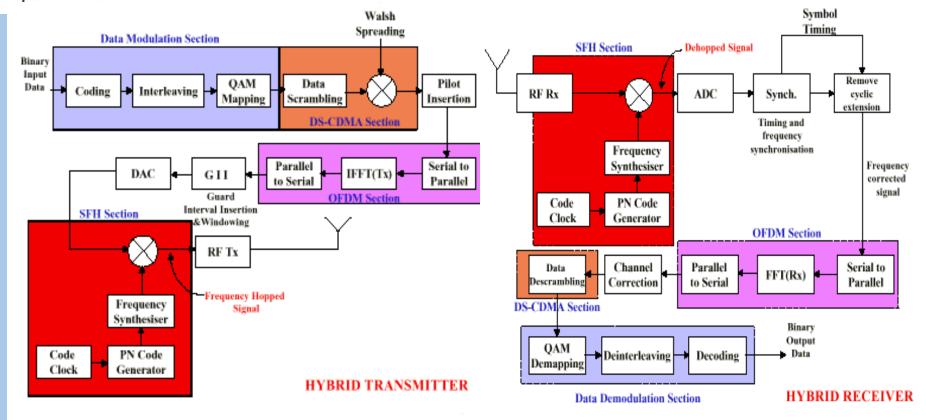

OFDM BASED WAVELET DOMAIN DIVERSITY

- □ A OFDM based wavelet domain diversity combining method to combat errors during image transmission on wireless channels is developed.
- □ For images represented in the wavelet domain, diversity is used to obtain multiple data streams corresponding to the transmitted image at the receiver.
- □ These individual image data streams are combined to form a composite image with higher perceptual quality.

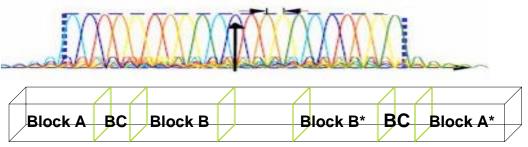


Diversity

- □ Diversity is a communication method used to improve wireless transmission that utilizes independent (or highly uncorrelated) communication signal paths to combat channel noise.
- □ Wavelet domain diversity is achieved by using the properties of the original image or its wavelet transform.

HYBRID OFDM SYSTEM

- OFDM system only supports one user.
- frequency selective fading does not permit very high data rates in DS-CDMA
- Near-far effect in uplink in CDMA
- CDMA-SFH solves near-far problem but only noncoherent modulation then
- Interference limited --- MAI limits the number of users that can be added to a CDMA system
- Synch problems at high chip rates


- OFDM/CDMA supports multiple users.
- □ Flat fading in OFDM sub-carriers
- □ SFH in Hybrid system solves this
- OFDM-FH hops on frame basis: allows coherent modulation
- □ Bandwidth limited --- allows any number of users by increasing the hops.
- Easier synch due to cyclic prefixes in OFDM

3

WAVELET - OFDM DIVERSITY MEHTODS AND PROCEDURE

- □OFDM-based diversity is a novel approach that utilizes the sub-carrier orthogonality to send data blocks and combine them at the receiver.
- Our novel approach of using OFDM sub- carriers to attain diversity in wireless image transmission is more effective in combating the fading and other channel impairments due to its immunity to interchannel interference and inter symbol interference.
- □Not only this method helps in improving the received image quality but also gives us the flexibility in high data rate transmission with multiple user access.

Block A \rightarrow Bits modulated by sub – carrier set N1 Block B \rightarrow Bits modulated by sub – carrier set N2

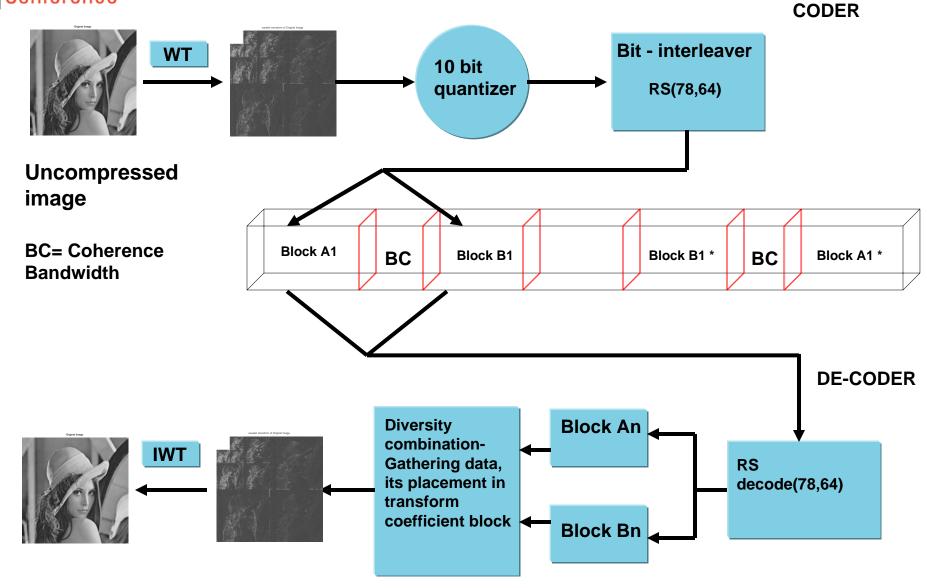
OFDM symbol

N TOTAL SUB-CARRIERS = N1 + N2 sub- carriers

Bandwidth considerations

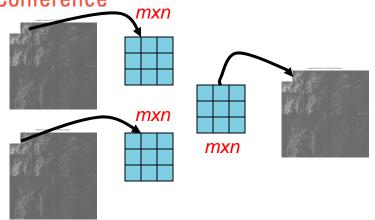
Multimedia requirements → >155Mbps

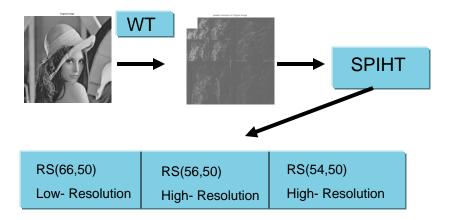
BW required → around 100-150MHz


Carrier frequency → 60 GHz frequency

Implies Rician fading and LOS communication – Rayleigh fading is simulated, though it can be extended to Rician easily.

Design required to incorporate large no. of users as opposed to robust design


Yields low BER


IMAGE DECOMPOSTION AND DATA PLACEMENT

5

DIVERSITY ALGORITHIMS AND PROCEDURES

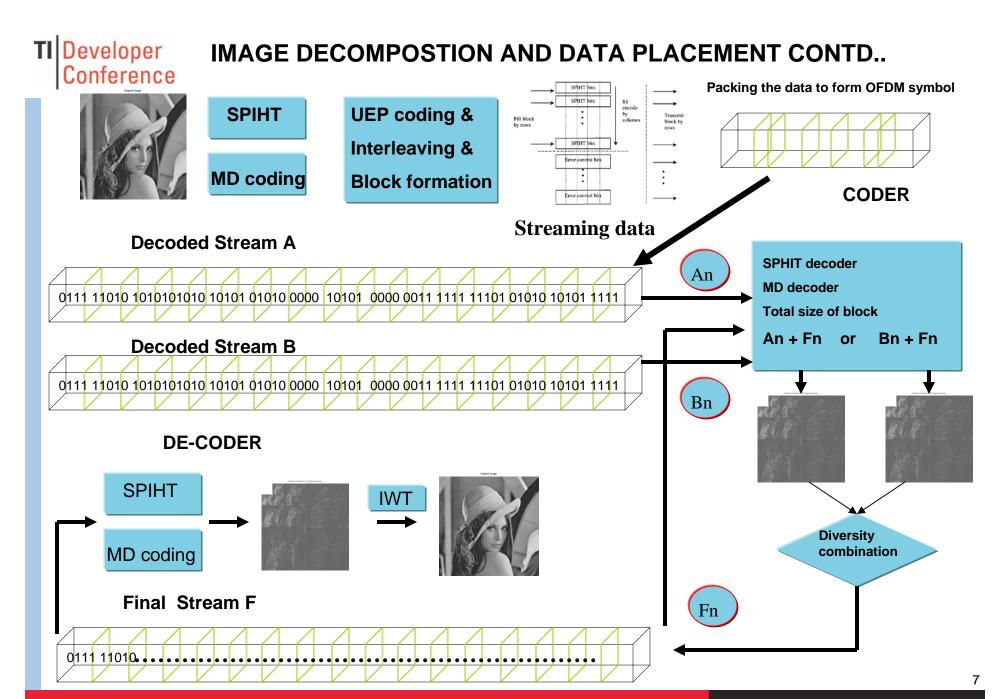
Diversity algorithms for uncompressed images

Low-resolution sub-band

$$c_{Lc}(i,j) = \begin{cases} c_{L1}(i,j) & \text{if } c_{L1}(i,j) = c_{L2}(i,j) \\ med\left[\{c_{L1}(k,l)\}, \{c_{L2}(k,l)\} \right] & \text{if } c_{L1}(i,j) \neq c_{L2}(i,j) \end{cases}$$

for

$$(k,l) \in \left(\left\{i - \frac{m-1}{2}, \dots, i + \frac{m-1}{2}\right\},\right.$$


$$\left\{j - \frac{n-1}{2}, \dots, j + \frac{n-1}{2}\right\}\right)$$

High -resolution sub-band

$$c_{Hc}(i,j) = \begin{cases} c_{H1}(i,j) & \text{if } c_{H1}(i,j) = c_{H2}(i,j) \\ c_{H1}(i,j) & \text{if } |c_{H1}(i,j)| < |c_{H2}(i,j)| \\ c_{H2}(i,j) & \text{if } |c_{H2}(i,j)| < |c_{H1}(i,j)| \end{cases}$$

Diversity algorithms for compressed images

$$b_{f}(l) = \begin{cases} b_{1}(l) & \text{if } w_{1}(l) \leq w_{2}(l) \\ b_{2}(l) & \text{if } w_{1}(l) > w_{2}(l) \end{cases} & \text{for } l = 1, 2, \cdots \\ w_{k}(l) = h_{L}^{k}(l) + h_{H}^{k}(l) \\ h_{L}^{k}(l) = \sum_{\substack{(i,j) \in \text{low res.} \\ \text{subbands}}} \left[d_{k}(i,j) + (c_{Lk}(i,j) - \mu_{Lk})^{2} \right] \\ h_{H}^{k}(l) = \sum_{\substack{(i,j) \in \text{low res.} \\ \text{subbands}}} \left[t_{k}(i,j) + c_{Hk}(i,j) \right] \\ \sum_{\substack{(i,j) \in \text{low res.} \\ \text{subbands}}} c_{Lk}(i,j) \\ \mu_{Lk} = \frac{\sum_{\substack{(i,j) \in \text{low res.} \\ \text{subband}}} c_{Lk}(i,j)}{\text{no. of coefficients}} \\ \text{in low res. subband} \\ d_{k}(i,j) = |c_{Lk}(i,j) - c_{Lk}(i,j+1)| \\ t_{k}(i,j) \\ = \left| c_{Hk}(i,j) - \left(\sum_{m=0}^{1} \sum_{n=0}^{1} c_{Hk}(2i+m,2j+n) \middle/ 4 \right) \right| \end{cases}$$

TI Developer Conference WITH OUT

DIVERSITY

image without diveristy, BER 0.005

image without diveristy, BER 0.015

image without diveristy, BER 0.025

FINDINGS

WITH DIVERSITY

image with diveristy, BER 0.005

image with diveristy, BER 0.015

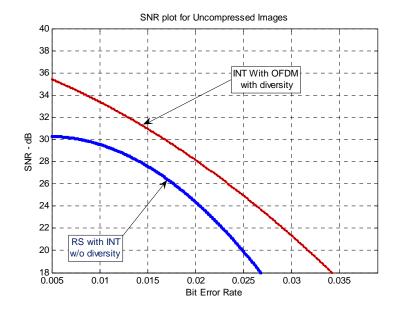


image with diveristy, BER 0.025

Uncompressed images

Transmission Method / BER	RS with INT w/o diversity	INT With OFDM with diversity
BER=0.005	30.728	35.326
BER=0.010	28.831	33.628
BER=0.015	27.005	30.83
BER=0.020	25.86	28.09
BER=0.025	19.269	25.001

FINDINGS CONTD ...

WITH OUT DIVERSITY

WITH DIVERSITY

compressed images

image reconstructed without diversity for BER = 0.010

image reconstructed without diversity for BER = 0.020

image reconstructed without diversity for BER = 0.025

image reconstructed with diversity for BER 0.010

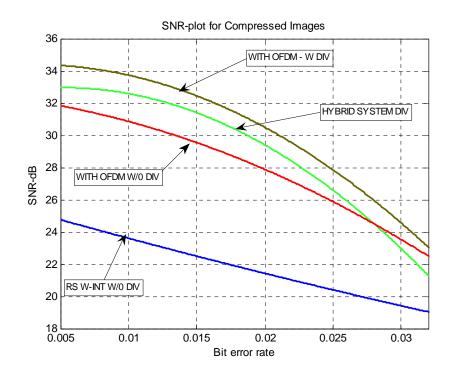


image reconstructed with diversity for BER 0.020

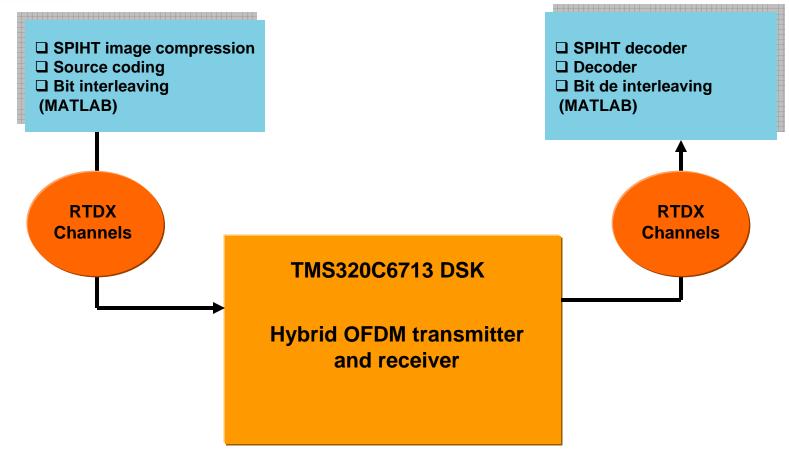


image reconstructed with diversity for BER 0.025

DSP IMPLEMENTATION

- □ Real time DSP implementation is done through RTDX protocols of TMS320c6713.
- Board used for the development is spectrum digital TMS320c6713 DSK.
- ☐ The DSK is communicated through USB interface, Program interface are done through code composer studio V 2.21.

10

CONCLUSION

- A new OFDM- WAVELET based diversity combination method is developed, which caters to the needs of multimedia communication.
- Requirement of high speed data rate with considerable Signal to Noise Ratio is achieved.
- Bandwidth requirements are specified and OFDM symbols are designed to meet those constraints.
- Wavelet domain based diversity is discussed thoroughly and also investigated in a new HYBRID OFDM system.
- Not only the diversity method was tested on HYBRID system, but also a significant advantage of the system is shown.

Future -work

Extending the work to video signals

Transmission of images through voice channels