
The smallest package TI
MSPM0 MCU enables room to
do more in your design

Samantha Pozzi

MSP Product Marketing Engineer

Dennis Lehman

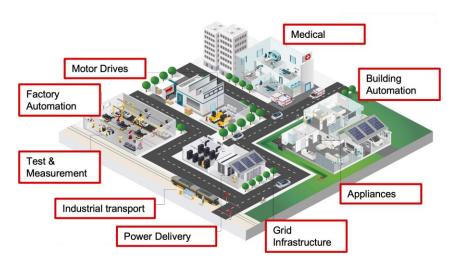
MSP Applications Engineer

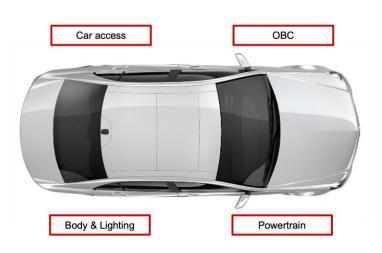
Agenda

- TI's ARM Cortex-M0+ MCU portfolio overview
- MSPM0C Subsystem Designs
- Example applications with MSPM0C MCUs
- Getting started with MSPM0C MCUs

MSPM0 MCUs | reducing your system cost

Cost optimization


Smallest packages


Advanced analog integration

Best cost structure for microcontrollers with mix of digital, analog & memory

Leverage the cost benefit of packages that are used by high volume analog

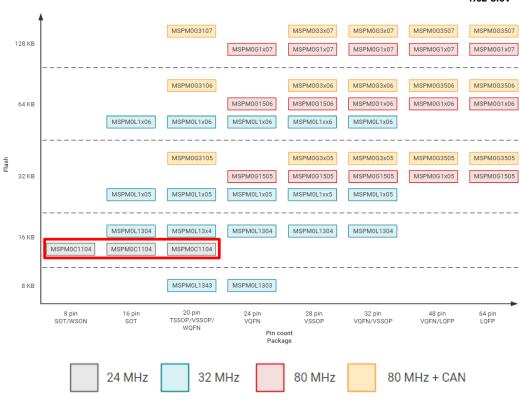
Save components, board space and simplify supply chain with integrated advanced analog

Pick a device optimized for your solution from a broad, pin-2-pin portfolio

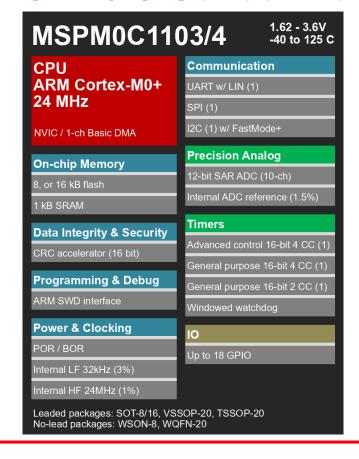
MSPM0 MCUs | scalable portfolio

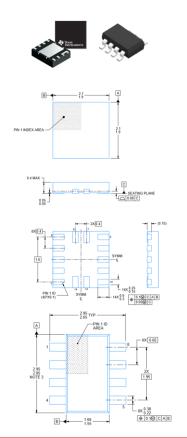
Up to 125C Ta 1.62-3.6V

- 80MHz CPU
- CAN-FD options
- Fast 4Msps sim-sam ADCs
- · Math accelerator



- 32MHz CPU
- 71µA/MHz (CoreMark run)
- 6µA-max standby at 85 °C
- 1µA-typ standby at 25 °C

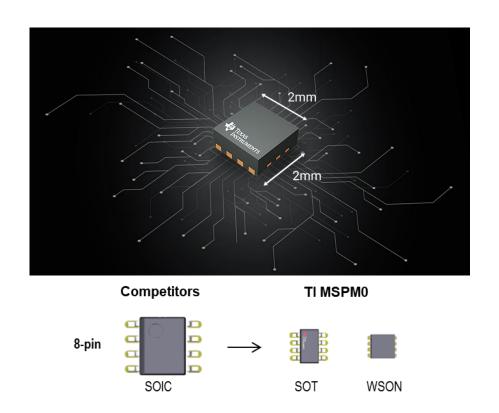



- 24MHz CPU
- Smallest QFN package (2x2)
- 0.5/0.65mm pitch packages
- · Pin-compatible with industry

Unified software development kit & tools Pin-to-pin compatible in 10+ packages TI 65nm flash multi-sourced manufacturing

MSPM0 C-Series microcontrollers

< \$0.18 starting at 1 kU


10

8-kB – 16-kB memory, package, peripheral options

6

of the industry's smallest, easiest to assemble MCU Packages

MSPM0C MCUs | Room to do more

6 GPIOs

available with 8-pin WSON-DGS package

2x2 mm²
Tl's smallest M0+ MCU package

7.35x Smaller compared to common 8-pin SOIC

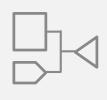
MSPM0 software and tools ecosystem

Rapidly develop with low-cost MSPM0 microcontrollers

MSPM0 SDK

Software, tools, and documentation to accelerate product development

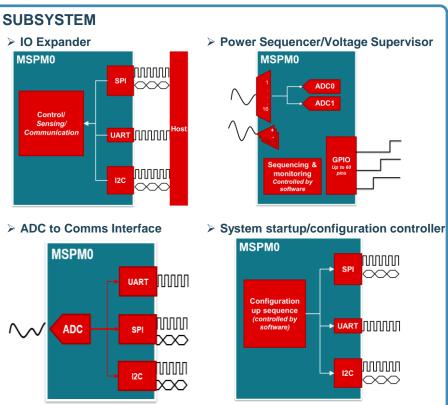
MSPM0 LaunchPad


An unconstrained prototyping platform

LP-MSPM0C1104 LaunchPads as low as \$5.99

SysConfig & Analog Configurator

Intuitive graphical configuration and code generation


TI MSPM0 Subsystems

Subsystem design and software examples for common use-cases

MSPM0 C-Series MCUs | Broad applications

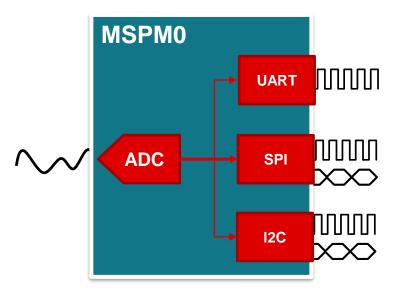
24 MHz low-cost MCU with up to 16kB flash, 20 pins, 12-bit ADC

Subsystem Designswith MSPM0C MCUs

Dennis Lehman

MSP Applications Engineer

Low cost ADC to SPI, I2C, UART


Using low cost MSPM0 MCUs

Functions

- Samples analog signals with ADC
- Sends ADC result through desired communication interface (SPI, I2C, UART)

Advantages

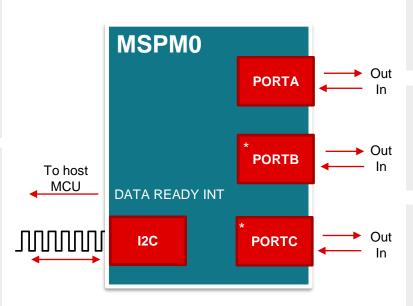
- Reduce size of your PCB by using the MSPM0's internal ADC and send through SPI, I2C and/or UART.
- Can pre-process the ADC data before sending to another device.
- Can send through any included communication interface for flexibility

Key questions

- Does your system need an analog signal read?
- Does your system require SPI, I2C, or UART communication?
- Do you have limited PCB space?

- SDK
 - ADC to UART
 - ADC to I2C
 - ADC to SPI
- Devices
 - MSPM0G
 - MSPM0L
 - MSPM0C

I2C IO Expander


Using low cost MSPM0 MCUs

Functions

- GPIO Output Pin addressable Set, Clear and Toggle
- GPIO Input up to 32-bits
- · Data ready interrupt to host MCU
- External input interrupts

Advantages

- Extend host MCU GPIO functionality
- Effortless configuration using Sysconfig
- Supports any combination of IO pin configurations
- Leverage MSPM0 IO pin features
- · Simple protocol

Key questions

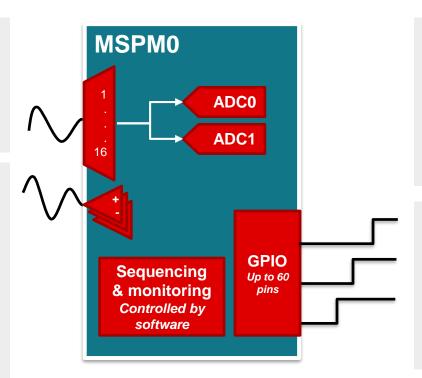
- · Does your system need more GPIO?
- Present MCU not scalable?

Key technicals

- 12C FM (400kHz), FM+ (1 Mbit/s)
- Number of available IO Ports is device dependent
- · Low power operation

- Devices
 - MSPM0G
 - MSPM0L
 - MSPM0C

Power sequencer and voltage supervisor


Using low cost MSPM0 MCUs

Functions

- Sequences power enables to correctly start system from power down.
- Acts as voltage supervisor to ensure proper system operation

Advantages

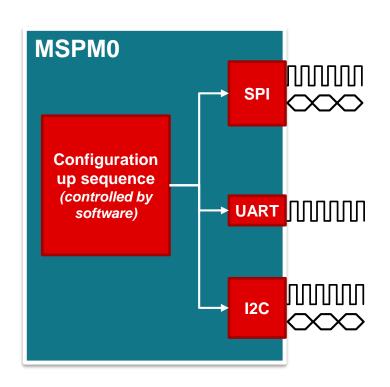
- 200us cold boot time gets system started quickly
- Precise, cycle-by-cycle control of GPIO timing
- Up to 16 ADC input channels for voltage monitoring
- 3x comparators for high speed fault detection and reaction

Key questions

- Does your system require power rail coordination?
- Does your system require voltage supervision?
- Is your system using a dedicated power rail sequencing device?

- SDK
 - Power Sequencing
- Devices
 - MSPM0G
 - MSPM0L
 - MSPM0C

System startup/configuration controller


Using low cost MSPM0 MCUs

Functions

 MCU will do startup configuration of system via I2C, UART, and/or SPI

Advantages

- 200us cold boot time gets system started quickly
- Fast data rates, multiple instances minimize system boot up time
 - · 2x SPI up to 32MHz
 - 4x UART up to 10MHz
 - 2x I2C Fast-mode plus (1MHz)
- After configuration is finished MCU can perform other system tasks, or
- MCU can enter SHUTDOWN mode (50nA) to reduce system power.

Key questions

- Does your system have a complex start up sequence?
- Does your system need to perform any initialization tasks on power up
- Does your system use a start/configuration FPGA?

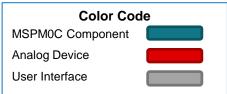
- Devices
 - MSPM0G
 - MSPM0L
 - MSPM0C

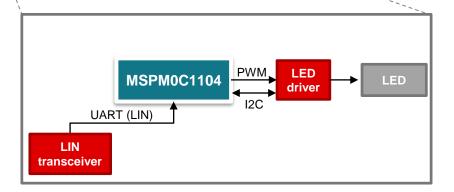
Examples applicationswith MSPM0C MCUs

Dennis Lehman

MSP Applications Engineer

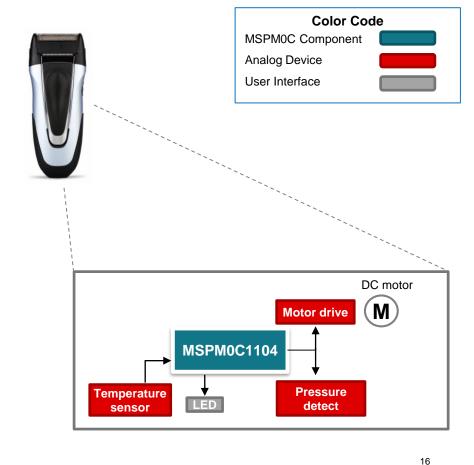
Automotive lighting module Using low cost MSPMOC MCUs


System information


- Reliable communication interface for high-speed and off-board communication
- High-accuracy dimming functionality
- Optimized thermal performance in a small form factor

MSPM0C features

- **UART** with LIN support
- Integrated ADC
- I2C and SPI communication interfaces
- Small packages


ShaverUsing low cost MSPM0C MCUs

System information

- PWMs needed
- · A few UART needed
- Motor voltage and current measurement
- NTC temperature measurement
- Buttons and LEDs

MSPM0C features

- 16-bit Advanced timer for dead zone and fault detection
- 3-input Hall sensor mode for position sensing and speed computation
- Up to 10 channel ADC for voltage and current sensing
- DMA controller to boost ADC or other peripheral throughput
- Small packages

Automotive window module

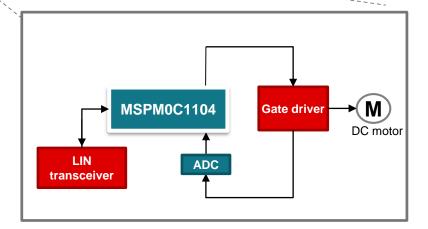
Using low cost MSPM0C MCUs

System information

- Control of powerful mechanism with sensitive anti-pinch detection
- Low-power dissipation while driving high-current loads
- · Minimal conducted and radiated emissions
- Integrity of position information during brief battery supply transients

MSPM0C features

- UART with LIN support
- Integrated ADC
- I2C and SPI communication interfaces
- Integrated temperature sensor
- Small packages



Color Code

MSPM0C Component

Analog Device

User Interface

Getting started with MSPM0C MCUs

Tools & resources *Live demo*

Getting started

You can start evaluating this device leveraging the following:

Content type	Content title	Link to content or more details
Product information	MSPM0C1104 Product Page	MSPM0C Product Page
Development tool or evaluation kit	MSPM0C1104 LaunchPad™ development kit	LaunchPad development kit
Software	MSPM0 software development kit (SDK)	MSPM0-SDK
Tool Page	Arm® Cortex ®-M0+ MCUs subsystems	MSPM0 Subsystem Tool Page
Technical blog content or white paper	MSPM0Cx- Toothbrush and Shaver	App Brief
Technical blog content or white paper	MSPM0 - Advanced Control Timer Helps for Better Control and Better Digital Output	App Note
Tool Page	Simplified code migration	Tool Page
Webinar Registration	Simplify your software efforts with MSPM0 MCU subsystems	Webinar on Tuesday, June 18 th , 2024 Register Now!

© Copyright 2024 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated