real-time performance.

Some key challenges designers for factories face

- Visibility and control of equipment to cloud/management
- Reduce IO data exchange cycle time
- Security and Reliability
- Interoperability across vendors and compliance to specifications
- Upgrade and future-proofing


Real-time communication in factory automation


.

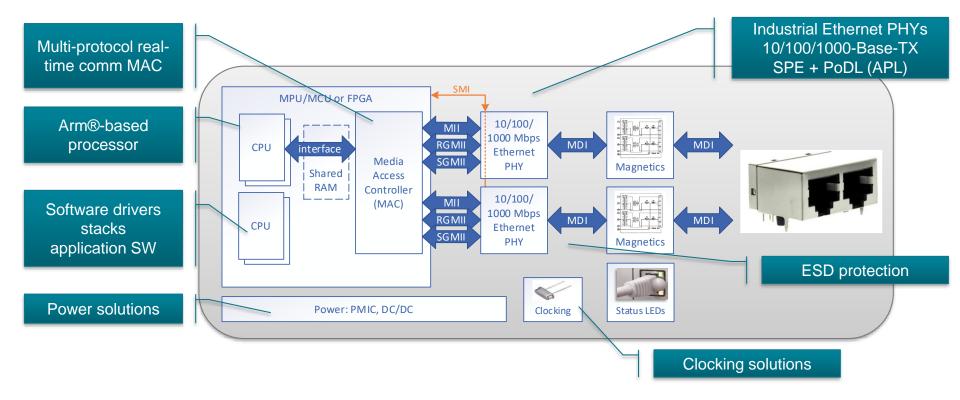
Real-time communication evolution

Over the years, there has been different versions of industrial communications.

Benefits for adding real-time communication to robotics

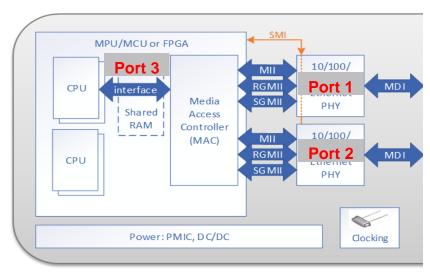
A robot arm is made of a controller controlling several (3 in this example) motors

Key protocols for factory applications


MORE PROTOCOLS | Time-sensitive network, MECHATROLINK, CC-Link IE TSN, SERCOS, POWERLINK, ...

Increase efficiency and productivity in factory environments

- Connectivity technologies along with industrial protocols enable access to important factory data which allows factories to <u>adapt process flow</u>.
- Our large portfolio includes devices for networking and industrial communication and features diverse communication interfaces.



Industrial Ethernet system block diagram

Industrial Ethernet MAC and frame processing

- Media Access Controller (MAC)
 - 3-port switch (2 port + host port)
 - Protocol-specific MAC implementation
- MAC frame processing methods:
 - On-the-fly: Frame is forwarded to second port and MAC read/write the frame.
 - Delay time: <1 μs (100Mbps)
 - Cut-through: MAC makes forward decision on frame header;
 - Delay time: 3-4 μs
 - Store & Forward: Legacy MAC; store <u>complete</u> frame in MAC memory before making forwarding decision;
 - 6.7 μs (64 Bytes) to 125 μs (1500 Bytes)

Applications for these methods:

Processing, control and networking with a single chip

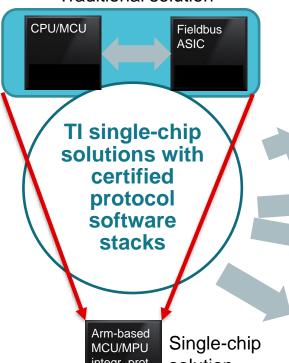
High-performance processing

Single and multicore devices, running up to 800 MHz per core, enable fast computations with less than 1 W of power consumption

Real-time control

Integrated sensing and actuation peripherals enable low-latency real-time control

Industrial communications


Integrated support for common protocols including Ethernet/IP, EtherCAT, Profinet, IO-Link Master and gigabit Ethernet

Safety and security

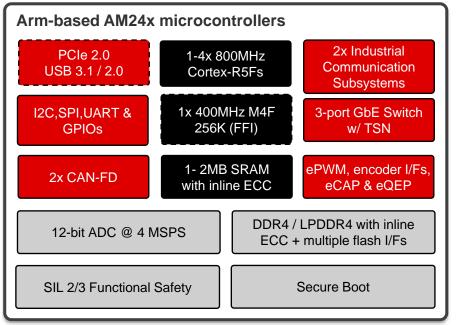
On-chip features help support today's standards and assist systems in achieving up to SIL 3 or ASIL D standards

Simplify industrial networking with processors

Traditional solution

Lowest power and realtime parallel Arm-based processing for real-time communication and control

Accelerate development with production-ready certified industrial multiprotocol stacks in unified Industrial Comms SDK


integr. prot.

solution

Multi-protocol real-time communication

Scale performance to support evolving needs with unified HW and SW solution

Arm-based microcontrollers for industrial networking

Safety & security

- Supports customer's system designs up to SIL 3. (IC targeting SIL 2)
- On chip security subsystem supports secure boot, firewalling of memory, key storage, crypto, security features.

Performance

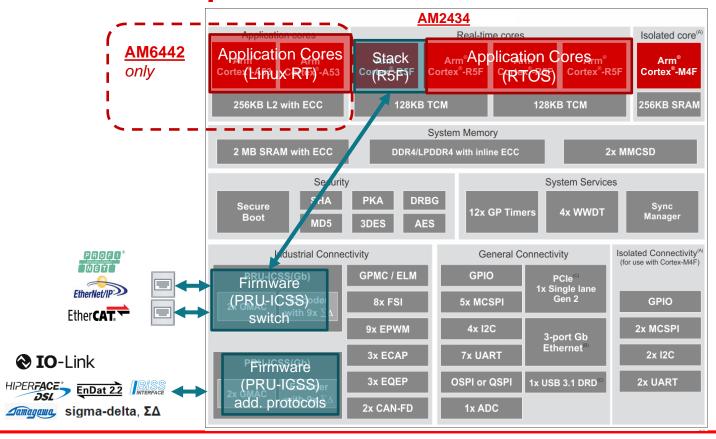
Up to 4x R5F real-time cores with up to 6.4K DMIPs

2x Industrial Communication Subsystems (ICSS)

- Programable real time peripheral I/F connectivity
- Multi-Encoder support

sigma-delta, ΣΔ

Multi-protocol industrial networking support


Gigabit Industrial Ethernet

- 3-port GbE TSN & cut-through switching (2-ext, 1-int port)
- Up to 5x independent GbE ports

Motor Control

- Up to 3 axis motor control (FOC, DTC)
- Multi-protocol position encoder support
- 18-bit on-chip sigma delta filters for current measurement

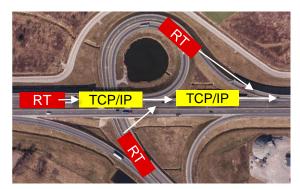
Arm-based processor software architecture

Software from TI

Application Software

Certified device protocol software stacks provided by TI

Protocol	Certified	Min. Cycle Time	Key features supported
Ether CAT.	Yes	31.25 us	CiA402, CAN over EtherCAT (CoE), Servo Drive Profile (SoE), Ethernet over EtherCAT (EoE), File Access over EtherCAT (FoE), Distributed Clocks
EtherNet/IP	Yes	1 ms	Address Conflict Detection (ACD), Quality of Service (QoS), Device Level Ring (DLR), Precision Time Protocol (PTP)
PROFII®	RT/IRT: 1H24	1 ms (RT) 250 us (IRT)	Conformance Class A, B (RT), and C (IRT), Precision Time Control Protocol (PTCP), Media Redundancy Protocol (MRP)
 IO -Link	Yes	All communication classes supported	Up to 8 channel IO Link Master per ICSS, IO-Link standard-compliant with Standardized Master Interface (SMI)


Detailed feature set for each protocol available in the <u>INDUSTRIAL-COMMUNICATIONS-SDK</u> release datasheets

^{*} Additional real-time communication protocols are available via third-party stack provider

Emerging protocols and trends

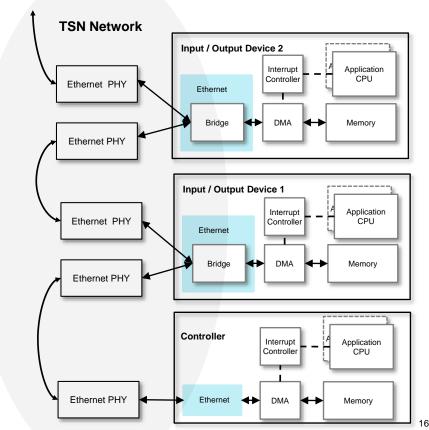
Protocols such as TSN and IO-Link are a few examples of emerging technologies being adopted into factory applications.

So what is TSN?

- Production systems in a modern factory are fully connected using real-time Ethernet. A timesensitive network is a key technology with which to connect various control systems in realtime.
- Although the requirements for control systems are different in terms of scale, cycle time and accuracy, they can use the same communication interface to transfer data deterministically.

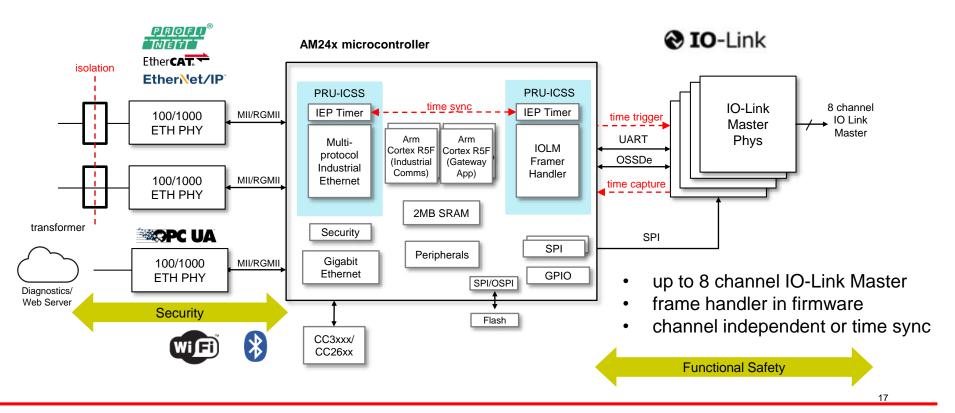
What is IO-Link?

- Point-to-point communication protocol that connects sensors and actuators to industrial automation systems, enabling bidirectional data exchange and advanced device parametrization.
- Remote IO device example
 - Industrial Ethernet ports
 - Eight-port IO-Link Gateway


Source: PNO, TSN workshop 15

TSN standardizes real-time communication

TSN is an umbrella term for several optional IEEE802.1Q Ethernet features for achieving real-time networking performance


- Timing over packet (802.1AS-2011, 802.1AS-2020, As-rev, IEEE1588)
- Time aware shaper (EST, 802.1Qbv)
- Preemption (IET, 802.1Qbu/802.3br)
- Integrated switching including cut-thru (not yet IEEE standard)
- Credit based shaper (AVB, FQTSS, 802.1Qav)
- Redundancy (FRER, 802.1CB)

*all but redundancy is supported by TIs arm-based processors and included in IEEE802.1Q-2018

Remote IO (gateway) | Industrial Ethernet to IO-Link Gateway

Long-reach Ethernet applications with single-pair Ethernet

Process automation

Field instrumentation

- Flow sensors
- Level sensors
- Pressure sensors
- Temp sensors
- Loggers
- Field switches

HART + Other field buses → T1L Ethernet

Building automation

- Fire alarm control
- HVAC control
- Elevators
- Security controls

RS485 → T1L Ethernet

Factory automation

- Sensors
- Valves
- Encoders
- Motor starters
- Robotics

Various field buses →T1L Ethernet

New trend | Single-pair Ethernet (SPE) for reach and cabling

	Single Twisted Pair ENET			
Cable type	1 twisted pair / 2 wires			
IEEE Standard	IEEE802.3cg	IEEE802.3bw	IEEE802.3bp	
Description	10BASE-T1L / 10BASE-T1S	100BASE-T1	1000BASE-T1	
Maximum Bandwidth (Mb/s)	10	100	1000	
Standard Cable Reach (m/link)	1000 / 200 25 (8)	50	15	
Data Transfer	Full-duplex	Full-duplex	Full-duplex	
Sample Applications	Harsh environments	Harsh environments Domain to domain connections		
	Diagnostics Automation	Robotics Replaces serial fieldbus		
	TX/RX Interop. device			

Predictive maintenance

Why predictive maintenance?

"It costs approximately 50% more to repair a failed asset than if the problem had been addressed prior to failure" *

Machine breakdown can be unsafe leading to manpower loss, fines, audit, production stop...

Non-invasive, retrofitting techniques reduces down time, increases availability and productivity

Maintenance

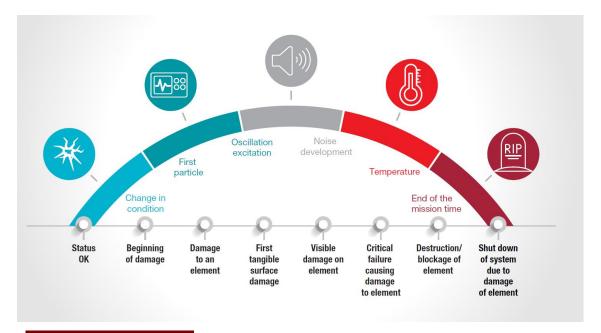
Corrective

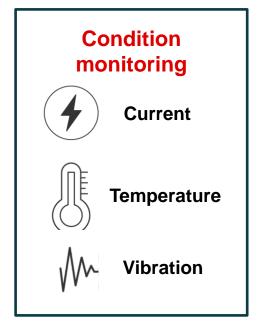
Preventive

Predictive

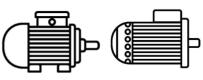
* Source: Emerson brief

 Replace when breaks


 Replace upon schedule


 Replace when required

Industry 4.0



Predictive maintenance | Condition monitoring

Misalignment
Mechanical defects
Unbalance
Loose fixtures

Vibration monitoring with edge processing and SPE/PoDL communication Gateway Board 24V input AM6442 MPU System Power supply (TQMa64xxL SOM module Power Sourcing Equipment (PSE) WiFi add-on Vibration Edge Processing Board #1 card w/ PD Power IEPE board PD side Power System power Power **AM2434 MCU** Vibration PRG0 Switch (TQMa243xL Comm. Linux HW signals SOM module MSPM0 extensions from TQ) 4-port PR1 RGMII 10 Mbit SPE SPE PHY /MDIO Cloud _ DATA_ 4-port SPE 1-Gbit ETH DP83TD510E 4x ADC w/PoDL DP83TD510E DP83867 Connection SPE/PoDL Sensor AFE Edge processing \langle **Gateway** Cloud up to 2 km

SPE/PoDL

TIDA-010261

TIDA-010249

22

FFT

TIDA-010262

Conclusion

- Legacy protocols such as EtherCAT, PROFINET and Ethernet/IP have and continue to play a pivotal role in factory operations.
- Emerging protocols like TSN, IO-Link and single-pair Ethernet are reshaping factory connectivity by providing faster, more reliable, and more flexible communication to enhance automation.
- Real-time communication optimizes performance across many applications in the factory.
- Advanced processor solutions and interfaces are supporting these trends with specialized hardware acceleration, parallel processing, improved processing power and scalability.

Learn more about how TI is supporting the latest communication trends here: ti.com/connect

Getting started

You can start evaluating the industrial communication solutions leveraging the following:

Content type	Content title	Link to content or more details	
Product folder	AM243x / AM64x DP83867 / DP83826	AM2434 DP83867IR, DP83826I	
Reference design	AM243x Launchpad Eight-port IO-Link reference design	<u>LP-AM243</u> <u>TIDA-010234</u>	
Customer training series or webinar session	AM24x academy	AM24X-ACADEMY	
Technical blog content or white paper	Factory automation design made simple with multiprotocol industrial Ethernet systems PoDL PD and PSE Application note	Blog post PD PSE	
Selection and design tools and models	MCU-PLUS Software Dev Kit (SDK) Industrial Communications SDK	MCU-PLUS-SDK-AM243X INDUSTRIAL-COMMUNICATIONS-SDK-AM243X	
Development tool or evaluation kit	Code Composer Studio	CCSTUDIO	

© Copyright 2023 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated