TI Developer Conference

February 28-March 2, 2006 • Dallas, TX

010010001000001000001000001000

SPRP501

SEE THE FUTURE

Role and Evolution of Radio Network Controllers

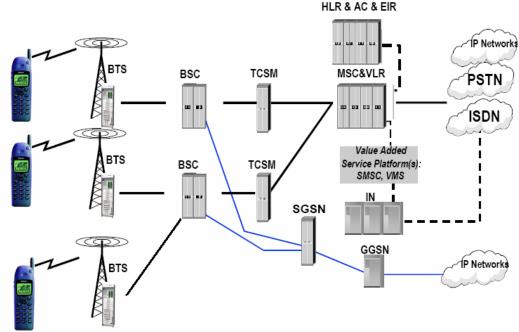
Pekka Varis

Senior R&D Manager / Senior Specialist Nokia pekka.ju.varis@nokia.com

Technology for Innovators[™]

Radio Network Controller (RNC) General Summary

- 3GPP WCDMA (UMTS) network background and architecture
- Radio Network Controller


RNC Technical Functionality

- Control plane and User Plane
- Key Elements of User Plane
- Dynamic Behavior of Packet Switched Calls

Evolution of RNC

- Drivers
- Distributed or Centralized
- Scalability

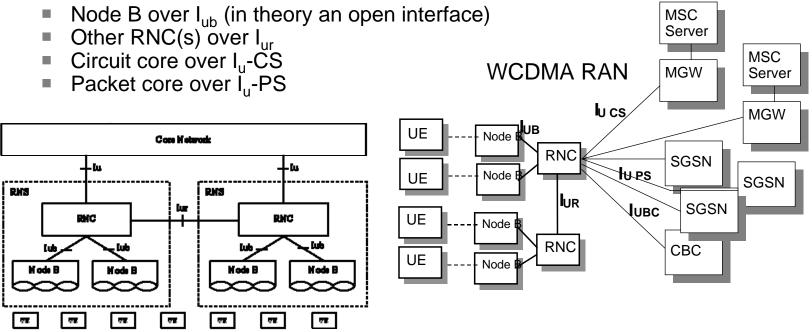
TI Developer Conference Basic GSM Network

Base Station Subsystem (BSS) is one entity

Made up of BTS, BSC, and transcoder (TC)

Base Station Controller (BSC)

- Relatively complex (lines-of-code) and low volume compared to BTS
- From the network vendor perspective this can lead to higher margin and less competition


TI Developer Conference Transcoding in GSM BSS

- Transcoder does conversion of G.711 PSTN traffic to and from a GSM speech codec and framing
- A good example where typical physical implementation differs from logical architecture
- It can be located at the core network mobile switch center (MSC) site
 - Resulting in bandwidth saving in transport network between BSC and MSC

TI Developer Conference

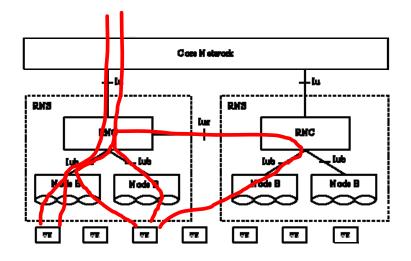
WCDMA Radio Access Network (RAN) Architecture

- WCDMA Radio Access Network (RAN) was standardized building on GSM
- Main function of the WCDMA Radio Network Controller (RNC) is to control and manage the RAN and radio channels
- Radio Network Controller is connected to

3rd Generation Partnership Project: Technical Specification Group RAN; UTRAN; Overall Description; 3G TS 25.401

Technology for Innovators[™]

TI Developer Conference Radio Network Controller

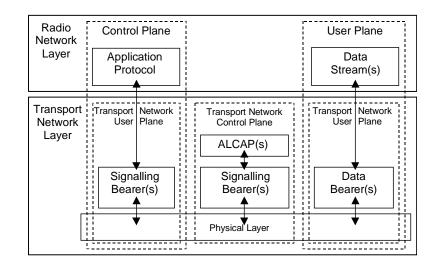

- Capacity figure is related to the amount of end users
- Connectivity is related to the amount of Node B's and cells that can be connected to it
- Order of magnitude figures for a RNC
 - Hundreds of Node Bs
 - Thousand cells
 - Tens of thousands of active calls
 - Hundreds of thousands users in the geographic area

RNC has three separate logical roles

- Controlling RNC (CRNC)
 - Each base station (Node B) has exactly one CRNC which is responsible for that base station and all cells belonging to it
- Serving RNC (SRNC)
 - When an user equipment (UE) is connected to the network, it is always associated with exactly one SRNC
- Drift RNC (DRNC)
 - DRNC exists in a situation where SRNC has a connection to a UE through a cell that is controlled by another RNC. The other RNC is then CRNC for the cell in question and at the same time DRNC for the UE

TI Developer Conference Soft Handover (Handoff /US/)

- Softer handover
- Soft handover
- Inter RNC soft handover branch (Drift RNC)



TI Developer Conference Soft Handover (SHO)

- Happens when an UE is connected to two or more Node B's simultaneously
 - If the UE is connected to two cells in the same Node B it is referred to as softer handover
- Resulting macrodiversity combining (MDC) is the fundamental reason why SRNC user plane is not just a transport switch
- Is SHO worth the complexity it brings?
- SHO branch setup and teardown performance is critical
 - Especially circuit switched calls

TI Developer Conference User and Control Plane

- RNC functionality can be divided into control plane and user plane.
- User plane includes all the functionality that participates directly in the transfer of the user's data payload.
- Control plane includes functionality that does not touch the end user's data streams; its functions exist only to enable the correct working of user plane.
 - Control plane does still transfer data of its own. This data transfer is called *signaling*, and it occurs between network elements, being never directly seen by the end user.
- The main focus of this presentation is on user plane

TI Developer Conference RNC Control Plane 1/2

Radio Resource Management

- Admission Control
- Resource Manager
- Packet Scheduler
- Load Control
- Power Control
- Hand-over control

Management of terrestrial channels

Allocation of traffic channels in lu and lub interfaces

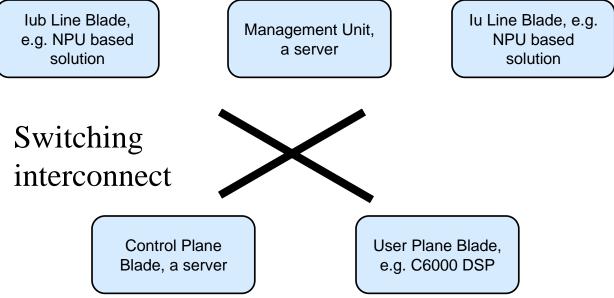
 Management of radio channel configurations in RAN

TI Developer Conference RNC Control Plane 2/2

Maintenance

- Fault localization
- Reconfiguration of RNC and reconfiguration support for Node B
- Software updates in RNC and Node B

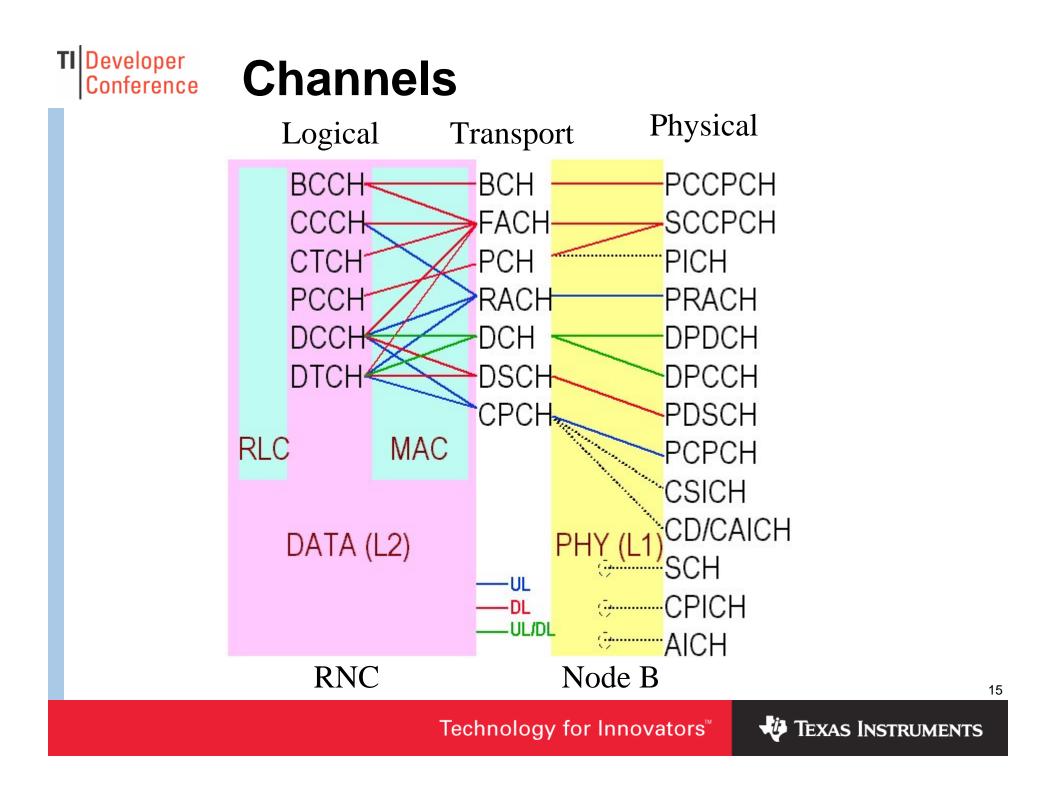
Operation

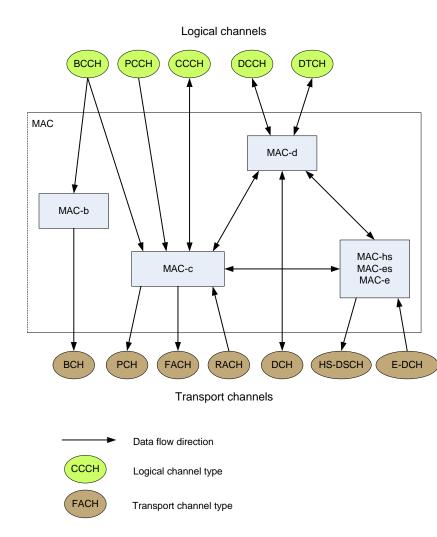

- Modification of parameters of RNC and BTS
- Modification of the radio access network
- Configuration of RNC HW
- Administration of RNC equipment

Very server like tasks

TI Developer Conference User Plane

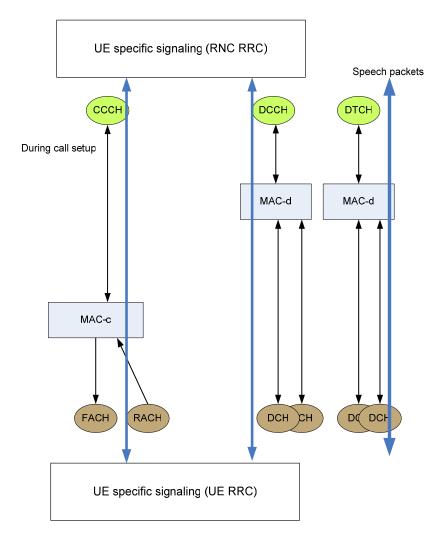
- Frame Protocol (FP) for lub and lur
- Iu-CS User Plane protocol towards the core network (CN),
- Radio Link Control (RLC)
- Air Interface ciphering and data integrity verification
 f8 and f9 based on the Kasumi algorithm (128bit key)
- Media Access Control (MAC)
- Macrodiversity combining and splitting of the MAC frames
- Outer Loop Power Control (OLPC)
- Packet Data Converge Protocol (PDCP) including header compression
- GPRS Tunneling Protocol (GTP)
- real-time fast path data processing




Technology for Innovators[™]

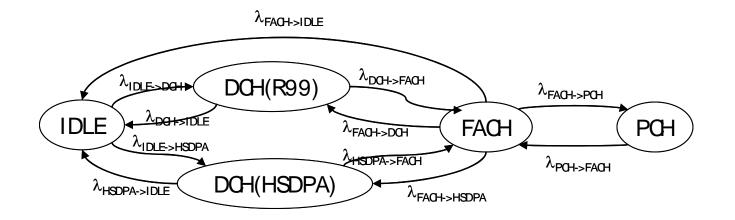
TI Developer Conference **Macrodiversity Combining** Oldest TBS is combined according to the rules MDC TBS can be missing in some branch(es) when the combining is done. CFN is used to select **CFN** the same TBS from 3 each branch 4 5 6 7 Each branch has buffer for TBS The same branches are inactive/active for Data message from FP: both MDC and FP Transport Block Set(s) **CRC-information** Quality Estimate (QE)

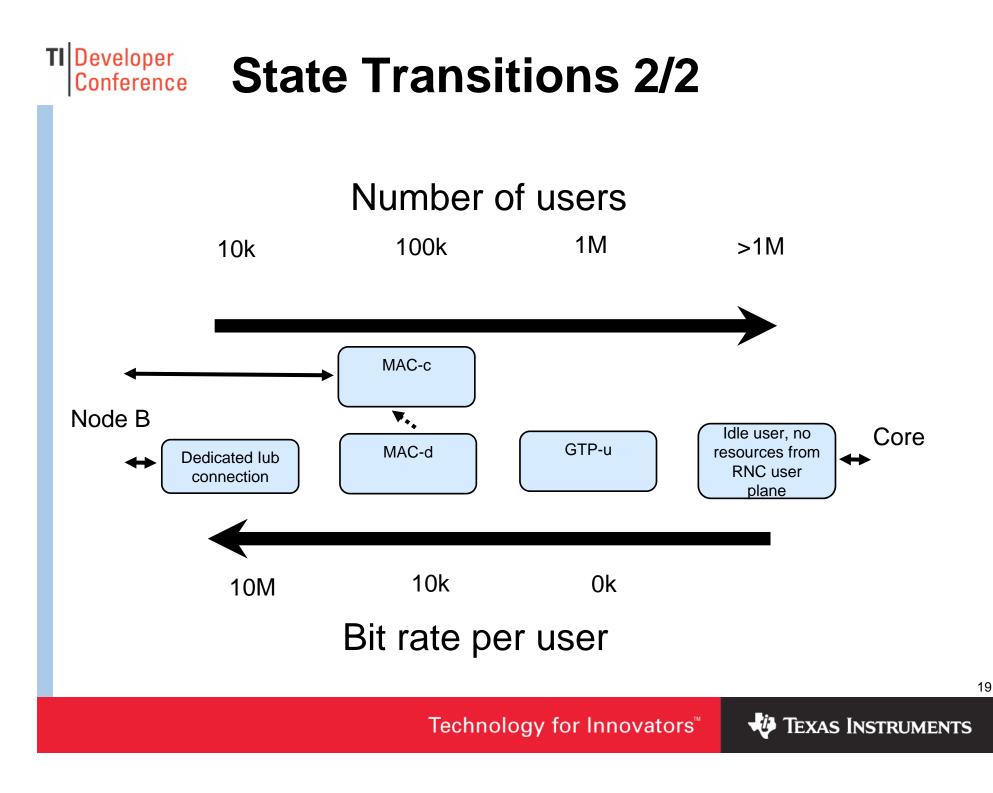
14


TI Developer Conference A look at MAC architecture

MAC

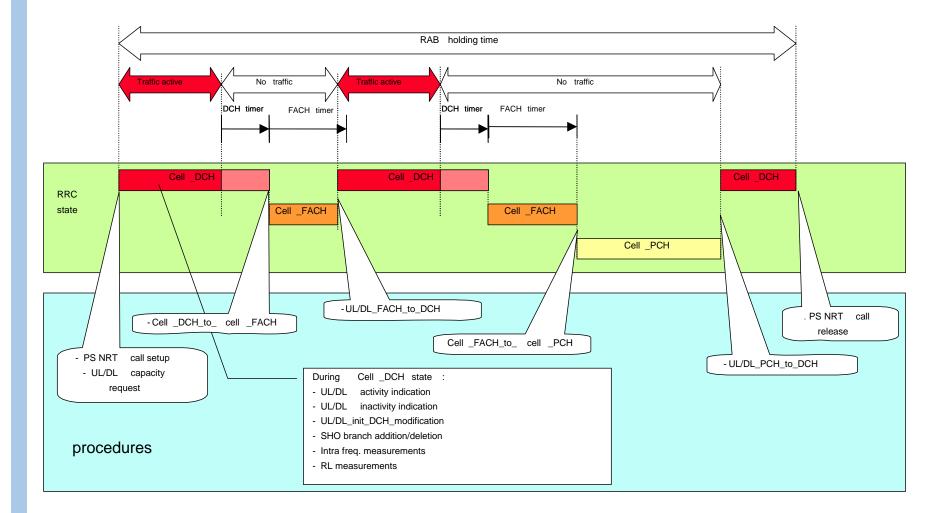
- b-broadcast
- c common
- d dedicated
- hs high speed (downlink) shared
- es enhanced (uplink) shared
- e enhanced (uplink)


TI Developer Conference Basic Mobile Originated Speech Call



- CCCH is used during call setup
- The UE is connected to two Node Bs

TI Developer Conference State Transitions 1/2


- The SRNC controls the state of the UE (the phone)
 - Most relevant in packet data transfer
- This interaction of user plane and control plane is critical functionality of a RNC

TI Developer Conference State Transition Example

Packet Switched Non-RealTime Service (PS NRT)

Technology for Innovators[™]

TI Developer Conference Current Offerings

Circuit switched speech

 Narrow band adaptive multi-rate codec at 12.2kbit/s mode

Packet switched traffic

- Typically maximum of 384kbit/s downlink
- 64kbit/s and 128kbit/s limits also common

Video calls

64kbit/s circuit switched data call with video and speech

First generation RNC's have been in use for about 5 years

TI Developer Conference Evolution of RNC

High speed packet access (HSPA)

First in the downlink HSDPA

- HSDSCH channel for RNC
- Rather easy for RNC user plane (No SHO and more relaxed timing requirements) compared to a DCH of the same bit rate
- Should become common this year

Later in the uplink HSUPA

- E-DCH channel for RNC
- About as complex as a DCH channel of the same bit rate for RNC user plane
- Bit rates in theory up to 14.4MBit/s in the downlink and 5.76MBit/s in the uplink
 - First services available are likely to be significantly lower speed because of a number of real world limitations
 - User experience will be at ADSL level (~1.5MBit/s)

TI Developer Conference

Multimedia Broadcast and Multicast Service (MBMS)

- Positioned between DVB-H broadcasting and basic streaming
- MBMS is a part of 3GPP Rel.6, standard froze
- MBMS requires dedicated capacity that could other-wise be used for conventional voice or data services
- 2G and 3G networks can be used for MBMS
- Requires new functionality in the network
- Requires support from terminals
- If this takes off remains to be seen

TI Developer Conference

Centralized Architecture

- Continue on the current path
- Fix the problems and optimize
- Possible focus areas:
 - High capacity in general
 - High packet data capacity
 - Scalability to lower smaller configurations
 - New radio technologies
 - Make it cheaper

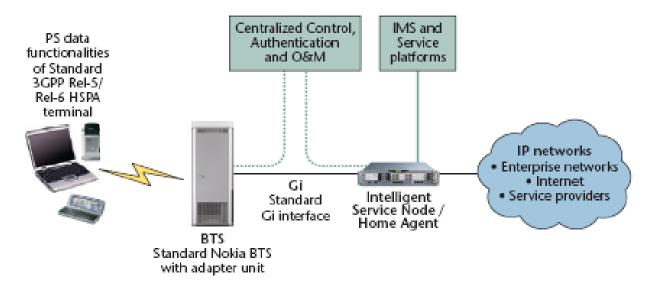
A HW standard

ATCA seems like a good fit to a RNC

Interest from operators

Usually operators are not that interested on HW details

Intel has built a RNC proof of concept ATCA based


 Some publicly announced telecom vendor plans to use ATCA

TI Developer Conference Distributed Architecture

- One alternative for a flat architecture
- Move the logical RNC to Node B
 - Essentially a miniature capacity RNC with a subset of the full functionality in each Node B

Or move just the user plane to Node B

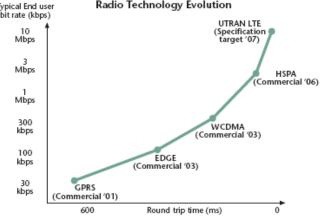
 A similar approach as splitting MSC to Server and Gateway in 3GPP release 4 core network

HSPA with flat architecture, Nokia Internet-HSPA

Technology for Innovators[™]

Benefits of Flat Architecture

- 3GPP standards based simplified network architecture
- Solution for cost-efficient broadband wireless access
- Utilizes standard 3GPP terminals


TI Developer Conference Some Influencing Factors

Transport network evolution

- Currently a typical Node B is connected with one or few E1/T1 lines (for a total capacity of several MBit/s)
- IP (and Ethernet) is coming, some issues remain

Telecom is an installed base game

- Once equipment is sourced changes are usually slow
 Typical End user
 Radio Technology Evolution
- RNC is just a minor part of RAN
 - Node B is the major part
- New radio technologies are coming

Technology for Innovators[®]

TI Developer Conference High Capacity RNC

- How large capacity a single RNC could be?
 - In some markets operators want as big as possible

High Availability (HA) requirements

- What if one RNC serves 10 million users and 100 000 simultaneous speech calls
- HA costs
- How to compromise between packet data and circuit voice capacity

TI Developer Conference Scaled Down RNC

- How small capacity RNC still makes sense?
- Something like a single ATCA chassis
 - Roughly current (with HSPA) capacity and smaller and cheaper
 - This could fit into operators site solutions and overall network
- Something smaller like uTCA
 - Or proprietary mechanics

NOKIA

Role and Evolution of Radio Network Controllers

Pekka Varis

Senior R&D Manager / Senior Specialist Nokia

pekka.ju.varis@nokia.com

SEE THE FUTURE

CREATE YOUR OWN

Technology for Innovators[™]

31