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ABSTRACT
Phase Noise and Jitter are important metrics that describe the quality of a low-noise oscillator. Jitter is a
time-domain representation of the timing accuracy of a signal and Phase Noise is the frequency domain
representation of noise spectrum around the carrier tone. Equipment for measuring jitter in time-domain,
such as real-time oscilloscopes, excel in their ability to directly measure period jitter, cycle-to-cycle jitter,
TIE and data-dependent jitter which makes them an ideal choice for characterizing high speed serial links.
Frequency domain equipment, such as a Phase Noise Analyzer, on the other hand, measures the RMS
power of a signal in a frequency band of interest. Phase Noise Analyzers typically have a much lower
noise floor than most real-time oscilloscopes making them an ideal choice for characterizing ultra-low jitter
oscillators such as LMK61E2.
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1 When measuring jitter performance of oscillators, it is important to understand the limitations of the
measurement equipment used. This application note will primarily focus on highlighting some of the
limitations of real-time oscilloscopes used for time-domain jitter analysis.

Time-domain jitter specifications of interest are period jitter, cycle-to-cycle jitter, time interval error (TIE)
and Total Jitter (TJ).

Per JEDEC Standard JESD65B, period jitter is defined as the deviation in cycle time of a signal with
respect to the ideal period over a random number of cycles. The number of cycles selected for this
measurement should be significant (1000 to 10,000) to have sufficient confidence in the measurement.
Peak-to peak period jitter is defined as the difference between the largest and the smallest period value
from the sample size used for the measurement. Period jitter can also be specified as a root means
squared (RMS) value in lieu of peak-to-peak. This jitter specification is primarily used for guaranteeing
setup and hold times for logic in CPUs and FPGAs.

Cycle-to-cycle jitter is defined as the variation in cycle time of a signal between adjacent cycles over a
random sample of adjacent cycle pairs. Once again, the number of cycles selected for this measurement
should be significant (1000 to 10,000) to have sufficient confidence in the measurement. Cycle-to-cycle
jitter is typically specified as the greater of the absolute values of the worst case positive or negative
variation in cycle time between adjacent cycles. As an example, if the largest positive cycle-to-cycle
variation is 62ps and the largest negative cycle-to-cycle variation is -65ps, the overall cycle-to-cycle jitter is
commonly specified to be 65ps.

TIE, also known as accumulated jitter is the deviation of a clock period from the ideal clock period
measured over a significant number of cycles. It includes jitter contribution due to high and low jitter
modulation frequencies. This specification of jitter is commonly used in SONET and Optical Transport
Networking (OTN) equipment.

Total Jitter (TJ) is another time-domain jitter specification commonly used in Serial IO applications that is
derived from the TIE measurement. It is measured at a specified Bit Error Rate (BER) for the serial IO link
and combines the effect of Random and Deterministic jitter components. It predicts a peak-to-peak jitter
that will only be exceeded with a probability equal to the BER. Real-time oscilloscopes typically include
jitter analysis software tools that decompose TJ into random (RJ) and deterministic jitter (DJ) components.
The relationship between TJ, RJ and DJ is shown in Equation 1.

where
• n is the application BER multiplier (1)

Table 1 gives a complete list of multipliers for required BER.

Table 1. BER Multipliers

BER Multiplier
10-3 6.582
10-4 7.782
10-5 8.834
10-6 9.784
10-7 10.654
10-8 11.462
10-9 12.218
10-10 12.934
10-11 13.614
10-12 14.260
10-13 14.882
10-14 15.478
10-15 16.028
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The jitter specifications described above were measured using a real-time digital phosphor oscilloscope
from Tektronix (DPO70804C) on a 312.5 MHz output frequency clock generated using the LMK61E2 high
performance programmable oscillator from Texas Instruments. The measurement results are shown in
Figure 1.

Figure 1. Time-Domain Jitter Measurement Results

The sample size for the above measurements was > 10000 samples and the sampling rate was set to
25GS/s (maximum allowable sampling rate for the oscilloscope). The acquisition interval for the
measurement was 40us. A Bit Error rate of 1E-12 was selected for the Total Jitter (TJ) measurement and
a 20 MHz low pass filter was applied to the TIE, TJ, RJ, and DJ measurements.

Jitter measurements on real-time oscilloscopes are affected by factors inherent to the oscilloscope. The
major sources of noise within the oscilloscope are sampling jitter, vertical noise, timing stability and signal
interpolation error.

Signal interpolation error due to linearly interpolating between voltage samples can be minimized by using
sin(x)/x (or sinc) interpolation setting on the oscilloscope (if available) and by maximizing signal amplitude
to input full scale.

Vertical noise in an oscilloscope is intrinsic to the input attenuators, preamplifiers and A/D converters. This
noise varies with the front-end attenuator and amplifier settings, bandwidth limiting on the scope and
sample size used for the measurement. Oscilloscope user manuals specify the vertical noise at a
particular V/div setting or as a percentage of the V/div setting.

Timebase stability is another potential source of error in real-time oscilloscopes. The timebase stability is
usually specified in the oscilloscope datasheets. ADC aperture uncertainty and quantization error are other
sources of error in the oscilloscope that manifest as amplitude and timing noise.
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The slew rate of the signal being measured affects the jitter. If the edge rate of the signal measured is
slow relative to the system bandwidth, any amplitude noise at the threshold crossing of the signal can
result in increased jitter. Slew rate amplifiers can potentially be used to increase the slew rate of the signal
before it is connected to the oscilloscope. In general, the faster the edge rate of the signal being
measured, the lower will be the impact of any amplitude noise. The use of a limiting amplifier
(ONET1191P) for total jitter measurement has been covered in detail in the applications note SCAA120A
from Texas Instruments. It should be noted that any limiting amplifier or slew rate amplifier device will
contribute some additive jitter to the signal being measured. Also, for measuring signals with fast slew
rates, an oscilloscope with adequate sampling rate should be used. The measurements in this application
note were not made using any limiting amplifiers or slew rate amplifiers.

The above sources of error are factored in a parameter called JNF for the Tektronix DPO70804C real-time
oscilloscope. Jitter Noise Floor is defined as the intrinsic noise portion of a jitter measurement. This sets
the lower limit on the amount of jitter that the oscilloscope can detect. If the input signal has jitter lower
than the jitter noise floor of the oscilloscope, the measured jitter on the oscilloscope will not accurately
represent the true jitter of the input signal.

JNF is described in Equation 2 (referred from Tektronix application note 61W_18786_2).

where
• A = input signal amplitude (volts)
• trm = 10% to 90% measured rise time (sec)
• FS = full scale range of input
• tj = short/medium term aperature uncertainty (sec rms)
• N = input-referred noise (volts rms) (2)

The details of this specification are beyond the scope of this application note.
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2 Tektronix uses time interval error to measure JNF. The typical value of JNF reported in the oscilloscope
datasheets from Tektronix correspond to the longest record length and maximum sample rate setting. The
typical Jitter Noise Floor (RMS TIE) for DPO70804C is 450fs.

The unfiltered TIE measurement result for LMK61E2 using DPO70804C oscilloscope is shown in Figure 2

Figure 2. Unfiltered TIE Measurement Results

The total measured RMS TIE is approximately 757 fs RMS. The oscilloscope contributes roughly 450 fs
RMS TIE. The RMS TIE due to the device (LMK61E2) can be calculated to be approximately 608 fs RMS.

Please note that the above jitter specification applies to Tektronix real-time oscilloscopes. Agilent lumps all
the jitter sources into a similar parameter called Jitter Measurement Floor. From the Agilent 90000 X-
Series datasheet, the jitter measurement floor is specified by Equation 3.

(3)

The first term in Equation 3 corresponds to the noise influence due to the slew rate of the signal being
measured. The second term represents the oscilloscope intrinsic noise. These parameters can be found in
the oscilloscope specifications from the manufacturer website. Other scope manufacturers have their own
specification that factors in the sources of jitter discussed above.
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3 The impact of the jitter noise floor of the oscilloscope can also be seen in the random jitter measurement
result (RJ). The filtered RJ from Figure 1 is ~287fs. A low pass filter of 20 MHz was applied for this
measurement. Since the acquisition interval was set to 40us, effect of noise frequencies down to 1/40us =
25 kHz are included in the measurement. In contrast, the integrated RMS phase jitter (12 kHz – 20 MHz)
measured using the Agilent 5052 Phase Noise Analyzer (superior noise floor when compared to real-time
oscilloscopes) is ~87fs (as shown in Figure 3). Filtered RJ in time-domain is equivalent to the Integrated
RMS phase jitter in frequency domain.

Figure 3. LMK61E2 312.5 MHz Phase Noise

In summary, when performing jitter measurements in time-domain using real time oscilloscopes from
different oscilloscope vendors, it is important to consider all the sources of jitter that are intrinsic to the
oscilloscope. The impact of some of these errors can be minimized by careful action on part of the
operator. Ensuring fast slew rate for the signal being measured, use of the highest sampling rate available
on the oscilloscope for the measurement, setting the input signal amplitude to full scale and use of sinc
interpolation or enhanced bandwidth setting (if available) on the oscilloscope are some of the steps that
the operator can follow to minimize the sources of error in the jitter measurement. The oscilloscope with
the lowest jitter noise floor will represent the true jitter of the input signal most accurately.
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