

TSP50C0x/1x Family Speech Synthesizer

Design Manual

Linear Products

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

Preface

Read This First

About This Manual

This manual describes the TSP50C0x/1x family of speech synthesizing devices. When necessary, the differences between the family members are shown in separate and consecutive sections. The object of this user's guide is to provide the information needed to implement a speech synthesizer design using a TSP50C0x/1x device.

How to Use This Manual

This document contains the following chapters:

Chapter 1 Introduction to the TSP50C0x/1x Family

This chapter describes the TSP50C0x/1x family features, D/A options, pin assignments and descriptions, and gives a brief introduction to linear predictive coding.

Chapter 2 TSP50C0x/1x Family Architecture

This chapter describes the architecture of the TSP50C0x/1x family with a separate section for the LCD driver, reference voltage and contrast adjustment, and clock options of the TSP50C12.

Chapter 3 TSP50C0x/1x Electrical Specifications

This chapter provides the electrical specifications for the TSP50C0x/1x family.

Chapter 4 TSP50C0x/1x Assembler

This chapter contains a detailed description of the TSP50C0x/1x assembler.

Chapter 5 TSP50C0x/1x Instruction Set

This chapter provides the instruction set for the TSP50C0x/1x.

Chapter 6 TSP50C0x/1x Applications

This chapter describes various hints and useful advice for designing applications for the TSP50C0x/1x.

Chapter 7 Customer Information

This chapter describes customer information including development cycles structure, speech development/production sequence, mechanical information, and ordering information.

Appendix A Script Preparation and Speech Development Tools

This appendix describes script preparation and development tools for the TSP50C0x/1x.

Appendix B TSP50C0x/1x Sample Synthesis Program

This appendix contains a sample synthesis program that counts numbers from one to five.

Appendix C External ROM Initialization

This appendix contains a sample program to initialize external ROM.

Appendix D DTMF Program

This appendix contains a sample program that generates a dual-tone multifrequency (DTMF) signal.

Appendix E Sample Music Program

This appendix contains a sample program that produces Mozart's Minuet in G.

Appendix F TSP50P11 (OTP) Version

This appendix contains advance information for the TSP50P11, which is a one-time-programmable (OTP) version of the TSP50C11.

Notational Conventions

This document uses the following conventions.

Program listings, program examples, and interactive displays are shown in a special typeface similar to a typewriter's.

Here is a sample program listing:

0349	0059	6В	SPEAK2	LUAA		-Get	word
0350	005A	60		ANEC	StopWord	$-\mathtt{End}$	phase?
	005B	FF					

- In syntax descriptions the following notational conventions are used in this guide:
 - A reserved keyword (an instruction, command or directive) is shown in **bold** capital letters and should be entered as shown.
 - An optional field is indicated by brackets and italics and describes the type of information that should be entered: [label]
 - User-supplied contents are indicated by angle brackets and italics and describe the type of information that should be entered:

<num>

A required blank is indicated by a caret (^).

The following syntax example demonstrates the notational conventions used in this guide.

[<label>]^ABAAC^...[<comment>]

- A lower case **h** at the end of a numeric value indicates that the value is hexadecimal (e.g., 01FAh, 032Bh, and 0FFh).
- All addresses in this manual are in hexadecimal format unless otherwise noted. All other are numbers are in decimal format unless otherwise noted.
- ☐ Abbreviations:
 - '04: TSP50C04
 - '06: TSP50C06
 - '10: TSP50C10
 - '11: TSP50C11
 - '**12**: TSP50C12
 - '13: TSP50C13
 - '14: TSP50C14
 - '19: TSP50C19
 - LSB, MSB: Least significant and most significant bits
 - LSbyte, MSbyte: Least significant and most significant bytes

Port A refers to pins PA0 — PA7 operating together.
Port B refers to pins PB0 and PB1 operating together.
Individual bits of a register are indicated with the register abbreviation followed by a decimal point and the bit number (e.g., bit 5 of the A register is A.5 or bit 2 of the mode register is MR.2).
$^{*}\mathrm{X}$ is the contents of the location pointed to by the address stored in X register.
A' indicates the old contents of the A register

Information About Cautions

This book may contain cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially damage your software or equipment.

The information in a caution is provided for your protection. Please read each caution carefully.

If You Need Assistance. . .

If you want to	Do this		
Request more information about Texas Instruments Speech Synthesizer products	Write to: Texas Instruments Incorporated Market Communications Manager, MS 8206 P.O. Box 655303 Dallas, Texas 75265–5303		
Order Texas Instruments documentation	Call the TI Literature Response Center: (800) 477–8924		
Report mistakes in this document or any other TI documentation	Send your comments to: Texas Instruments Incorporated Technical Publications Manager, MS 8345 P.O. Box 655303 Dallas, Texas 75265–5303		

Trademarks

IBM, PC, PC/XT, PC/AT are trademarks of IBM Corporation. TI is a trademark of Texas Instrument Incorporated.

Contents

1	Intro	duction	to the TSP50C0x/1x Family
	1.1		ction
	1.2		otion 1-3
		1.2.1	TSP50C0x/1x Family Features
		1.2.2	TSP50C04/06/13/14/19 Additional Features
		1.2.3	TSP50C10/11 Additional Features
		1.2.4	TSP50C12 Additional Features
	1.3	D/A Op	otions
		1.3.1	Two-Pin Push Pull (Option 1) – Accurate to 10 Bits (+1/2 LSB) 1-7
		1.3.2	Single-Pin Single Ended (Option 2) – Accurate to Only 9 Bits (+1 LSB) 1-9
		1.3.3	Single-Pin Double Ended (Option 3) – Accurate to 10 Bits (+1/2 LSB) 1-11
	1.4	TSP50	C10/11 Pin Assignments and Descriptions
	1.5	TSP50	C12 Pin Assignments and Descriptions
	1.6	TSP50	C04/06/13/14/19 Pin Assignments and Descriptions
	1.7	Introdu	ction to LPC (Linear Predictive Coding)
		1.7.1	The Vocal Tract
		1.7.2	The LPC Model 1-20
		1.7.3	LPC Data Compression
2	TSP5	50C0x/1x	Family Architecture 2-1
	2.1	TSP50	C0x/1x Functional Description
		2.1.1	Read-Only Memory (ROM)
		2.1.2	Program Counter
		2.1.3	Program Counter Stack
		2.1.4	TSP50C10/11 Random-Access Memory (RAM)
		2.1.5	TSP50C12 Random-Access Memory (RAM)
		2.1.6	TSP50C04/06/13/14/19 Random-Access Memory (RAM) 2-7
		2.1.7	Arithmetic Logic Unit (ALU) 2-8
		2.1.8	A Register
		2.1.9	X Register
		2.1.10	B Register
		2.1.11	Status Flag
		2.1.12	Integer Mode Flag
		2.1.13	Timer Register 2-10
		2.1.14	Timer Prescale Register 2-11
		2.1.15	Pitch Register and Pitch-Period Counter (PPC) 2-11

		2.1.16	Speech Address Register	2-12
		2.1.17	Parallel-to-Serial Register	2-13
		2.1.18	Input/Output Ports	2-13
		2.1.19	Mode Register	2-15
	2.2	Speech	n Synthesizer	2-17
		2.2.1	Synthesizer Mode 0 – OFF	2-17
		2.2.2	Synthesizer Mode 1 – LPC	2-17
		2.2.3	Synthesizer Mode 2 – PCM	2-17
		2.2.4	Synthesizer Mode 3 – PCM and LPC	2-17
		2.2.5	Use of RAM by the Synthesizer	2-18
		2.2.6	Frame-Length Control	2-18
		2.2.7	Digital-to-Analog Converter	2-19
	2.3	Interru	ots	2-20
	2.4	TSP50	C12 LCD Functional Description	2-22
		2.4.1	TSP50C12 LCD Driver	2-22
		2.4.2	TSP50C12 LCD Drive Type A	2-24
		2.4.3	TSP50C12 LCD Drive Type B	2-26
	2.5	TSP50	C12 LCD Reference Voltage and Contrast Adjustment	2-28
	2.6	TSP50	C12 Clock Options	2-29
3	TCDE	000v/4v	Electrical Specifications	2.4
3	3.1		te Maximum Ratings Over Operating Free-Air TemperatureRange†	
	3.2		mended Operating Conditions	
	3.3		Requirements	
	3.4	_	C10/11 Electrical Characteristics	
	3.5		C12 Electrical Characteristics	
	3.6		C04/06/13/14/19 Electrical Characteristics	
4	TSP5		Assembler	
	4.1		otion of Notation Used	
	4.2		g the Assembler	
	4.3		and-Line Options	
		4.3.1	BYTE Unlist Option	
		4.3.2	DATA Unlist Option	
		4.3.3	XREF Unlist Option	
		4.3.4	TEXT Unlist Option	
		4.3.5	WARNING Unlist Option	
		4.3.6	Complete XREF Switch	
		4.3.7	Object Module Switch	
		4.3.8	Listing File Switch	
		4.3.9	Page-Eject Disable Switch	
		4.3.10	Error-to-Screen Switch	
		4.3.11	Instruction Count Switch	
		4.3.12	Binary-Code File-Disable Switch	4-6

4.4	Assem	bler Input and Output Files 4-7
	4.4.1	Assembly Source File 4-7
	4.4.2	Assembly Binary Object File 4-7
	4.4.3	Assembly Tagged Object File 4-6
	4.4.4	Assembly Listing File 4-8
4.5	Source	-Statement Format
	4.5.1	Label Field 4-9
	4.5.2	Command Field 4-9
	4.5.3	Operand Field
	4.5.4	Comment Field
	4.5.5	Constants
	4.5.6	Decimal Integer Constants
	4.5.7	Binary Integer Constants 4-10
	4.5.8	Hexadecimal Integer Constants 4-1
	4.5.9	Character Constants
	4.5.10	Assembly-Time Constants 4-1
4.6		ıls
4.7	•	cter Strings 4-13
4.8		sions
	4.8.1	Arithmetic Operators in Expressions 4-14
	4.8.2	Parentheses In Expressions 4-14
4.9	Assem	bler Directives
	4.9.1	AORG Directive
	4.9.2	BYTE Directive
	4.9.3	COPY Directive
	4.9.4	DATA Directive
	4.9.5	EQU Directive
	4.9.6	END Directive
	4.9.7	IDT Directive
	4.9.8	LIST Directive
	4.9.9	NARROW Directive
	4.9.10	OPTION Directive
	4.9.11	PAGE Directive
	4.9.12	RBYTE Directive
		RDATA Directive
		RTEXT Directive
	4.9.15	TEXT Directive
	4.9.16	TITL Directive
	4.9.17	UNL Directive
	4.9.18	WIDE Directive
		Instruction Set
5.1		tion Syntax 5-2
E 2	TODEO	COv/1x Assambly Instructions

5

6	TSP5	0C0x/1x	Applications	6-1
	6.1	Synthe	sizer Control	6-2
		6.1.1	Speech Coding and Decoding	6-2
		6.1.2	RAM Usage	6-4
		6.1.3	ROM Usage	6-8
	6.2	Progra	m Overview	6-9
		6.2.1	Initialization	6-9
		6.2.2	Phrase Selection	6-9
		6.2.3	Speech Initialization	6-9
		6.2.4	Level-1-Interrupt Service Routine	6-10
		6.2.5	Frame-Update Routine	6-10
	6.3	Synthe	sis Program Walk-Through	6-11
	6.4	Arithme	etic Modes	6-39
	6.5	Operat	ion of the Multiply Instruction	6-42
	6.6	Standb	y Mode	6-43
	6.7	Slave N	Mode	6-44
		6.7.1	Slave-Mode Write Operation	6-45
		6.7.2	Slave-Mode Read Operation	6-47
	6.8	TSP60	C18/81 Interface	6-48
		6.8.1	External ROM Mode	6-48
		6.8.2	TSP60C18/81 I/O Signals	6-48
		6.8.3	TSP60C18 Addressing	6-50
		6.8.4	TSP60C81 Addressing	
		6.8.5	TSP60C18/81 Addressing Modes	6-51
		6.8.6	TSP60C18/81 Control	6-53
		6.8.7	Initialization of the TSP60C18/81	6-54
		6.8.8	Direct-Address Initialization of the TSP60C18/81	6-55
		6.8.9	8-Bit Indirect-Address Initialization of the TSP60C18/81	6-56
		6.8.10	16-Bit Indirect-Address Initialization of the TSP60C18/81	6-57
		6.8.11	Placing the TSP60C18/81 in a Low-Power Standby Condition	6-58
	6.9	Use of	the GET Instruction	6-60
		6.9.1	GET From Internal ROM	6-62
		6.9.2	GET From External ROM	6-62
		6.9.3	GET From Internal RAM	6-63
	6.10	Genera	ating Tones Using PCM	6-66
		6.10.1	Operation of the TASYN Instruction in PCM Mode	6-66
		6.10.2	Timing Considerations in PCM Mode	6-67
		6.10.3	DTMF Program Walk-Through	6-67
	6.11	TSP50	C19 Programming	6-75
			Memory Block Selection	
			Data Block Selection	
		6.11.3	Preparing the Source Code	6-76
		6.11.4	Program Location in ROM	6-77
7	Cust	amar Inf	ormation	7 4
1			pment Cycle	
	7.1		VIIIVIIL VIVID	

	7.2	Summa	ary of Speech Development/Production Sequence	7-3
	7.3	Mecha	nical Information	
		7.3.1	N016 300-Mil Plastic Dual-In-Line Package	
		7.3.2	DW020 Plastic Small-Outline Wide-Body (SOWB) Package	
		7.3.3	FN068 68-Lead Plastic Leaded Chip Carrier (PLCC) Package	
		7.3.4	TSP50C12 (PLCC) Reflow Soldering Precautions	
	7.4		ng Information	
	7.5		roduct Release Forms (TSP50C0x/1x)	
		7.5.1	New Product Release Form for TSP50C04	
		7.5.2	New Product Release Form for TSP50C06	
		7.5.3	New Product Release Form for TSP50C10A	
		7.5.4	New Product Release Form for TSP50C11A	
		7.5.5	New Product Release Form for TSP50C12	
		7.5.6	New Product Release Form for TSP50C13	
		7.5.7	New Product Release Form for TSP50C14	
		7.5.8	New Product Release Form for TSP50C19	7-20
Α	Scrip	t Prepa	ration and Speech Development Tools	A-1
	A.1		Generation	
		A.1.1	Speaker Selection	A-2
		A.1.2	Speech Collection	A-2
		A.1.3	LPC Editing	
		A.1.4	Pitfalls	
	A.2	Speecl	h Development Tools	A-5
В	TSP5	0C0x/1	s Sample Synthesis Program	B-1
С	Exter	nal ROI	M Initialization	C-1
D	DTMF	- Progra	am	D- 1
_				_
Ε	Samp	ole Musi	c Program	E-1
F	TSP5	0P11 (O	TP Version)	F-1
	F.1	Introdu	ction	F-2
	F.2		mming Mode	
	F.3	Specia	I Functions Testing	F-5
	F.4		te Maximum Ratings Over Operating Free-Air Temperature Range†	
	F.5		mended Operating Conditions	
	F.6		P11 Electrical Characteristics	
	F.7		tion Bit	
	F.8	_	mming Interface Timing	
	F.9	litere	nces Between the TSP50P11 and the TSP50C11	F-13
G	Gloss	sarv		G-1

Illustrations

1–1	TCDF0C40/44 Functional Block Diagram	4.0
1–1 1–2	TSP50C10/11 Functional Block Diagram	
1–2 1–3	TSP50C12 Functional Block Diagram	
1–3 1–4	TSP50C04/06/13/14/19 Functional Block Diagram	
	D/A Output Waveform for Two-Pin Push Pull (Option 1)	
1–5	Four-Transistor Amplifier Circuit	
1–6 1–7	Operational Amplifier Interface Circuit	
1–7 1–8	Power Amplifier Interface Circuit	
1–8 1–9	D/A Output Waveform for Single Ended (Option 2)	
	One-Transistor Amplifier Circuit	
1–10	D/A Output Waveform for Single-Pin Double Ended (Option 3)	
1–11	Operational Amplifier Interface Circuit	
1–12	TSP50C10/11 Pin Assignments	
1–13.	Power-Up Initialization Circuit	
1–14	Oscillator Circuit	
1–15	TSP50C12 Pin Assignments	
1–16	TSP50C04/06/13/14/19 Pin Assignments	
1–17	LPC-12 Vocal Tract Model	
2–1	TSP50C0x/1x System Block Diagram	
2–2	TSP50C10/11 RAM Map	
2–3	TSP50C12 RAM Map	
2–4	TSP50C04/06/13/14/19 RAM Map	
2–5	RAM Map During Speech Generation	
2–6	TSP50C12 LCD Driver Type A Timing Diagram	
2–7	TSP50C12 LCD Driver Type B Timing Diagram	
2–8	TSP50C12 Voltage Doubler	
2–9	RC OSC Option Circuit	
3–1	Initialization Timing Diagram	
3–2	Write Timing Diagram (Slave Mode)	
3–3	Read Timing Diagram (Slave Mode)	
3–4	External Interrupt Timing Diagram	
3–5	Typical Input Leakage Current on INIT	
6–1	D6 Frame Decoding	
6–2	Speech Parameter Unpacking and Decoding	
6–3	ACAAC in Extended-Sign Mode	
6–4	ACAAC in Integer Mode	
6–5	Slave-Mode Write Operation	6-46

6–6	Slave-Mode Read-Then-Write Operation 6-47
6–7	TSP60C18/81-to-TSP50C0x/1x Hookup
6–8	Register Connections for GET Instruction
6–9	Parallel-to-Serial Operation for GET 5 Instruction
6–10	Operation of TASYN in PCM Mode 6-66
6–11	Format of Data in A Register Before TASYN
7–1	Speech Development Cycle
7–2	TSP50C04/06/10/11/13/14/19 16-Pin N Package
7–3	TSP50C04/06/10/11/13/14/19 20-Pin DW Package
7–4	TSP50C12 68-Lead PLCC Package
A-1	SDS5000 A-5
A-2	EVM50C1X A-6
A-3	SEB50C1X A-6
A-4	SEB60CXX A-6
A-5	ADP50C12 A-7
A-6	FAB50C1x A-8
F-1	TSP50P11 Pin Assignments F-2
F-2	Simplified Timing Waveforms
F-3	Normal Programming Timing Waveforms F-9
F-4	Programming with Protection Set Timing Waveforms F-10
F-5	Initialization and Write Sequence Timing Waveforms F-11
F-6	Programming and Read Sequence Timing Waveforms F-12

Tables

1–1	TSP50C10/11 Terminal Functions
1–2	TSP50C10/11 I/O Configurations
1–3	TSP50C12 Terminal Functions
1–4	TSP50C04/06/13/14/19 Terminal Functions
2–1	Reserved ROM Locations
2–2	TSP50C19 ROM Block Addressing
2–3	I/O Registers
2–4	Mode Register
2–5	Interrupt-1 Vectors
2–6	Interrupt-2 Vectors
2–7	TSP50C12 Display RAM Map
3–1	Recommended Operating Conditions
3–2	D/A Options Timing Requirements
3–3	Initialization Timing Requirements
3–4	Write Timing Requirements (Slave Mode)
3–5	Read Timing Requirements (Slave Mode)
3–6	External Interrupt Timing Requirements
3–7	TSP50C10/11 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)
3–8	TSP50C12 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)
3–9	TSP50C04/06/13/14/19 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted) 3-10
4–1	Switches and Options 4-4
4–2	Summary of Assembler Directives
5–1	TSP50C0x/1x Instruction Set
5–2	TSP50C0x/1x Instruction Table
6–1	D6 Parameter Size
6–2	Hardware-Fixed RAM Locations 6-5
6–3	Other RAM Locations Used in Sample Program 6-6
6–4	FLAGS Bit Descriptions for Sample Program
6–5	ROM Usage
6–6	TXA Operation
6–7	TSP60C18/81 Pin Functional Descriptions
6–8	TSP60C18/81 Pinout
6–9	TSP60C18/81 Addressing Modes 6-51
6–10	Indirect Address Example 6-52

6–11	Mode Register Control of GET Data Source	
6–12	Relative Weights of DAC Magnitude Bits	6-67
6–13	Sample Rates	6-69
6–14	TSP50C14 Memory Blocks	6-75
6–15	TSP50C19 ROM Block Selection	6-75
6–16	ASM50C1x Assembler Relative Address and Block Selected	6-76
F-1	TSP50P11 Terminal Functions	F-2
F-2	Special Testing Functions†	F-5
F-3	Recommended Operating Conditions	F-7
F-4	TSP50P11 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)	F-8
F-5	Timing Characteristics for Initialization and Write Sequences	
F-6	Timing Characteristics for Initialization and Write Sequences	F-12
F-7	TSP50P11 Excitation Function Differences	F-13

Chapter 1

Introduction to the TSP50C0x/1x Family

The TSP50C0x/1x family of speech synthesizers offer cost-effective solutions for high-volume applications. Each incorporates a built in microprocessor that allows music as well as speech capability. Texas Instruments offers five sizes of internal ROM for up to three minutes of speech. In addition, the devices can be interfaced to external speech memory.

Topi	c Page
1.1	Introduction 1-2
1.2	Description
1.3	D/A Options
1.4	TSP50C10/11 Pin Assignments and Descriptions 1-13
1.5	TSP50C12 Pin Assignments and Description 1-16
1.6	TSP50C04/06/13/14/19 Pin Assignments and Descriptions 1-18
1.7	Introduction to LPC (Linear Predictive Coding) 1-19

1.1 Introduction

The TSP50C0x/1x uses a revolutionary architecture to combine an 8-bit microprocessor, a speech synthesizer, ROM, RAM, and I/O in a low-cost sing-le-chip system. The architecture uses the same ALU (Arithmetic Logic Unit) for the synthesizer and the microprocessor, thus reducing chip area and cost and enabling the microprocessor to do a multiply operation in 1.6 μs . Linear Predictive Coding (LPC) is used to synthesize high-quality speech at a low data rate.

The TSP50C0x/1x is highly flexible and programmable, making it suitable for a wide variety of applications. Its low system cost opens up new applications for solid-state speech. They include:

Talking Clocks
Toys
Telephone Answering Machines
Home Monitors
Navigation Aids
Laboratory Instruments
Personal Computers
Inspection Controls
Inventory Controls
Machine Controls
Warehouse Systems
Warning Systems
Appliances
Mailboxes
Equipment for the Handicapped
Learning Aids
Computer-Aided Instruction
Magazine and Direct-Mail Advertisements
Point-of-Sale Displays

1.2 Description

The TSP50C0x/1x can be divided into several functional blocks (Figure 1–1, Figure 1–2, Figure 1–3). The ALU and RAM are shared by the speech synthesizer and the microcomputer.

The TSP50C0x/1x implements an LPC-12 speech synthesis algorithm using a 12-pole lattice filter. The internal microprocessor fetches speech data from the internal or external ROM (TSP60C18 or TSP60C81), decodes the speech data, and sends the decoded data to the synthesizer. The microprocessor also interpolates (smooths) the speech data between fetches. The output of the synthesizer can be used to drive transistor or integrated-circuit amplifiers. Some digital low-pass filtering is provided inside the TSP50C0x/1x.

The general-purpose microprocessor in the TSP50C0x/1x is also capable of a variety of logical, arithmetic, and control functions. It can often be used for the nonsynthesis tasks of the customer's application as well.

Figure 1-1. TSP50C10/11 Functional Block Diagram

Figure 1–2. TSP50C12 Functional Block Diagram

Figure 1–3. TSP50C04/06/13/14/19 Functional Block Diagram

1.2.1 TSP50C0x/1x Family Features

			, , , , , , , , , , , , , , , , , , , ,
		Key	features of the entire TSP50C0x/1x family are in the following list.
		0000000000	Programmable LPC-12 Speech Synthesizer 8-Bit Microprocessor With 61 Instructions 4-V to 6-V CMOS Technology for Low Power Dissipation 3 D/A Configurations – Mask Selectable 10-kHz or 8-kHz Speech Sample Rate 10 Software Controllable I/O Lines (9 I/O Lines With Two-Pin D/A Output) Internal Timer External Interrupt Single-Cycle Multiply Instruction Executes Up to 600,000 Instructions Per Second Built-in Interface to TSP60C18 or TSP60C81 Speech ROM Built-In Slave Mode to Act as Microprocessor Peripheral
1.2.2	TSP50C04/06/	/13/	14/19 Additional Features
		Key	features of the TSP50C04/06/13/14/19 are in the following list.
			Direct Speaker Drive Capability (32 Ω speaker) Internal Clock Generator That Requires No External Components Two-Pin D/A Output and 10 Pins of I/O Simultaneously Possible Two D/A Configurations – Mask Selectable Optional Doubling of the D/A Output 16 Twelve-Bit Words and 48 Bytes of RAM Bytes of ROM:
			 TSP50C04 has 4K bytes of ROM. TSP50C06 has 6K bytes of ROM. TSP50C13 has 8K bytes of ROM. TSP50C14 has 16K bytes of ROM. TSP50C19 has 32K bytes of paged ROM.
1.2.3	TSP50C10/11	Ad	ditional Features
		Key	features of the TSP50C10/11 are in the following list.
			Three D/A Configurations – Mask Selectable 16 Twelve-Bit Words and 112 Bytes of RAM Bytes of ROM:
			TSP50C10 has 8K bytes of ROM.TSP50C11 has 16K bytes of ROM.

1.2.4 TSP50C12 Additional Features

Key	Key features of the TSP50C12 are in the following list.					
	Direct LCD Drive Capability for an 8 × 24 (192-Segment) Display 1/8 Duty Cycle and 1/4 Bias Drive With On-Chip Voltage Reference					
	Internal Contrast Adjustment					
	24 Bytes of Display RAM					
	Limited Direct Speaker Drive Capability					
	RC Oscillator Option					
	16K bytes of ROM					
\Box	16 Twelve-bit Words and 112 Bytes of RAM					

1.3 D/A Options

The TSP50C0x/1x offers three D/A (digital-to-analog) output options to match different applications. The DAC (digital-to-analog converter) is a pulse-width-modulated type with 9 bits or 10 bits of resolution and a 16-kHz or 20-kHz sampling rate. Each option has a range of 480 to -480 segments per sample period, with two options having a resolution of $\pm 1/2$ LSB and the third having a resolution of ± 1 LSB.

The DAC produces samples at twice the rate that data is received from the LPC filter. For example, if the LPC filter is running at approximately 10 kHz, then the DAC is running at approximately 20 kHz.

The TSP50C04/06/13/14/19 can be used with a normal-sized pulse width or with the PW2 option. The PW2 option causes the processor to produce a double-sized pulse width. This results in a higher volume output, which includes some risk of clipping the output.

1.3.1 Two-Pin Push Pull (Option 1) – Accurate to 10 Bits ($\pm 1/2$ LSB)

Option 1 works well with a very efficient and inexpensive four-transistor amplifier. It requires two pins, so the I/O pin B1 is used for the second pin, meaning that only 9 bits of I/O are available. When the DAC is idle, or the output value is 0, both pins are high. When the output value is positive, DA1 goes low with a duty cycle proportional to the output value, while DA2 stays high. When the output value is negative, DA2 goes low with a duty cycle proportional to the output value, while DA1 stays high. This option offers a resolution of 10 bits.

Figure 1–4 shows examples of D/A output waveforms with different output values. Each pulse of the DAC is divided into 480 segments per sample period. For a positive output value x = 0 to 480, DA1 goes low for x segments while DA2 stays high. When the DAC is idle or the output value is 0, both DA1 and DA2 are high. For a negative value x = 0 to -480, DA2 goes low for |x| segments while DA1 stays high.

This option can be used with the TSP50C04/06/13/14/19 to directly drive a 32 Ω speaker in applications where the anti-aliasing low-pass filter is not needed. When the device is placed in a low power state, this DAC option places both of the DAC lines high.

Figure 1–4. D/A Output Waveform for Two-Pin Push Pull (Option 1)

Figure 1–5, Figure 1–6, and Figure 1–7 show examples of circuits that can be used with this option.

Figure 1-5. Four-Transistor Amplifier Circuit

Figure 1-6. Operational Amplifier Interface Circuit

Figure 1-7. Power Amplifier Interface Circuit

NOTES: R1 \approx 56 k Ω 10%

 $R2 = 2 k\Omega 10\%$

 $C1 = 0.022 \,\mu\text{F} \,20\%$

R2 and C1 set low-pass cutoff frequency: $f_C = 1/(2\pi R2 \times C1)$

For values given above, f_C = 3.6 kHz

Gain control can be added by connecting a 10- μ F capacitor in series with a 10- $k\Omega$ pot. This series combination is connected between pins 1 and 8. When this is done, R1 should be increased to approximately 250 $k\Omega$.

1.3.2 Single-Pin Single Ended (Option 2) – Accurate to Only 9 Bits (±1 LSB)

Option 2 is designed for use with a single-transistor amplifier, offering the lowest-cost solution and still retaining all 10 I/O pins. It has only 9 bits of resolution and the amplifier power consumption is higher than the four-transistor amplifier mentioned above. It is available on the TSP50C10,

TSP50C11, and the TSP50C04/06/13/14/19. The duty cycle of the output is proportional to the output value. If the output value is 0, the duty cycle is 50%. As the output value increases from 0 to the maximum, the duty cycle goes from being high 50% of the time up to 100% high. As the value goes from 0 to the most negative value, the duty cycle decreases from 50% high to 0%.

Each pulse of the DAC is divided into 480 segments per sample period. As shown in Figure 1–8, when the output value is x = -480 to 480, DA1 goes low for |x/2-240| segments. When the output value is 0, DA1 goes low for 240 segments.

When the devices are placed in a low-power state, this option places the DAC output pin into a low state.

Note:

Using Option 2 causes a click at the beginning and end of speech and (under certain conditions) during synthesis. Software is available to minimize these clicks.

Figure 1–8. D/A Output Waveform for Single Ended (Option 2)

Figure 1–9 shows an example of a circuit that can be used with option 2.

Figure 1–9. One-Transistor Amplifier Circuit

1.3.3 Single-Pin Double Ended (Option 3) – Accurate to 10 Bits ($\pm 1/2$ LSB)

Option 3 is provided for use with operational and power amplifiers. It offers both 10 bits of resolution and 10 I/O pins and is available on the TSP50C10, TSP50C11, and the TSP50C12. When the output value is zero, the D/A output is biased at approximately 1/2 V_{DD} . When the output value is positive, the D/A output pulses to about 1/2 V_{DD} – 1 V. The duty cycle is proportional to the output value. When the output value is negative, the D/A output pulses to 1/2 V_{DD} +1 V with a duty cycle proportional to the output value.

Figure 1–10 shows examples of D/A output waveforms with different output values. Each pulse of the DAC is divided into 480 segments per sample period. For a positive output value x = 0 to 480, DA1 goes low to 1/2 V_{DD} –1 V for x segments. When the DAC is idle, or the output value is 0, DA1 goes to 1/2 V_{DD} . For a negative value x = 0 to –480, DA1 goes high to 1/2 V_{DD} + 1 V for |x| segments.

When the devices are placed in a low-power state, this option places the DAC output pin into a low state.

Figure 1–10. D/A Output Waveform for Single-Pin Double Ended (Option 3)

Figure 1–11 shows an example of a circuit that can be used with option 3.

1.4 TSP50C10/11 Pin Assignments and Descriptions

Figure 1–12 shows the pin assignments for the TSP50C10/11. Table 1–1 provides terminal functional descriptions. Table 1–2 shows the possible TSP50C10/11 I/O configurations. Figure 1–13 illustrates the recommended power-up initialization circuit. Note that the pullup resistor is required to be lower than 50 k Ω . Figure 1–14 illustrates the recommended clock circuit. Refer to subsection 2.1.18, *Input/Output Ports*, for more information on I/O configuration.

Figure 1–12. TSP50C10/11 Pin Assignments

Table 1-1. TSP50C10/11 Terminal Functions

Terminal .	Termina	l Number		
Name	N Package DW Package		1/0	Description
DA1	11	13	0	D/A output. Three mask options are available.
DA2	10 [†]	12 [†]	Ο	D/A output. Three mask options are available.
ĪNIT	6	8	I	Initialize input. When $\overline{\text{INIT}}$ goes low, the clock stops, the TSP50C10/11 goes into low-power mode, the program counter is set to zero, and the contents of the RAM are retained. An $\overline{\text{INIT}}$ pulse of 1 μ s is sufficient to reset the processor.
OSC1	7	9	I	Clock input. Crystal or ceramic resonator between OSC1 and OSC2, or signal into OSC1. 9.6 MHz for 10-kHz sampling rate or 7.68 MHz for 8-kHz sampling rate.
OSC2	8	10	_	Clock return
PA0-PA7	1–4, 13–16	1–4, 17–20	I/O	8-bit bidirectional I/O port
PB0-PB1	9-10†	11, 12 [†]	I/O	2-bit bidirectional I/O port
V_{DD}	12	14	_	5-V supply voltage
V_{SS}	5	7	-	Ground terminal

 $[\]dagger$ The operation of this pin depends on the D/A option selected.

Table 1–2. TSP50C10/11 I/O Configurations

16-Pin	20-Pin		Master	Slave 1-Pin	Master	
D Package Pin Number	DW Package Pin Number	1-Pin D/A	1-Pin D/A [†]	2-Pin D/A	D/A	1-Pin D/A TSP60C18
4	4	PA0	PA0	PA0	D0	C0
3	3	PA1	PA1	PA1	D1	C1
2	2	PA2	PA2	PA2	D2	C2
1	1	PA3	PA3	PA3	D3	C3
16	20	PA4	PA4	PA4	D4	PA4
15	19	PA5	PA5	PA5	D5	PA5
14	18	PA6	PA6	PA6	D6	PA6
13	17	PA7	PA7	PA7	BUSY/D7	SRCK
9	11	PB0	PB0	PB0	CE	STR
10	12	PB1	PB1/IRQ	DA2	R/W	R/W

[†] With external interrupt

Figure 1–13. Power-Up Initialization Circuit

Figure 1–14. Oscillator Circuit

1.5 TSP50C12 Pin Assignments and Descriptions

Figure 1–15 shows the pin assignments for the TSP50C12. Table 1–3 provides terminal functional descriptions. The I/O configurations in Table 1–2 also applies to the TSP50C12, but the pin numbers given are different. Figure 1–13 illustrates the recommended power-up initialization circuit, and Figure 1–14 illustrates the recommended clock circuit. The TSP50C12 is available only in die form. Refer to subsection 2.1.18, *Input/Output Ports*, for more information on I/O configuration.

Figure 1–15. TSP50C12 Pin Assignments

NC - No internal connection

Table 1-3. TSP50C12 Terminal Functions

Terminal Name	Terminal Number	I/O	Description	
DA2	4†	0	D/A output. D/A options 1 and 3 are available.	
DA1	6	0	D/A output. D/A options 1 and 3 are available.	
PB1	4†	I/O	Bidirectional I/O pin	
PB0	3	I/O	Bidirectional I/O pin	
ĪNIT	67	I	Initialize input. When $\overline{\text{INIT}}$ goes low, the clock stops, the TSP50C12 goes into low-power mode, the program counter is set to zero, and the contents of the RAM are retained. An $\overline{\text{INIT}}$ pulse of 1 μ s is sufficient to reset the processor.	
OSC1 [‡]	1	I	Clock input. Crystal or ceramic resonator between OSC1 and OSC2, or signal into OSC1. 9.6 MHz for 10-kHz sampling rate or 7.68 MHz for 8-kHz sampling rate.	
OSC2 [‡] 2 –		_	Clock return	
PA0 – PA7	31–38	I/O	8-bit bidirectional I/O port	
C1-C8	11-18	0	LCD common lines (rows)	
SEG1-SEG24	19-23, 28-30, 39-41, 46-49, 54-58, 63-66	0	LCD segment lines (columns)	
V_{C1}	53	_		
V_{C2}	51	_	Voltage doubler capacitor connection	
V _{X2} 50		_		
V_{LCD}	52	_	LCD supply voltage	
V_{DD}	5, 24	_	5-V supply voltage	
V _{SS} 7, 45, 68 – Ground te		_	Ground terminals	

 $[\]ensuremath{^{\dagger}}$ The operation of this pin depends on the D/A option selected.

[‡] Ceramic resonator requires two pins. RC oscillator requires one pin for timing and one buffered clock output for trim monitoring.

1.6 TSP50C04/06/13/14/19 Pin Assignments and Descriptions

Figure 1–16 shows the pin assignments for the TSP50C04/06/13/14/19. Table 1–4 provides terminal functional descriptions. The I/O configurations in Table 1–2 apply to the TSP50C04/06/13/14/19 with the exception of the pin numbering and the DA2 pin assignment. Figure 1–13 illustrates the recommended power-up initialization circuit for the TSP50C04/06/13/14/19. OSC1 should be tied to either V_{SS} or V_{DD} . Refer to subsection 2.1.18, $Input/Output\ Ports$, for more information on I/O configurations.

Figure 1-16. TSP50C04/06/13/14/19 Pin Assignments

NC - No internal connection

Table 1-4. TSP50C04/06/13/14/19 Terminal Functions

Terminal	Termin	al Number		
Name	N Package	DW Package	1/0	Description
DA1	11	13	0	D/A output. D/A options 1 and 2 are available.†
DA2	12	14	0	D/A output. D/A options 1 and 2 are available.†
INIT	6	8	I	Initialize input. When $\overline{\text{INIT}}$ goes low, the clock stops, the TSP50C04/06/13/14/19 goes into low-power mode, the program counter is set to zero, and the contents of the RAM are retained. An $\overline{\text{INIT}}$ pulse of 1 μ s is sufficient to reset the processor.
OSC1	7	9	1	OSC1 should be tied to V_{SS} or V_{DD} .
PA0-PA7	1–4, 13–16	1–4, 17–20	I/O	8-bit bidirectional I/O port
PB0-PB1	8-9	10 –11	I/O	2-bit bidirectional I/O port
V_{DD}	10	12	_	5-V supply voltage
V_{SS}	5	7	_	Ground terminal

[†] Both DA1 and DA2 are driven with the same levels when option 2 is selected.

1.7 Introduction to LPC (Linear Predictive Coding)

The LPC-12 system uses a mathematical model of the human vocal tract to enable efficient digital storage and re-creation of realistic speech. To understand LPC, it is essential to understand how the vocal tract works. This introduction, therefore, begins with a short description of the vocal tract, after which the LPC model and data compression techniques are addressed. A short discussion of the techniques and pitfalls of collecting, analyzing, and editing speech for LPC synthesis is included in Appendix A, *Script Preparation and Speech Development Tools*. For more information, contact your TI Field Sales Representative or Regional Technology Center.

1.7.1 The Vocal Tract

Speech is the result of the interaction of three elements in the vocal-tract air from the lungs, a restriction that converts the air flow to sound, and the vocal cavities that are positioned to resonate properly.

Air from the lungs is expelled through the vocal tract when the muscles of the chest and diaphragm are compressed. Pressure is used as a volume control with higher pressure for louder speech.

As air flows through the vocal tract, it makes little sound if there is no restriction. The vocal cords are one type of restriction. They can be tightened across the vocal tract to stop the flow of air. Pressure builds up behind them and forces them open. This happens over and over, generating a series of pulses. The tension on the vocal cords can be varied to change the frequency of the pulses. Many speech sounds, such as the |A| sound, are produced by this type of restriction, which is called voiced speech.

A different type of restriction in the mouth causes a hissing sound called white noise. The |S| sound is a good example. White noise occurs when the tongue and some part of the mouth are in close contact or when the lips are pursed. This restriction causes high flow velocities then creating turbulence that, in turn, produces white noise, which is called unvoiced speech.

The pulses from the vocal cords and the noise from the turbulence have fairly broad, flat spectral characteristics. In other words, they are noise, not speech. The shape of the oral cavity changes noise into recognizable speech. The positions of the tongue, the lips, and the jaws change the resonance of the vocal tract, shaping the raw noise of restricted airflow into understandable sounds.

1.7.2 The LPC Model

The LPC model incorporates elements analogous to each of the elements of the vocal tract previously described. It has an excitation function generator that models both types of restriction, a gain-multiplication stage to model the possible levels of pressure from the lungs, and a digital filter to model the resonance in the oral and nasal cavities.

Figure 1–17 shows the LPC model in schematic form. The excitation function generator accepts coded pitch information as an input and can generate a series of pulses similar to vocal cord pulses. It can also generate white noise. The waveform is then multiplied by an energy factor that corresponds to the pressure from the lungs. Finally, the signal is passed through a digital filter that models the shape of the oral cavity. In the TSP50C0x/1x, this filter has twelve poles, so the synthesis is referred to as LPC-12.

Figure 1-17. LPC-12 Vocal Tract Model

1.7.3 LPC Data Compression

The data compression for LPC-12 takes advantage of other characteristics of speech. Speech changes fairly slowly, and the oral and nasal cavities tend to fall into certain areas of resonance more than others. The speech is analyzed in frames generally from 10 ms to 25 ms long. The inputs to the model are calculated as an average for the entire frame. The synthesizer smooths or interpolates the data during the frame so that there is not an abrupt transition at the end of each frame. Often speech changes even more slowly than the frame.

The Texas Instruments LPC model allows for a repeat frame in which the only values changed are the pitch and the energy. The filter coefficients are kept constant from the previous frame. To take advantage of the recurrent nature of resonance in the oral cavity, all the coefficients are encoded with anywhere from seven to three bits for each coefficient. The coding table is designed so that more coverage is given to the coefficient values that occur frequently.

Chapter 2

TSP50C0x/1x Family Architecture

This chapter describes the architecture and function of the TSP50C0x/1x family of speech synthesizers including RAM, ROM, registers, flags, and the DAC.

Горі	С	Page
2.1	TSP50C0x/1x Functional Description	2-2
2.2	Speech Synthesizer	. 2-17
2.3	Interrupts	. 2-20
2.4	TSP50C12 LCD Functional Description	. 2-22
2.5	TSP50C12 LCD Reference Voltage and Contrast Adjustment	. 2-28
2.6	TSP50C12 Clock Options	. 2-29

2.1 TSP50C0x/1x Functional Description

As shown in the block diagram in Figure 2–1, the major components of the TSP50C0x/1x are a speech synthesizer, an 8-bit microprocessor, an internal 4K-byte ROM (TSP50C04), 6K-byte ROM (TSP50C06), 8K-byte ROM (TSP50C10/13),16K-byte ROM (TSP50C11/12/14), 32K-byte ROM (TSP50C19), and input/output ports.

When synthesis is disabled, instructions are fetched by the microprocessor from the ROM 600,000 (10-kHz speech sample rate) or 480,000 (8-kHz speech sample rate) times per second. These instructions control the actions of the TSP50C0x/1x. By placing different instruction patterns in the ROM, the TSP50C0x/1x can be programmed to accomplish a wide variety of tasks. To generate speech, the processor accesses speech data from either the internal ROM or an external source such as a TSP60C18 speech ROM, an EPROM, or a host processor. Once the data has been read, the processor must unpack and decode the individual speech parameters and store the results in a dedicated section of the RAM.

The synthesizer shares access to the RAM and addresses the individual parameter locations as needed when generating speech. The instruction execution rate slows to 280,000 or 224,000 instruction cycles per second during synthesis because the synthesizer also shares the ALU (Arithmetic Logic Unit) and ROM data paths with the microprocessor. The microprocessor must perform interpolation during each frame as well as fetch the data for the next frame.

The I/O consists of one 8-bit bidirectional port (port A) and one 2-bit bidirectional port (port B). Each bit can be software configured for input or output and for push pull or open drain (no pullup driver). There are two specialized I/O modes for specific functions. Slave mode configures the TSP50C0x/1x to act as a peripheral to a host microprocessor. External ROM mode allows the TSP50C0x/1x to interface with a TSP60C18 or TSP60C81 speech ROM.

Figure 2–1. TSP50C0x/1x System Block Diagram

2.1.1 Read-Only Memory (ROM)

The TSP50C04 has a 4K-byte ROM. The TSP50C06 has a 6K-byte ROM. The TSP50C10 and the TSP50C13 each have an 8K-byte ROM. The TSP50C11/12/14 each have a 16K-byte ROM. The TSP50C19 has a 32K-byte ROM. ROM can be used for program instructions and speech data as required by the application. Certain locations in the ROM, described in Table 2–1, are reserved for specific purposes.

Table 2–1. Reserved ROM Locations

Address	Function
0000h	Execution start location after INIT rising edge
0010h-001Fh	Interrupt start locations (see Section 2.3, Interrupts)
0FE0h - 0FFFh	Texas Instruments test code (TSP50C04 only)
17E0h – 17FFh	Texas Instruments test code (TSP50C06 only)
1FE0h-1FFFh	Texas Instruments test code (TSP50C10/13 only)
3FE0h-3FFFh	Texas Instruments test code (TSP50C11/12/14/19 only)
5FFDh – 5FFFh	Texas Instruments test code (TSP50C19 only)
7FFDh – 7FFFh	Texas Instruments test code (TSP50C19 only)

The TSP50C19 has a paged ROM as shown in Table 2–2. The lower 8K-bytes of ROM are available at any time. The upper 8K-byte block of address space is switched between three separate ROM blocks depending upon the value loaded to the B2 and B3 output ports. See Section 6.11, *TSP50C19 Programming*, for more information.

Table 2–2. TSP50C19 ROM Block Addressing

ROM Address	Port B2	Port B3	ROM Block	Listing Address Accessed
0000h – 1FFFh	Х	Χ	Block 1	0000h – 1FFFh
2000h-3FFFh	0	0	Block 2	2000h-3FFFh
2000h-3FFFh	0	1	Block 3	4000h-5FFFh
2000h-3FFFh	1	0	Block 4	6000h-7FFFh

The ROM may be accessed in the following four ways:
 The program counter is used to address processor instructions.
 The GET instruction can be used to transfer 1 to 8 bits from the ROM to the A register. The GET counter is initialized by the LUAPS instruction. The SAR (speech address register) points to the ROM location to be used.
 The LUAA instruction can be used to transfer a byte from the ROM into the A register. The value in the A register when LUAA is executed points to the ROM address to be used.
 The LUAB instruction can be used to transfer a byte from the ROM into the B register. The value in the A register when LUAB is executed points to the ROM address to be used.

2.1.2 Program Counter

The TSP50C0x/1x has a 14-bit program counter that points to the next instruction to be executed. After the instruction is executed, the program counter is normally incremented to point to the next instruction. The following instructions modify the program counter:

BR branch

BRA branch to address in A register

CALL call subroutine

RETN return from subroutine

RETI return from interrupt

SBR short branch

2.1.3 Program Counter Stack

The program counter stack has three levels. When a subroutine is called or an interrupt occurs, the contents of the program counter are pushed onto the stack. When an RETN or an RETI is executed, the contents of the top stack location are popped into the program counter.

2.1.4 TSP50C10/11 Random-Access Memory (RAM)

The TSP50C10/11 RAM has 128 locations (Figure 2–2). The first 16 RAM locations are used by the synthesizer and are 12 bits long. The remaining 112 locations are 8 bits long. When not synthesizing speech, the entire RAM may be used for algorithm data storage. The I/O control registers are also mapped into the RAM address space from 080h to 087h. For more information, see subsection 2.1.18, *Input/Output Ports*.

Figure 2-2. TSP50C10/11 RAM Map

2.1.5 TSP50C12 Random-Access Memory (RAM)

The TSP50C12 RAM has 16 12-bit synthesizer RAM locations and 112 8-bit general purpose RAM locations (Figure 2–3). The RAM also has 24 8-bit display RAM locations and one 4-bit contrast adjustment register. The I/O ports are mapped into RAM address space from 0F0h–0F7h.

Figure 2-3. TSP50C12 RAM Map

2.1.6 TSP50C04/06/13/14/19 Random-Access Memory (RAM)

The TSP50C04/06/13/14/19 RAM has the same basic RAM layout as the TSP50C10/11 (see Figure 2–4) with one exception. The general-purpose RAM location range is from 010h to 03Fh.

Figure 2-4. TSP50C04/06/13/14/19 RAM Map

2.1.7 Arithmetic Logic Unit (ALU)

The ALU performs arithmetic and logic functions for the microprocessor and the synthesizer. The ALU is 14 bits in length, providing the resolution needed for speech synthesis. When 8-bit data are transferred to the ALU, they are right justified. The input to the upper 6 bits may be either zeros (integer mode) or equal to the MSB of the 8-bit data (extended-sign mode) depending on the arithmetic mode selected using the EXTSG and INTGR instructions. See the description of each instruction for specific information. All bit and comparison operations are performed on the lower 8 bits. The ALU is capable of doing an 8-bit by 14-bit multiply with a 14-bit scaled result in a single instruction cycle.

2.1.8 A Register

The A register, or *accumulator*, is the primary 14-bit register and is used for arithmetic and logical operations. Its contents can be transferred to RAM and

most of the other registers. It can be loaded from RAM, ROM, and most other registers. The contents are saved in a dedicated storage register during level-1 interrupts and restored by the RETI instruction.

A Register

13	3	12	11	10	9	8	7	6	5	4	3	2	1	0

2.1.9 X Register

The X register is an 8-bit register used as a RAM index register. All RAM access instructions (except for the direct-addressing instructions TAMD, TMAD, and TMXD) use the X register to point to a specific RAM location. The X register can also be used as a general-purpose counter. The contents of the X register are saved during level-1 interrupts and restored by the RETI instruction. If a RAM location with an illegal address is loaded via the X register, the EVM board with the TSE chip accepts it, but a problem appears on the TSP chip.

X Register

	7	6	5	4	3	2	1	0
ſ								

2.1.10 B Register

The 14-bit B register is used for temporary storage. It is helpful for storing a RAM address because it can be exchanged with the X register using the XBX instruction. The B register can be added to, subtracted from, or exchanged with the A register, making it useful for data storage after calculations. The contents of the B register are saved during level-1 interrupts and restored by the RETI instruction.

B Register

13	12	11	10	9	8	7	6	5	4	3	2	1	0

2.1.11 Status Flag

The status flag is set or cleared by various instructions depending on the result of the instruction. Refer to the individual description of instructions in Chapter 5, TSP50C0x/1x Instruction Set, to determine the effect an instruction

has on the value of the status flag. The BR, SBR, and CALL instructions are conditional, modifying the program counter only when the status flag is set. The value of the status flag is unknown at power up. Therefore, if the first instruction after power up is one of these conditional instructions, the execution of the instruction cannot be predicted. The value of the status flag is saved during interrupts and restored by the RETI instruction.

2.1.12 Integer Mode Flag

The integer mode flag is set by the INTGR instruction and cleared by the EXTSG instruction. When the integer mode flag is set (integer mode), the upper bits of data less than 14 bits in length are zero filled when being transferred to, added to, or subtracted from the A and B registers. When the integer mode flag is cleared (extended-sign mode), the upper bits of data less than 14 bits in length are sign extended when being transferred to, added to, or subtracted from the A and B registers. The value of the integer mode flag is saved during interrupts and restored by the RETI instruction.

2.1.13 Timer Register

The 8-bit timer register is used for generating interrupts and for counting events. It decrements once each time the timer prescale register goes from 000h to 0FFh. It can be loaded using the TATM instruction and examined with the TTMA instruction. When it decrements from 000h to 0FFh, a level-2 interrupt request is generated. If interrupts are enabled and no interrupt is being processed already, an immediate interrupt occurs; if not, the interrupt request remains pending until interrupts are enabled. The timer continues to count whether or not it is reloaded.

Note:

The timer *does not* decrement before it is initialized. However, on the EVM, the timer decrements after a STOP/RUN.

2.1.14 Timer Prescale Register

The 8-bit timer prescale register is a programmable divider between the processor clock and the timer register. When it decrements from 000h to 0FFh, the timer register is also decremented. The timer prescale register is then reloaded with the value in its preset latch, and the counting starts again.

The timer prescale register clock comes from an internal clock. The internal clock runs at 1/16 the clock frequency of the chip; thus, the timer prescale register decrements once every instruction cycle when not in LPC mode. The TAPSC instruction loads the timer prescale register's preset latch. If the timer has not yet been initialized with the TATM instruction, the TAPSC instruction also loads the timer prescale register.

Timer Prescale Register

7	6	5	4	3	2	1	0

2.1.15 Pitch Register and Pitch-Period Counter (PPC)

Although the 14-bit pitch register and pitch-period counter are part of the synthesizer, they affect the microprocessor in many ways. The pitch-period counter controls the timing of the periodic impulse (excitation function) that simulates the vocal cords. On the TSP50C0x/1x, the pitch-period counter is also used to synchronize the interpolation of all speech parameters during each frame. This pitch-synchronous interpolation helps to minimize the inevitable noise from interpolation by making it occur at the lowest energy part of the speech and by making it a harmonic of the speech fundamental frequency.

The pitch register is used when LPC speech is being synthesized. The following discussion presumes that the LPC mode is active. The pitch register is loaded with the TASYN instruction. When speech starts, the pitch-period counter is cleared. The pitch-period counter is decremented by 020h for each speech sample, with speech samples occurring at an 8-kHz or 10-kHz rate. When the pitch-period counter decrements past zero, the pitch register is added to it. When the pitch-period counter goes below 200h or when a pitch register is added to it with a result less than 200h, a level-1 interrupt occurs. This interrupt can be used to synchronize the interpolation algorithm. The excitation function is put out when the pitch-period counter is between 140h and 000h. For further information, see Chapter 6, *TSP50C0x/1x Applications*, of this book.

					Pit	ch R	legis	ster					
13	12	11	10	9	8	7	6	5	4	3	2	1	0

For voiced or unvoiced frames, the LSB and the MSB of the A register must be zero when data is transferred from the A register to the pitch register with the TASYN instruction (see the following illustration). If this is not done, problems with the TSP50C0x/1x chip may occur that are not apparent when using the TSE50C1x chip.

For voiced frames, the pitch register must be loaded with a value no higher than 1FFEh. In addition, there are three recommendations for the minimum pitch-register value for voiced frames. First, it is required that the pitch-register value be 042h or higher. If this is not done, problems with the TSP chip may occur that are not apparent with the TSE chip. Second, it is strongly recommended that the pitch register be loaded with a value of 142h or higher. This permits the complete excitation pulse to be used in the LPC synthesis. Third, for best results with the recommended software algorithms, a pitch-register value of 202h or higher is recommended. The requirement that the pitch register value be less than or equal to 1FFEh and the recommendation of a value greater than or equal to 142h result in a pitch range of 39 Hz to 994 Hz when operating with a 10-kHz sample rate.

For unvoiced frames, the pitch register is required to be loaded with a value between 042h and 3FEh. If this is not done, problems with the TSP chip may occur that are not apparent with the TSE chip.

2.1.16 Speech Address Register

The speech address register (SAR) is a 14-bit register that is used to point to data in internal ROM. The LUAPS instruction transfers the value in A to the speech address register and loads the parallel-to-serial register (see subsection 2.1.17, *Parallel-to-Serial Register*) with the internal ROM value pointed to by the SAR. The GET instruction can then be used to bring 1 to 8

bits at a time from the parallel-to-serial register into the accumulator. Whenever the parallel-to-serial register becomes empty, it is loaded with the internal ROM value pointed to by the SAR, and the SAR is incremented.

Speech Address Register

13	12	11	10	9	8	7	6	5	4	3	2	1	0

2.1.17 Parallel-to-Serial Register

The 8-bit parallel-to-serial register is used primarily to unpack speech data. It can be loaded with 8 bits of data from internal ROM pointed to by the speech address register, internal RAM pointed to by the X register, or external TSP60C18 or TSP60C81 speech ROM pointed to by the SAR in the TSP60C18 or TSP60C81. The LUAPS instruction is used to initialize the parallel-to-serial register and zero its bit counter. GET instructions can then be used to transfer one to eight bits from the parallel-to-serial register to the accumulator. When the parallel-to-serial register is empty, it is automatically reloaded. When the GET is from RAM, however, the X register is not automatically incremented. The EXTROM and RAMROM bits in the mode register control the source for the parallel-to-serial register. See the speech address register description in subsection 2.1.16, *Speech Address Register*, for more information.

Parallel-to-Serial Register

7	6	5	4	3	2	1	0

2.1.18 Input/Output Ports

Ten bidirectional lines – 8-bit port A and 2-bit port B – are available for interfacing with external devices. Each bit is individually programmable as an input or an output under the control of the respective data-direction register. In addition, each output bit can be individually programmed using the pullup-enable register for one of two output modes – push pull or open drain (no pullup). Each input bit can be programmed by the same register for resistive pullup or high impedance. The four registers associated with each of the two I/O ports are memory mapped. Only two bits of the B port are available on the outside of the chip. The states of the upper six bits of port B are undetermined on the TSP50C04/06/10/11/12/13/14. The states of the upper four bits of port B are undetermined on the TSP50C19. Transfers from any of the I/O port registers to the A register leave the bits in the A register

corresponding to the upper six bits of port B on the TSP50C04/06/10/11/12/13/14 and the upper four bits of the TSP50C19 undetermined. Details of the I/O registers are shown in Table 2–3.

The TSP50C19 uses 4 bits for port B. Only two of the four are available on the outside of the chip. The remaining two are used as a page select for the ROM. See Section 6.11, *TSP50C19 Programming*, for more information.

Table 2-3. I/O Registers

(a) I/O register type and location

		Loca	tion [†]
Register	Type	Port A	Port B
Data Input Register (DIR)	Read Only	080h	084h
Pullup Enable Register (PER)	Read/Write	081h	085h
Data Direction Register (DDR)	Read/Write	082h	086h
Data Output Register (DOR)	Read/Write	083h	087h

[†] For the TSP50C12, the register locations are F0-F7.

(b) I/O register pin function and pin state

Desired Pin Function	DOR	DDR	PER	Pin State
Input, High Impedance	Х	0	0	High Impedance
Input, Internal Pullup	X	0	1	Passive Pullup
Output, Active Pullup	0	1	0	0
Output, Active Pullup	1	1	0	1
Output, Open Drain	0	1	1	0
Output, Open Drain	1	1	1	High Impedance

A read of the DDR, PER, and DOR registers indicates the last value written to them.

A read of the DIR always indicates the actual level on I/O, which is true even when the DDR is set for output. This allows true bidirectional data flow without having to switch the port between input and output. To avoid high-current conditions, this should only be attempted on pins set for open drain with a 1 written to the data register.

Leaving a high-impedance I/O pin unconnected could cause power consumption to rise while the processor is in run mode. The power consumption is between V_{DD} and V_{SS} with no increase in current through the input. This should cause no problem with device functionality. When the part is in standby mode, unconnected high-impedance pins have no effect on either power consumption or device functionality.

The I/O can also be put in slave mode making the TSP50C0x/1x usable as a peripheral to a host microprocessor. Port A can be connected to an 8-bit data bus and controlled by R/\overline{W} (PB1) and strobe (PB0). A read (R/\overline{W} high and strobe low) puts the port A output latch values out on port A. A write (R/\overline{W} low and strobe low) latches the value on the data bus into the port A input latch. In addition, bit 7 of the A output latch (pin PA7) is cleared. This makes it possible to use PA7 as a write-handshake line. Any lines that are to be used on the data bus in this mode should be configured as inputs.

In external ROM mode, the TSP50C0x/1x can be interfaced easily to a TSP60C18 or TSP60C81 speech ROM. PB0 is used as a chip enable strobe output to the TSP60C18 or TSP60C81, and PA7 is used as a clock. PA0 — PA3 are used for address and data transfer, and one other bit must be used for read/write control of the TSP60C18 or TSP60C81.

When the two-pin push-pull option is selected for the D/A output on the TSP50C10/11/12, PB1 is used for the second D/A pin, making it unavailable for I/O. In this case, no attempt should be made to use the PB1 interrupt.

If the PCM and LPC mode register bits are both cleared, a high-to-low transition on PB1 causes a level-1 interrupt. This can be used to generate an interrupt with an external event.

2.1.19 Mode Register

The mode register (Table 2–4) is an 8-bit write-only register that controls the operating mode of the TSP50C0x/1x. When INIT goes low, all mode register bits are cleared. The mode register is not saved during a subroutine call or interrupt.

Table 2–4. Mode Register

(a) Mode register bits

Mode Register Bits							
7	6	5	4	3	2	1	0
UNV	MASTER	RAMROM	EXTROM	ENA2	PCM	LPC	ENA1

(b) Mode register bit descriptions

Bit Name	Bit Low	Bit High
ENA1	Disables level-1 interrupt	Enables level-1 interrupt
LPC	Disables LPC processor – all instruction cycles used by the microprocessor.	Enables LPC processor – 53% of instruction cycles dedicated to LPC synthesis when the PCM bit is low and 50% if the instruction cycles are dedicated to LPC synthesis when PCM is set high.
PCM	Disables PCM mode. Level-1 interrupt is either PPC < 200h in LPC mode or pin PB1 otherwise.	Enables PCM mode. LPC high causes an interrupt rate of fosc/960 and microprocessor control of LPC excitation value. LPC low causes an interrupt rate of fosc/480 and microprocessor control of D/A register.50% of the instruction cycles are dedicated to LPC synthesis when the PCM bit is set high.
ENA2	Disables level-2 interrupt	Enables level-2 interrupt
EXTROM	Disables operation of external ROM hardware interface.	Enables operation of external ROM hardware interface.
RAMROM	Enables data source for GET instructions to be either internal or external ROM.	Enables data source for GET instructions to be internal RAM.
MASTER	Enables I/O master operation. All available I/O pins are controlled by internal microprocessor.	Enables I/O slave operation. Pin PB0 becomes ha <u>rd</u> ware chip enable strobe, and PB1 becomes R/W. Port A is controlled by PB0 and PB1.
UNV	Enables pitch-controlled excitation sequence when in LPC mode (PCM low, voiced).	Enables random excitation sequence when in LPC mode (PCM low, unvoiced).

2.2 Speech Synthesizer

The task of generating synthetic speech is divided between the programmable microprocessor and the dedicated speech synthesizer. The four speech synthesizer modes, which are set by the LPC and PCM bits in the mode register, are discussed in the following paragraphs.

2.2.1 Synthesizer Mode 0 – OFF

When the PCM and LPC bits are both cleared, the synthesizer is disabled. All instruction cycles are devoted to the microprocessor. The TASYN instruction transfers the A register to the pitch register, making it easy to load the pitch register before starting the LPC synthesizer. In this mode, the level-1 interrupt is triggered by a high-to-low transition on pin PB1.

2.2.2 Synthesizer Mode 1 – LPC

This is the normal speaking mode. The TASYN instruction loads the pitch register, and the level-1 interrupt is triggered by the pitch-period counter going below 200h. Fifty-three percent of the instruction cycles are used by the synthesizer.

The microprocessor controls speech synthesis by unpacking and decoding parameters, by setting the update interval (frame rate), and by interpolating the parameters during the frame. The speech synthesizer acts as a 12-pole digital lattice filter, a pitch-controlled or white-noise excitation generator, a 2-pole digital low-pass filter, and a digital-to-analog converter. Speech parameter input is received from dedicated space in the microprocessor RAM, and speech samples are generated at 8 kHz or 10 kHz. Communication between the microprocessor and the speech synthesizer takes place via a shared memory space in the microprocessor RAM. Refer to Chapter 6, TSP50C0x/1x Applications, of this book for more information.

2.2.3 Synthesizer Mode 2 – PCM

This mode is used for tone and music generation or for very-high-bit-rate speech. The microprocessor uses all the instruction cycles, and the TASYN instruction transfers the A register directly to the D/A register. The level-1 interrupt occurs at a rate twice the speech sample rate (16 kHz or 20 kHz), giving access to the unfiltered D/A output.

2.2.4 Synthesizer Mode 3 – PCM and LPC

When both the PCM and LPC bits are set, the LPC synthesizer runs normally with its excitation function provided by software. The level-1 interrupt occurs

at the speech sample rate, and the TASYN instruction transfers the A register to the excitation function input of the synthesizer. This mode is included for use with RELPS (Residual Encoded Linear Predictive Synthesis) and similar techniques. The synthesizer takes 50% of the instruction cycles in this mode.

2.2.5 Use of RAM by the Synthesizer

The synthesizer uses locations 001h to 00Fh in the RAM. When synthesis is taking place, the parameters for the synthesizer come directly from these RAM locations. The addresses are shown in Figure 2–5.

Figure 2-5. RAM Map During Speech Generation

2.2.6 Frame-Length Control

The frame length is controlled by the value put into the prescale register and the range over which the timer is allowed to vary. Typical synthesis and interpolation routines let the timer decrement through a range of fixed size, so the prescale value should be selected to give the proper frame duration based on the timer's range.

2.2.7 Digital-to-Analog Converter

The TSP50C0x/1x contains an internal digital-to-analog converter (DAC) connected to the output of the synthesizer. The DAC is available in three pulse-width-modulated forms for the TSP50C10/11 pulse-width-modulated forms for the TSP50C04/06/12/13/14/19. See Section 1.3, D/A Options, for more information. The DAC outputs samples at a rate given by fosc/480. For a 9.6-MHz oscillator, this results in an output sample rate of 20 kHz. For a 7.68-MHz oscillator, this results in an output sample rate of 16 kHz. The DAC output rate is twice the speech sample rate, with a digital low-pass filter in all modes except PCM mode. When the device is initialized, the DAC is placed in an OFF state. This state is the same as a zero state for the two-pin and single-pin double-ended modes, but in the single-pin single-ended mode, the DAC goes to the maximum negative value. This fact must be taken into account to minimize clicks during speech. Once synthesis or PCM generation is turned off following speech or other sound output (return to mode 0), the DAC maintains whatever value was last loaded by the LPC filter or (in PCM mode) the TASYN instruction.

2.3 Interrupts

The TSP50C0x/1x has two interrupts: interrupt-1 and interrupt-2. Both are enabled and disabled by bits in the mode register. Interrupt-1 is a synthesis interrupt and has a higher priority. It also has more hardware support. When an interrupt-1 occurs, the program counter is placed on the program counter stack, and the status flag, integer mode flag, A register, B register, and X register are all saved in dedicated storage registers. The mode register is not saved and restored during interrupts. Then the program counter is loaded with the interrupt start location and execution of the interrupt routine begins. When the interrupt routine returns, all these registers are restored, and the program counter is popped from the stack.

Interrupt-1 is caused by 1 of 4 conditions depending on the state of the two mode-register bits PCM and LPC. These conditions, as well as the interrupt routine start address for each case, are shown in Table 2–5.

Table 2-5. Interrupt-1 Vectors

Address	PCM	LPC	Interrupt Trigger			
0018h	0	1	Pitch-period counter less than 200h (see subsection 2.1.15)			
001Ah	0	0	Pin PB1 goes from high to low (see subsection 2.1.18)			
001Ch	1	1	fosc/960 clock (see subsection 2.2.4)			
001Eh	1	0	fosc/480 clock (see subsection 2.2.3)			

Interrupt-2 has a lower priority and cannot interrupt the interrupt-1 routine. It can be interrupted by interrupt-1. During a level-2 interrupt, the program counter, status bit, and integer mode flag are the only registers saved. The A register, X register, and B register must be saved by the program if they are used by both it and the routine being interrupted. The mode register is not saved. Interrupt-2 is always caused by a timer underflow – the timer going from 000h to 0FFh – but it starts at different addresses depending on the state of two mode-register bits. Table 2–6 shows the interrupt-2 vectors.

Table 2-6. Interrupt-2 Vectors

Address	PCM	LPC	Interrupt Trigger
0010h	0	1	
0012h	0	0	All level-2 interrupts caused by timer underflow
0014h	1	1	All lever-2 interrupts caused by timer undernow
0016h	1	0	

The interrupting conditions for interrupt-1 and interrupt-2 set interrupt-pending latches. If an interrupt is enabled (and in the interrupt-2 case, not overridden by an interrupt-1-pending condition), the interrupt is taken immediately. If, however, the interrupt is not enabled, the pending-interrupt latch causes an interrupt to occur as soon as the respective interrupt is enabled in the mode register.

Interrupts are not taken in the middle of double-byte instructions, during branch or call instructions, or during the subroutine or interrupt returns (RETN or RETI). A single instruction software loop (instruction of BR, BRA, CALL, or SBR to itself) should be avoided since an interrupt is never taken. Consecutively executed branches or calls delay interrupts until after the execution of the instruction at the eventual destination of the string of branches (or calls).

If consecutive branches (or calls) are avoided, the worst-case interrupt delay in the main level is four instruction cycles. The worst-case delay occurs when the interrupt occurs during the first execution cycle of a branch and the first instruction at the branch destination address is a double-cycle instruction.

When the interrupt occurs, execution begins at the interrupt address. The state of the status bit is not known when the interrupt occurs, so a BR or CALL instruction should not be used for the first instruction. Two SBRs may be used, since one of them is always taken, or it may be possible to use some other instruction that sets the status bit, followed by an SBR.

The mode register is not saved and restored during interrupts. Any changes made to the mode register during interrupts remains in effect after the return, including the enabling and disabling of interrupts.

Note:

If a level-1 interrupt is followed immediately by a RETI, the potential exists with some single byte instructions to corrupt the A register upon return. To avoid this problem, do not place a RETI immediately at the interrupt vector. Instead, precede the RETI with a CLA or some other instruction.

2.4 TSP50C12 LCD Functional Description

The LCD functionality of the TSP50C12 is included without adding instructions to the instruction set. An additional 192 bits of RAM are added to serve as the display RAM. The display RAM is physically placed at RAM addresses 080h – 097h. As a result, port A's registers are mapped from 0F0h to 0F3h and port B's registers are mapped from 0F4h to 0F7h. This RAM mapping is consistent with the SE50C10 emulator device used in the extended RAM mode (pin controllable).

When data is stored into the display RAM locations, it may immediately affect the voltage levels on the LCD segment outputs. Because the microprocessor access of RAM is time multiplexed with LCD access, there are no asynchronous ambiguities on segment outputs. If the display RAM update routines are slow, it may be necessary to buffer the display data in another area of RAM and then transfer it to the display RAM in a more time efficient block move

An LCD voltage reference generator is also included on the TSP50C12. This circuit eliminates the need for an external voltage reference generator.

2.4.1 TSP50C12 LCD Driver

The TSP50C12 can drive an 8×24 (192-segment) LCD display with 1/8 duty cycle. The driver function for the LCD is controlled by internal timing hardware. Display data for the LCD is stored in a dedicated section of RAM. This data is stored in pixel form with 24 consecutive 8-bit words. Table 2–7 shows the memory locations for each pixel.

Table 2–7. TSP50C12 Display RAM Map

Address	MSB		-	-	-			LSB
080h	S24c1	S23c1	S22c1	S21c1	S20c1	S19c1	S18c1	S17c1
081h	S16c1	S15c1	S14c1	S13c1	S12c1	S11c1	S10c1	S9c1
082h	S8c1	S7c1	S6c1	S5c1	S4c1	S3c1	S2c1	S1c1
083h	S24c2	S23c2	S22c2	S21c2	S20c2	S19c2	S18c2	S17c2
084h	S16c2	S15c2	S14c2	S13c2	S12c2	S11c2	S10c2	S9c2
085h	S8c2	S7c2	S6c2	S5c2	S4c2	S3c2	S2c2	S1c2
086h	S24c3	S23c3	S22c3	S21c3	S20c3	S19c3	S18c3	S17c3
087h	S16c3	S15c3	S14c3	S13c3	S12c3	S11c3	S10c3	S9c3
088h	S8c3	S7c3	S6c3	S5c3	S4c3	S3c3	S2c3	S1c3
089h	S24c4	S23c4	S22c4	S21c4	S20c4	S19c4	S18c4	S17c4
08Ah	S16c4	S15c4	S14c4	S13c4	S12c4	S11c4	S10c4	S9c4
08Bh	S8c4	S7c4	S6c4	S5c4	S4c4	S3c4	S2c4	S1c4
08Ch	S24c5	S23c5	S22c5	S21c5	S20c5	S19c5	S18c5	S17c5
08Dh	S16c5	S15c5	S14c5	S13c5	S12c5	S11c5	S10c5	S9c5
08Eh	S8c5	S7c5	S6c5	S5c5	S4c5	S3c5	S2c5	S1c5
08Fh	S24c6	S23c6	S22c6	S21c6	S20c6	S19c6	S18c6	S17c6
090h	S16c6	S15c6	S14c6	S13c6	S12c6	S11c6	S10c6	S9c6
091h	S8c6	S7c6	S6c6	S5c6	S4c6	S3c6	S2c6	S1c6
092h	S24c7	S23c7	S22c7	S21c7	S20c7	S19c7	S18c7	S17c7
093h	S16c7	S15c7	S14c7	S13c7	S12c7	S11c7	S10c7	S9c7
094h	S8c7	S7c7	S6c7	S5c7	S4c7	S3c7	S2c7	S1c7
095h	S24c8	S23c8	S22c8	S21c8	S20c8	S19c8	S18c8	S17c8
096h	S16c8	S15c8	S14c8	S13c8	S12c8	S11c8	S10c8	S9c8
097h	S8c8	S7c8	S6c8	S5c8	S4c8	S3c8	S2c8	S1c8

NOTE: S-Segment or pixel on a given row (common time)

c-Row (common time)

2.4.2 TSP50C12 LCD Drive Type A

The Type A drive method places limitations on the series resistance and pixel capacitance of the display. This drive type requires a more complex LCD display. The Type A option must be selected by the customer and given to TI before releasing the device for mask tooling. Figure 2–6 shows the timing waveforms for the LCD type A option.

Figure 2-6. TSP50C12 LCD Driver Type A Timing Diagram

2.4.3 TSP50C12 LCD Drive Type B

The Type B drive method operates at a lower frequency, allowing the common signal to go high on the first frame and to go low on the next frame. This option is preferred for applications that have large capacitance pixel loads and high series trace resistances. This method also might be used if the microprocessor is operated at higher frequencies. The Type B option must be selected by the customer and given to TI before releasing the device for mask tooling. Figure 2–7 shows the timing waveforms for the LCD type B option.

Figure 2-7. TSP50C12 LCD Driver Type B Timing Diagram

2.5 TSP50C12 LCD Reference Voltage and Contrast Adjustment

The TSP50C12 contains an internal voltage-reference generator to regulate and adjust the LCD reference voltages. The voltage generator is comprised of a voltage doubler, a bandgap reference, a voltage regulator, and a final trim DAC. V_{LCD} provides an isolated voltage supply for the voltage doubler. V_{LCD} can be connected to V_{DD} or, for example, can be connected to a 4.5-V tap of a 4-cell battery supply to improve the power efficiency of the circuit. An external capacitor should be connected between V_{C1} and V_{C2} . An external capacitor should be connected between $V_{\rm X2}$ and V_{LCD} . The bandgap provides a reference voltage for the voltage regulator. The voltage regulator has a nominal output of 4.9 V ($\pm 200~{\rm mV}$). The reference voltage can be trimmed by writing to the DAC (memory-mapped to the lower four bits at RAM location 098h). The trim control ranges from $-8~{\rm steps}$ (0000) to +7 steps (1111) from nominal with each step being approximately 100 mV. The value of this RAM location is not initialized and must be set by the initialization software routine. Figure 2–8 shows a diagram for the voltage doubler circuitry.

Figure 2-8. TSP50C12 Voltage Doubler

2.6 TSP50C12 Clock Options

The RC oscillator requires a single external resistor between V_{DD} and OSC1 with OSC2 left unconnected to set the operating frequency. The frequency shift, as V_{DD} changes, is limited to 10% over the operating range of 4 V to 6.5 V. The center frequency as a function of resistance requires trimming. For applications requiring greater clock precision, a ceramic resonator option is also available. The RC oscillator/ceramic resonator selection must be made by the customer and given to TI before releasing the device for mask tooling.

Figure 2-9. RC OSC Option Circuit

Chapter 3

TSP50C0x/1x Electrical Specifications

This chapter contains electrical and timing information for the TSP50C0x/1x family devices, organized according to device category.

Topic Page

3.1	Absolute Maximum Ratings Over Operating Free-Air Temperature Range
3.2	TSP50C0x/1x Recommended Operating Conditions 3-3
3.3	TSP50C0x/1x Timing Requirements
3.4	TSP50C10/11 Electrical Characteristics
3.5	TSP50C12 Electrical Characteristics
3.6	TSP50C04/06/13/14/19 Electrical Characteristics 3-10

3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range†

Supply voltage range, V _{DD} (see Note 1)	0.3 V to 8 V
Input voltage range, V _I (see Note 1)	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Output voltage range, V _O (see Note 1)	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Maximum Supply Current (I _{DD} and I _{SS})	250 mA
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range (TSP50C04/06/10/11/12/13/14)	30°C to 125°C
Storage temperature range (TSP50C19 only)	0°C to 125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to ground.

Stresses beyond those listed here may cause permanent damage to the device. This is a stress rating only.

3.2 Recommended Operating Conditions

The following table contains recommended operating characteristics for the TSP50C0x/1x family.

Table 3-1. Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V_{DD}	Supply voltage†		4		6.5	V
		V _{DD} = 4 V	3		4	
VIH	High-level input voltage	V _{DD} = 5 V	3.8		5	V
		V _{DD} = 6 V	4.5		6	
		V _{DD} = 4 V	0		0.8	
V _{IL}	Low-level input voltage	V _{DD} = 5 V	0		1	V
		V _{DD} = 6 V	0		1.3	
т.	Operating free air temperature	Device functionality	0		70	°C
TA	Operating free-air temperature	LCD reference spec (TSP50C12 only)	10		40)
,	Clock fraguency	10-kHz speech sample rate [‡]		9.6		MHz
fosc	Clock frequency	8-kHz speech sample rate‡		7.68		IVITZ
fclock	ROM clock frequency	External ROM mode interface to TSP60C18 speech ROMs	f _{OSC} /4			MHz
Rspeaker	Minimum speaker impedance	TSP50C04/06/13/14/19 direct speaker drive using 2 pin push-pull DAC option	32			Ω

 $[\]ensuremath{^{\dagger}}$ Unless otherwise noted, all voltages are with respect to VSS.

[‡] Speech sample rate = $f_{OSC}/960$.

3.3 Timing Requirements

The following tables give timing requirements and the following figures give timing waveforms for the TSP50C0x/1x family.

Table 3-2. D/A Options Timing Requirements

				MIN	NOM	MAX	Unit
t _r	Rise time, PAx, PBx, D/A options 1, 2	\/pp - 4 \/	Cı = 100 pF		22		ns
tf	Fall time, PAx, PBx, D/A options 1, 2	$V_{DD} = 4 V$,	CL = 100 pr		10		ns

Table 3-3. Initialization Timing Requirements

		MIN	MAX	UNIT
^t INIT	INIT pulsed low while the TSP50C0x/1x has power applied	1		μs
tsu(INIT)	Minimum delay V _{DD} to INIT	2		μs

Figure 3–1. Initialization Timing Diagram

Table 3–4. Write Timing Requirements (Slave Mode)

		MIN	MAX	UNIT
t _{su} (PB1)	Setup time, PB1 low before PB0 goes low	20		ns
t _{su(d)}	Setup time, data valid before PB0 goes high	100		ns
th(PB1)	Hold time, PB1 low after PB0 goes high	20		ns
th(d)	Hold time, data valid after PB0 goes high	30		ns
t _W	Pulse duration, PB0 low	100		ns
t _r	Rise time, PB0		50	ns
tf	Fall time, PB0		50	ns

Figure 3–2. Write Timing Diagram (Slave Mode)

Table 3–5. Read Timing Requirements (Slave Mode)

		MIN	MAX	UNIT
t _{su} (PB1)	Setup time, PB1 before PB0 goes low	20		ns
th(PB1)	Hold time, PB1 after PB0 goes high	20		ns
^t dis	Output disable time, data valid after PB0 goes high	0	30	ns
t _W	Pulse duration, PB0 low	100		ns
t _r	Rise time, PB0		50	ns
t _f	Fall time, PB0		50	ns
t _d	Delay time for PB0 low to data valid		50	ns

Figure 3–3. Read Timing Diagram (Slave Mode)

Table 3-6. External Interrupt Timing Requirements

			MIN	MAX	UNIT
Dulas direction hadan DD4 manadam		f _{clock} = 7.6 MHz	2		
tw(PB1)	Pulse duration, before PB1 goes low	f _{clock} = 9.6 MHz	2.5		μs

Figure 3-4. External Interrupt Timing Diagram

3.4 TSP50C10/11 Electrical Characteristics

Table 3–7 gives specifications and the Figure 3–5 gives the input leakage current that applies to the TSP50C10 and TSP50C11.

Table 3–7. TSP50C10/11 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
\/-	Positive-going threshold voltage	V _{DD} = 4.5 V			2.7		V
V _{T+}	(INIT)	V _{DD} = 6 V			3.65		V
\/-	Negative-going threshold voltage	V _{DD} = 4.5 V			2.3		V
V_{T-}	(INIT)	V _{DD} = 6 V			3.15		٧
\/ ₁	Hysteresis (V _{T+} – V _T) (INIT)	V _{DD} = 4.5 V			0.4		V
V _{hys}	Hysteresis (VT+ - VT_) (INTT)	V _{DD} = 6 V			0.5		V
l _{lkg}	Input leakage current (except for OSC1, INIT see Figure 3–5)					1	μΑ
Istandby	Standby current (INIT low)					10	μΑ
I _{DD} †	Supply current	D/A option 1, 2,	, or 3		5		mA
		$V_{DD} = 4 V$,	V _{OH} = 3.5 V	-4	-6		
		V _{DD} = 5 V,	V _{OH} = 4.5 V	-5	-7.5		mA
Lavi	High-level output current	V _{DD} = 6 V,	V _{OH} = 5.5 V	-6	-9.2		
ЮН	(PAx, PBx, D/A options 1, 2)	V _{DD} = 4 V,	V _{OH} = 2.67 V	-8	-13		
		V _{DD} = 5 V,	V _{OH} = 3.33 V	-14	-20		mA
		V _{DD} = 6 V,	V _{OH} = 4 V	-20	-29		
		$V_{DD} = 4 V$,	V _{OL} = 0.5 V	10	17		
		$V_{DD} = 5 V$,	V _{OL} = 0.5 V	13	20		mA
la.	Low-level output current	$V_{DD} = 6 V$,	V _{OL} = 0.5 V	15	25		
lol	(PAx, PBx, D/A options 1, 2)	$V_{DD} = 4 V$,	V _{OL} = 1.33 V	20	32		
		V _{DD} = 5 V,	V _{OL} = 1.67 V	30	52		mA
		V _{DD} = 6 V,	V _{OL} = 2 V	41	71		
	Pullup resistance		ted with software and veen pin and V _{DD}	15	30	60	kΩ

[†] Operating current assumes all inputs are tied to either V_{SS} or V_{DD} with no input currents due to programmed pullup resistors. The DAC output and other outputs are open circuited.

Figure 3–5. Typical Input Leakage Current on $\overline{\text{INIT}}$

3.5 TSP50C12 Electrical Characteristics

Table 3–8 gives specifications that apply to the TSP50C12.

Table 3–8. TSP50C12 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)

	PARAMETER		TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
\/_	Positive-going threshold voltage	Э	V _{DD} = 4.5 V			2.7		V
V _{T+}	(INIT)		V _{DD} = 6 V			3.65		V
\/_	Negative-going threshold voltage	ge	V _{DD} = 4.5 V			2.3		
V_{T-}	(INIT)		V _{DD} = 6 V			3.15		V
V.			V _{DD} = 4.5 V			0.4		V
V _{hys}	Hysteresis ($V_{T+} - V_{T-}$) (INIT)		V _{DD} = 6 V	V _{DD} = 6 V		0.5		l ^v
		٧r			4.7	4.9	5.1	
		−V _r '	1		3.717	3.875	4.033	
	LCD reference voltages	V _C '	DAC register = See Figures 2-	1000, $T_A = 25^{\circ}C$,	2.734	2.85	2.966	V
		V _r '	Jee rigules 2-	-3 and 2-0	1.751	1.825	1.899	
		$-V_r$			0.767	0.8	0.833	
V _r	LCD temperature coefficient†		$T_A = 0$ °C to 40 °C			-2.5		mV/°C
	DAC step		DAC step contraction to -V _r , V _{DD} = 5	rol of V_r with respect 5 V, $T_A = 25^{\circ}C$	74	100	124	mV
l _{Ikg}	Input leakage current (except for OSC1, INIT see Figure 3–5)	or					1	μΑ
Istandby	Standby current (INIT low)						10	μΑ
I _{DD} ‡	Supply current		D/A option 1 or	3		5		mA
			V _{DD} = 4 V,	V _{OH} = 3.5 V	-4	-6		
			V _{DD} = 5 V,	V _{OH} = 4.5 V	-5	-7.5		mA
l	High-level output current		V _{DD} = 6 V,	V _{OH} = 5.5 V	-6	-9.2		
ЮН	(PAx, PBx, D/A options 1)		V _{DD} = 4 V,	V _{OH} = 2.67 V	-8	-13		
			V _{DD} = 5 V,	V _{OH} = 3.33 V	-14	-20		mA
			V _{DD} = 6 V,	V _{OH} = 4 V	-20	-29		
			$V_{DD} = 4 V$,	V _{OL} = 0.5 V	10	17		
			V _{DD} = 5 V,	V _{OL} = 0.5 V	13	20		mA
اما	Low-level output current		V _{DD} = 6 V,	V _{OL} = 0.5 V	15	25		
IOL	(PAx, PBx, D/A options 1)		V _{DD} = 4 V,	V _{OL} = 1.33 V	20	32		
			V _{DD} = 5 V,	V _{OL} = 1.67 V	30	52		mA
	Ī		$V_{DD} = 6 V$	V _{OL} = 2 V	41	71		

[†]This negative temperature coefficient is normally advantageous because it tracks the temperature variation of most LCD materials

[‡] Operating current assumes all inputs are tied to either V_{SS} or V_{DD} with no input currents due to programmed pullup resistors. The DAC output and other outputs are open circuited.

Table 3–8. TSP50C12 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature(unless otherwise noted) (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Pullup resistance	Resistors selected with software and connected between pin and V_{DD}	15	30	60	kΩ
DAC buffer drive (D/A option 1)	32- Ω load connected across DA1 and DA2, VDD = 4.5 V		60		mA
LCD frame rate	fosc = 9.6 MHz		96		Hz

3.6 TSP50C04/06/13/14/19 Electrical Characteristics

Table 3–9 gives specifications that apply to the TSP50C04, TSP50C06, TSP50C13, TSP50C14, and the TSP50C19.

Table 3–9. TSP50C04/06/13/14/19 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
\/_	Positive going threshold voltage (INIT)	V _{DD} = 4.5 V		2.7		V
V _{T+}	Positive-going threshold voltage (INIT)	V _{DD} = 6 V		3.65		V
\/_	Negative going threehold veltage (INIT)	V _{DD} = 4.5 V		2.3		V
V _T _	Negative-going threshold voltage (INIT)	V _{DD} = 6 V		3.15		V
\/.	Liveteresis ()/- \/- \/ (INIT)	V _{DD} = 4.5 V		0.4		V
V _{hys}	Hysteresis ($V_{T+} - V_{T-}$) (INIT)	V _{DD} = 6 V		0.5		V
l _{lkg}	Input leakage current (except for OSC1, INIT see Figure 3–5)				1	μΑ
Istandby	Standby current (INIT low)				10	μΑ
I _{DD} †	Supply current	DAC option 1 or 2		5		mA
		V _{DD} = 4 V, V _{OH} = 3.5 V	-27	-41		
		V _{DD} = 5 V, V _{OH} = 4.5 V	-34	- 51		mA
	High-level output current (D/A	V _{DD} = 6 V, V _{OH} = 5.5 V	-41	-63		
	options 1, 2)	$V_{DD} = 4 \text{ V}, \qquad V_{OH} = 2.67 \text{ V}$	-54	-88		
		$V_{DD} = 5 \text{ V}, \qquad V_{OH} = 3.33 \text{ V}$	-95	-136		mA
		$V_{DD} = 6 \text{ V}, \qquad V_{OH} = 4 \text{ V}$	-136	-197		
ЮН		$V_{DD} = 4 \text{ V}, \qquad V_{OH} = 3.5 \text{ V}$	-4	-6		
		$V_{DD} = 5 \text{ V}, \qquad V_{OH} = 4.5 \text{ V}$	-5	-7.5		mA
	High-level output current (PAx, PBx)	$V_{DD} = 6 \text{ V}, \qquad V_{OH} = 5.5 \text{ V}$	-6	-9.2		
	Triginiever output current (FAX, FBX)	$V_{DD} = 4 \text{ V}, V_{OH} = 2.67 \text{ V}$	-8	-13		
		$V_{DD} = 5 \text{ V}, V_{OH} = 3.33 \text{ V}$	-14	-20		mA
		$V_{DD} = 6 \text{ V}, V_{OH} = 4 \text{ V}$	-20	-29		

Toperating current assumes all inputs are tied to either VSS or VDD with no input currents due to programmed pullup resistors. The DAC output and other outputs are open circuited.

Table 3–9 TSP50C04/06/13/14/19 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted) (Continued)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
		V _{DD} = 4 V,	$V_{OL} = 0.5 V$	27	41		
1		$V_{DD} = 5 V$,	$V_{OL} = 0.5 V$	34	51		mA
	Low-level output current (D/A options 1, 2)	V _{DD} = 6 V,	$V_{OL} = 0.5 V$	41	63		
		$V_{DD} = 4 V$,	V _{OL} = 1.33 V	54	88		
		V _{DD} = 5 V,	V _{OL} = 1.67 V	95	136		mA
		V _{DD} = 6 V,	V _{OL} = 2 V	136	197		
IOL	Low-level output current (PAx, PBx)	V _{DD} = 4 V,	$V_{OL} = 0.5 V$	10	17		
		V _{DD} = 5 V,	$V_{OL} = 0.5 V$	13	20		mA
1		$V_{DD} = 6 V$,	$V_{OL} = 0.5 V$	15	25		
		V _{DD} = 4 V,	V _{OL} = 1.33 V	20	32		
		V _{DD} = 5 V,	V _{OL} = 1.67 V	30	52		mA
		V _{DD} = 6 V,	V _{OL} = 2 V	41	71		
	Pullup resistance	Resistors selected with software and connected between pin and V _{DD}		15	30	60	kΩ
,		7.68-MHz target V _{DD} = 5 V, T _A =		7.21	7.68	8.15	N 41.1-
fosc	Oscillator frequency [‡]	9.6-MHz target fr V _{DD} = 5 V, T _A	• • •	9.02	9.6	10.2	MHz

The frequency of the internal clock has a temperature coefficient of approximately -0.2 %/°C and a V_{DD} coefficient typical = 3%/V and a maximum =5.4%/V.

Chapter 4

TSP50C0x/1x Assembler

The TSP50C0x/1x assembler chapter describes how to invoke the assembler, assembler command-line options, source-statement format, assembler symbols and characters, and assembler directives.

Topi	c Page
4.1	Description of Notation Used
4.2	Invoking the Assembler 4-3
4.3	Command-Line Options 4-4
4.4	Assembler Input and Output Files 4-7
4.5	Source-Statement Format 4-9
4.6	Symbols 4-12
4.7	Character Strings 4-13
4.8	Expressions 4-14
4.9	Assembler Directives 4-15

4.1 Description of Notation Used

The	e notation used in this document is as follows:
	An optional field is indicated by brackets; for example,
	[LABEL]
	User-supplied contents are indicated by braces; for example,
	<num></num>
	A reserved keyword is shown in capital letters.
	A required blank is indicated by a caret (^).
	e following syntax example demonstrates the notational conventions used his guide.
	[<name>] ^ SBR ^ <number> ^ [<comment>]</comment></number></name>

4.2 Invoking the Assembler

The assembler is invoked by typing:			
ASM10 ^ [<options>] ^ <source[.ext]></source[.ext]></options>			
where:			
 Options represents a list of assembler options (see Section 4.3 Command-Line Options). 	,		
☐ Source is the name of the source file with the extension optional	ıl.		
☐ If the extension is not given, then the default extension .asm is assumed. For example:			
ASMIN - DROGRAM			

runs the assembler using the source file program.asm and generates the output object file program.bin. No list file is generated.

4.3 Command-Line Options

Several options can be invoked from the command line (Table 4–1). They are invoked by listing their abbreviation prefixed by a minus sign. The following example:

ASM10 -Lo PROGRAM.ASM

assembles the program in file program.asm but does not generate either a listing file or an object file; however, any errors are written to the console. The available options are detailed in Table 4–1. See subsection 4.9.10, *OPTION Directive*, for information on invoking options from within the source code.

Table 4–1. Switches and Options

Character or Number	Action
B or b	Lists only the first data byte in BYTE or RBYTE
D or d	Lists only the first data byte in DATA or RDATA
l or i	Counts the number of times a valid instruction has been used
Lorl	Displays error messages without generating a list
O or o	Disables object file output
P or p	Prints listing without page breaks
Rorr	Produces a reduced cross-reference list
Sors	Writes no errors on screen unless listing file is generated
T or t	Lists only the first data byte in TEXT or RTEXT
W or w	Suppresses the warning message
X or x	Adds a cross-reference list at the end
9	Generates object file in TI-990 tagged object format

4.3.1 BYTE Unlist Option

Placing a b or B in the command-line option field causes the assembler to list only the first opcode in a BYTE or RBYTE statement. Normally, if a BYTE or RBYTE statement has n arguments, they are listed in a column running down the page in the opcode column of the listing, taking n lines to completely list the resulting opcodes. If the BYTE unlist switch is set, then only the first line (which also contains the source line listing) is written to the listing file.

4.3.2 DATA Unlist Option

Placing a d or D in the command-line option field causes the assembler to list only the first opcode in a DATA or RDATA statement. Normally, if a DATA or RDATA statement has n arguments, they are listed in a column running down the page in the opcode column of the listing, taking n lines to completely list the resulting opcodes. If the DATA unlist switch is set, then only the first line (which also contains the source line listing) is written to the listing file.

4.3.3 XREF Unlist Option

Placing an x or X in the command-line option field causes the assembler to add a cross-reference listing at the end of the listing file.

4.3.4 TEXT Unlist Option

Placing a t or T in the command-line option field causes the assembler to list only the first opcode in a TEXT or RTEXT statement in the listing file. Normally, if a TEXT or RTEXT statement has as an argument a string containing n characters, the ASCII representation of these n characters is written in a column in the opcode column of the listing. If the TEXT unlist switch is set, only the first line (also containing the source line listing) is written to the list file.

4.3.5 WARNING Unlist Option

Placing a w or W in the command-line option field causes the assembler to suppress WARNING messages. Warnings are still counted and error messages are still generated.

4.3.6 Complete XREF Switch

Placing an r or R in the command-line option field causes the assembler to produce a reduced XREF listing if one is produced. Normally, all symbols (whether used or not) are listed in the XREF listing. The r option causes the assembler to omit from the XREF listing all symbols from the copy files that were never used.

4.3.7 Object Module Switch

Placing an o or O in the command-line option field causes the assembler to not generate any object output modules.

4.3.8 Listing File Switch

Placing an I or L in the command-line option field causes the assembler to not generate the listing file but to display any error messages to the screen.

4.3.9 Page-Eject Disable Switch

Placing a p or P in the command-line option field causes the assembler to print the listing in a continual manner without division into separate pages. When desired, a form feed may still be forced using the PAGE command.

4.3.10 Error-to-Screen Switch

Placing an s or S in the command-line option field causes the assembler to not write errors to the screen unless no listing file is being generated.

4.3.11 Instruction Count Switch

Placing an i or I in the command-line option field causes the assembler to generate a table containing the number of times each valid instruction was used in the program.

4.3.12 Binary-Code File-Disable Switch

Placing a 9 in the command-line option field causes the assembler to generate the object module in tagged-object format in a file with a .mpo extension instead of the normal binary formatted object module in a file with a .bin extension.

4.4 Assembler Input and Output Files

The assembler takes as input a file containing the assembly source and produces as output a listing file and an object file in either binary format or tagged object format.

4.4.1 Assembly Source File

The assembly source file is specified in the command line. If the filename in the command line has an extension, then the file name is used as given. If no extension is specified, then the extension .asm is assumed.

For example:

ASM10 PROGRAM.SRC

uses the file program.src as the assembly source file.

ASM10 PROGRAM

uses the file program.asm as the assembly source file.

4.4.2 Assembly Binary Object File

The assembly process produces an object file in binary format by default. The object output is placed in a file with the same file name as the assembly source except that the extension is .bin. If the binary file is not desired, it can be disabled either as a command-line option or with an OPTION statement.

For example:

ASM10 PROGRAM.SRC

uses the file program.src as the assembly source file and the file program.bin as the binary object output file.

ASM10 -O PROGRAM.SRC

uses the file program.src as the assembly source file and produces no object output.

4.4.3 Assembly Tagged Object File

If desired, the assembler can substitute an object file in tagged object format instead of the object file in binary format. If produced, the object output is placed in a file with the same file name as the assembly source except that the extension is .mpo.

For example:

ASM10 -9 PROGRAM.SRC

uses the file program.src as the assembly source file and the file program.mpo as the tagged object output file. No binary-formatted object file is produced.

4.4.4 Assembly Listing File

The assembly process produces a listing file that contains the source instructions, the assembled code, and (optionally) a cross-reference table. The listing file is placed in a file with the same file name as the assembly source except that the extension is .lst.

For example:

ASM10 PROGRAM.SRC

uses the file program.src as the assembly source file and the file program.lst as the assembly listing file.

4.5 Source-Statement Format

An assembly-language source program consists of source statements contained in the assembly source file(s) that may contain assembler directives, machine instructions, or comments. Source statements may contain four ordered fields separated by one or more blanks. These fields (label, command, operand, and comment) are discussed in the following paragraphs.

The source statement can be as long as 80 characters. If the form width is set to 80 characters (the default), the assembler truncates the source line at 60 characters. The user should ensure that nothing other than comments extend past column 60.

Any source line starting with an asterisk (*) in the first character position is treated as a comment in its entirety. It is ignored by the assembler and has no effect on the assembly process.

The syntax of the source statements is:

[<label>] ^ COMMAND ^ <operand> ^ [<comment>]

A source statement may have an optional label that is defined by the user. One or more blanks separate the label from the COMMAND mnemonic. One or more blanks separate the mnemonic from the operand (if required by the command). One or more blanks separate the operand from the comment field. Comments are ignored by the assembler.

4.5.1 Label Field

The label field begins in character position one of the source line. If position one is a character other than a blank or an asterisk, the assembler assumes that the symbol is a label. If a label is omitted, then the first character position must be a blank. The label may contain up to ten characters consisting of alphabetic characters (a - z, A - Z), numbers (0 - 9), and some other characters (@,\$,_). The first character should be an alphabetic character, and the remaining nine character positions can be any of the legal characters listed above.

4.5.2 Command Field

The command field begins after the blank that terminates the label field or in the first nonblank character past the first character position (which must be blank when the label is omitted). The command field is terminated by one or more blanks and may not extend past the sixtieth character position. The command field may contain either an assembler mnemonic (e.g., TAX) or an assembler directive (e.g., OPTION). The assembler does not distinguish between capital and small letters in the command name; for example, TAX, Tax, and tAX are all identical names to the assembler.

4.5.3 Operand Field

The operand field begins following the blank that terminates the command field and may not extend past the sixtieth column position. The operand may contain one or more constants or expressions described in subsection 4.5.5, *Constants*, through subsection 4.5.10, *Assembly-Time Constants*. Terms in the operand field are separated by commas. The operand field is terminated by the first blank encountered.

4.5.4 Comment Field

The comment field begins after the blank that terminates the operand field or the blank that terminates the command field if no operand is required. The comment field may extend to the end of the source record and may contain any ASCII character including blanks.

4.5.5 Constants

The assembler recognizes the following five types of constants:

Decimal integer constants
Binary integer constants
Hexadecimal integer constants
Character constants
Assembly-time constants

4.5.6 Decimal Integer Constants

A decimal integer constant is written as a string of decimal digits. The range of values of decimal integers is –32,768 to 65,535. Positive decimal integer constants greater than 32,767 are considered negative when interpreted as two's complement values.

The following are valid decimal constants:

1000 Constant equal to 1000 or 03E8h -32768 Constant equal to -32768 or 8000h 25 Constant equal to 25 or 0019h

4.5.7 Binary Integer Constants

A binary integer constant is written as a string of up to 16 binary digits (0/1) preceded by a question mark (?). If less than 16 digits are specified, the assembler right-justifies the given bits in the resulting constant.

The following are valid binary constants:

 ?0000000000010011
 Constant equal to 19 or 0013h

 ?01111111111111
 Constant equal to 32767 or 7FFFh

 ?11110
 Constant equal to 30 or 001Eh

4.5.8 Hexadecimal Integer Constants

A hexadecimal integer constant is written as a string of up to four hexadecimal digits preceded by a number sign (#) or a greater than sign (>). If less than four hexadecimal digits are specified, the assembler right-justifies the bits that are specified in the resulting constant. Hexadecimal digits include the decimal values 0 through 9 and the letters a (or A) through f (or F).

The following are valid hexadecimal constants:

#07F Constant equal to 127 (or 007Fh)
>#07f Constant equal to 127 (or 007Fh)
#307A Constant equal to 12410 (or 307Ah)

4.5.9 Character Constants

A character constant is written as a string of one or two alphabetic characters enclosed in single quotes. A single quote can be represented within the character constant by two successive quotes. If less than two characters are specified, the assembler right-justifies the given bits in the resulting constant. The characters are represented internally as 8-bit ASCII characters. A character constant consisting of only two single quotes (no character) is valid and is assigned the value 0000h.

The following are valid character constants:

'AB' Constant equal to 4142h
'C' Constant equal to 0043h
"D' Constant equal to 2744h

4.5.10 Assembly-Time Constants

An assembly-time constant is a symbol given a value by an EQU directive (see subsection 4.9.5, *EQU Directive*). The value of the symbol is determined at assembly time and may be assigned values with expressions using any of the constant types.

4.6 Symbols

Symbols are used in the label field and the operand field. A symbol is a string of ten or fewer alphanumeric characters (a-z,A-Z,0-9), and the characters @, _, and \$). Uppercase and lowercase characters are not distinguished from one another; for example, A1 and a1 are treated identically by the assembler. No character may be blank. When more than ten characters are used in a symbol, the assembler prints all the characters but issues a warning message that the symbol has been truncated and uses only the first ten characters for processing.

Symbols used in the label field become symbolic addresses. They are associated with locations in the program and must not be used in the label field of other statements. Mnemonic operation codes and assembler directives may also be used as valid user-defined symbols when placed in the label field.

Symbols used in the operand field must be defined in the assembly, usually by appearing in the label field of a statement or in the operand field of an EQU directive.

The following are examples of valid symbols:

START
Start
strt 1

Predefined Symbol \$

The dollar sign (\$) is a predefined symbol given the value of the current location within the program. It can be used in the operand field to indicate relative program offsets.

For example:

BR \$+6

results in a branch to an address six bytes beyond the current location.

4.7 Character Strings

Several assembler directives require character strings in the operand field. A character string is written as a string of characters enclosed in single quotes. A quote may be represented in the string by two successive quotes. The maximum length of the string is defined for each directive that requires a character string. The characters are represented internally as 8-bit ASCII.

The following are valid character strings:

```
'SAMPLE PROGRAM'
'Plan ''C'''
```

4.8 Expressions

Expressions are used in the operand fields of assembler instructions and directives. An expression is a constant or symbol, a series of constants or symbols, or a series of constants and symbols separated by arithmetic operators.

Each constant or symbol may be preceded by a minus sign (unary minus) or a plus sign (unary plus). Unary minus is the same as taking the two's complement of the value. An expression must not contain embedded blanks. The valid range of values in an expression is -32,768 to 65,535. The value of all terms of an expression must be known at assembly time.

4.8.1 Arithmetic Operators in Expressions

The following arithmetic operators may be used in an expression:

- ~ inversion
- + addition
- subtraction
- * multiplication
- / division (remainder is truncated)
- % modulo (remainder after division)
- & bitwise AND
- ++ bitwise OR
- & bitwise EXCLUSIVE-OR

In evaluating an expression, the assembler first negates any constant or symbol preceded by a unary minus and then performs the arithmetic operations from left to right. The assembler does not assign arithmetic operation precedence to any operation other than unary plus or unary minus (so that the expression 4+5*2 is evaluated as 18, not 14).

4.8.2 Parentheses In Expressions

The assembler supports the use of parentheses in expressions to alter the order of evaluating the expression. Nesting parentheses within expressions is also supported. When parentheses are used, the portion of the expression within the innermost parentheses is evaluated first, and then the portion of the expression within the next innermost pair is evaluated. When evaluation of the portions of the expression within the parentheses has been completed, the evaluation is completed from left to right. Evaluation of portions of an expression within parentheses at the same nesting level is considered as simultaneous. Parenthetical expressions may not be nested more than eight deep.

4.9 Assembler Directives

Assembler directives (Table 4–2) are instructions that modify the assembler operation. They are invoked by placing the directive mnemonic in the command field and any modifying operands in the operand field. The valid directives are described in the following paragraphs.

Table 4–2. Summary of Assembler Directives

Directives That Affect the Location Counter						
Mnemon- ic	Directive	Syntax				
AORG	Absolute origin	[<label>]^AORG^<expression>^[<comment>]</comment></expression></label>				
Directives That Affect Assembler Output						
IDT	Program identifier	[<label>]^IDT^'<string>'^[<comment>]</comment></string></label>				
LIST	Restart source listing	[<label>]^LIST^[<comment>]</comment></label>				
NARROW	80-column form width	[<label>]^NARROW^[<comment>]</comment></label>				
OPTION	Output options	[<label>]^OPTION^<option list="">^[<comment>]</comment></option></label>				
PAGE	Page eject	[<label>]^PAGE^[<comment>]</comment></label>				
TITL	Page title	[<label>]^TITL^'<string>'^[<comment>]</comment></string></label>				
UNL	Stop source listing	[<label>]^UNL^[<comment>]</comment></label>				
WIDE	130-column form width	[<label>]^WIDE^[<comment>]</comment></label>				
	Dire	ectives That Initialize Constants				
BYTE	Initialize byte	[<label>]^BYTE^<expr-1>^[,<expr-2>,, <expr-n>]^[<comment>]</comment></expr-n></expr-2></expr-1></label>				
RBYTE	Reverse bit initialization of byte	[<label>]^RBYTE^<expr-1>^[,<expr-2>,, <expr-n>]^[<comment>]</comment></expr-n></expr-2></expr-1></label>				
DATA	Initialize word	[<label>]^DATA^<expr-1>^[,<expr-2>,, <expr-n>]^[<comment>]</comment></expr-n></expr-2></expr-1></label>				
RDATA	Reverse bit initialization of word	[<label>]^RDATA^<expr-1>^[,<expr-2>,, <expr-n>]^[<comment>]</comment></expr-n></expr-2></expr-1></label>				
EQU	Define assembly time	[<label>]^EQU^<expression>^[<comment>]</comment></expression></label>				
TEXT	Initialize text	[<label>]^TEXT^[-]'<string>'^[<comment>]</comment></string></label>				
RTEXT	Reverse byte initialization of text	[<label>]^RTEXT^[-]'<string>'^[<comment>]</comment></string></label>				
Miscellaneous Directives						
COPY	Copy source file	[<label>]^COPY^<filename>^[<comment>]</comment></filename></label>				
END	Program end	[<label>]^END^[<comment>]</comment></label>				

4.9.1 AORG Directive

The AORG directive places the value found in the expression in the operand field into the location counter. Subsequent instructions have addresses starting at this value. The use of the label field is optional, but when a label is used, it is assigned the value found in the operand field.

The syntax of the AORG directive is as follows:

```
[<label>] ^ AORG ^ <expression> ^ [<comment>]
```

In the following statement:

```
AORG #1000+Offset
```

if Offset has a value of 8, sets the location counter to #1008. If a label was included, it also is assigned the value of #1008. The symbol Offset must be previously defined.

4.9.2 BYTE Directive

The BYTE directive places the value of one or more expressions into successive bytes of program memory. The range of each term is 0 to 255. The command field contains BYTE. The operand field contains a series of one or more terms separated by commas and terminated by a blank that represents the values to be placed in the successive bytes of program memory.

The syntax of the BYTE directive is as follows:

```
[<label>] ^ BYTE ^ <expr_1>[,<expr_2>,...,<expr_n>] ^ [<comment>]
```

The following statement:

```
BYTE #E0,5,data+5
```

places the numbers 224, 5, and the result of the arithmetic operation data+5 into the next three bytes of program memory. The value of the symbol data must be defined in the assembly process.

4.9.3 COPY Directive

The COPY directive causes the assembler to read source statements from a different file. The assembler gets subsequent statements from the copy file until either an end-of-file marker is found or an END directive is found in the copy file. A copy file cannot contain another COPY directive. The command field contains COPY. The operand field contains the name of the file from which the source files are to be read.

The syntax of the COPY directive is as follows:

[<label>] ^ COPY ^ <filename> ^ [<comment>]

The directive in the following example:

```
COPY copy.fil
```

causes the assembler to take its source statements from a file called copy.fil. At the end-of-file for copy.fil or when an END directive is found in copy.fil, the assembler resumes processing source statements from the original source file.

4.9.4 DATA Directive

The DATA directive places the value of one or more expressions into successive words of program memory. The range of each term is 0 to 65,535. The command field contains DATA. The operand field contains a series of one or more terms separated by commas and terminated by a blank that represents the values to be placed in the successive bytes of program memory.

The syntax of the DATA directive is as follows:

```
[<label>] ^ DATA ^ <expr_1>[,<expr_2>,...,<expr_n>]^ [<comment>]
```

The following example:

```
DATA #E000,'AB'
```

places the following bytes into successive locations in program memory: E0h, 00h, 41h, 42h.

4.9.5 EQU Directive

The EQU directive assigns a value to a symbol. The label field contains the name of the symbol to which a value is assigned. The command field contains EQU. The operand field contains the value to be assigned to the symbol.

The syntax of the EQU directive is as follows:

[<label>] ^ EQU ^ <expression> ^ [<comment>]

The following example:

```
Offset EQU #100
```

assigns the numeric value of 256 (100h) to the symbol Offset.

4.9.6 END Directive

The END directive signals the end of the source or copy file. It is treated by the program as an end-of-file marker. If it is found in a copy file, the copy file is closed and subsequent statements are taken from the source file. If it is found in the source file, the assembly process terminates at that point in the file.

The syntax of the END directive is as follows:

```
[<label>] ^ END ^ [<comment>]
```

In the following example:

```
ACAAC 1
END
```

the ACAAC 1 instruction is assembled, but the CLA and any subsequent instructions are ignored.

4.9.7 IDT Directive

The IDT directive assigns a name to the object module produced. Use of the label field is optional. When used, a label assumes the current value of the location counter. The command field contains IDT. The operand field contains the module name <string>, a character string of up to eight characters within single quotes. When a character string of more than eight characters is entered, the assembler prints a truncation warning message and retains the first eight characters as the program name.

The syntax of the IDT directive is as follows:

```
[<label>] ^ IDT '<string>' ^ [<comment>]
```

The following example:

```
AORG 20
L1 IDT 'Example'
```

assigns the value of 20 to the symbol L1 and assigns the name 'Example' to the module being assembled. The module name is then printed in the source listing as the operand of the IDT directive and appears in the page heading of the source listing. The module name is also placed in the object code (if the tagged object format code is being produced).

4.9.8 LIST Directive

The LIST directive restores printing of the source listing. This directive is required only when a no-source-listing (UNL) directive is in effect and causes the assembler to resume listing. This directive is not printed in the source listing, but the line counter increments.

The syntax of the LIST directive is as follows:

```
[<label>] ^ LIST ^ [<comment>]
```

In the following example:

```
AORG 10

T1 LIST Turn on source listing
```

the label T1 is assigned the value 10 and listing is resumed. The line is not printed out so that although the label T1 is entered into the symbol table and appears in the cross-reference listing, the line in which it is assigned a value does not appear in the listing file.

4.9.9 NARROW Directive

The NARROW directive causes the assembler to assume an 80-column form width for the listing file. The default is 80 columns. (See subsection 4.9.18, *WIDE Directive*)

The syntax of the NARROW directive is as follows:

```
[<label>] ^ NARROW ^ [<comment>]
```

The following example uses the NARROW directive:

```
AORG 10

T1 NARROW Switch to 80-column listing format
```

4.9.10 OPTION Directive

The OPTION directive selects several options that affect assembler operation. The <option-list> operand is a list of keywords separated by commas; each keyword selects an assembly feature. Only the first character of the keyword is significant. Use of the label field is optional. When used, the label assumes the current value of the location counter.

The syntax of the OPTION directive is as follows:

[<label>] ^ OPTION ^ <option-list> ^ [<comment>]

The following are examples of the OPTION directive:

OPTION 990, XREF, SCREEN
OPTION 990, XREF, SCREEN
OPTION 9, X, S

The three examples above have an identical effect. The binary object file is replaced by an object file in tagged object format. The cross-reference listing is produced, and the error messages are not sent to the screen (unless no source listing file is being produced). See Section 4.3, *Command-Line Options*, for information on invoking options from the command line.

The available options are listed in the following paragraphs.

BUNLST - Byte Unlist Option

Placing any valid symbol starting with B or b in the option list enables the byte unlist option. This option limits the listing of BYTE or RBYTE directives to one line. Normally, if a BYTE or RBYTE directive has more than one operand, the resulting object code is listed in a column in the opcode column of the source listing. If the directive has ten operands, ten lines are required in the source listing. BUNLST is used to avoid this.

DUNLST – Data Unlist Option

Placing any valid symbol starting with D or d in the option list enables the data unlist option. This option limits the listing of DATA or RDATA directives to one line. Normally, if a DATA or RDATA directive has more than one operand, the resulting object code is listed in a column in the opcode column of the source listing. If the directive has ten operands, ten lines are required in the source listing. DUNLST is used to avoid this.

FUNLST – Byte, Data, and Text Unlist Option

Placing any valid symbol starting with F or f in the option list limits the listing of BYTE, RBYTE, DATA, RDATA, TEXT, or RTEXT directives to one line. In effect, it is equivalent to calling the DUNLST, BUNLST, and TUNLST directives all at the same time.

I COUNT - Instruction Count List Option

Placing any valid symbol starting with I or i in the option list causes the program to generate a table containing the number of times each valid instruction was used in the program. If used, it should be placed at the start of the program.

LSTUNL - Listing Unlist Option

Placing any valid symbol starting with L or I in the option list inhibits the listing file from being produced. It takes precedence over the LIST directive.

OBJUNL - Object File Unlist Option

Placing any valid symbol starting with O or o in the option list enables the object file unlist option. This option inhibits either of the object output files from being produced.

PAGEOF - Page Break Inhibit Option

Placing any valid symbol starting with P or p in the option list enables the page break inhibit option. This option causes the listing file to be printed in a continuous stream without page breaks.

RXREF - Reduced XREF Option

Placing any valid symbol starting with R or r in the option list enables the reduced XREF option. This option causes symbols that were found in copy files but never used to be omitted from the cross-reference listing (if produced).

SCRNOF - Screen Error Message Unlist Option

Placing any valid symbol starting with S or s in the option list enables the screen error message unlist option. This option causes the error messages to not be listed to the screen unless the listing file is not being produced.

TUNLST - Text Unlist Option

Placing any valid symbol starting with T or t in the option list enables the text unlist option. This option limits the listing of TEXT or RTEXT directives to one line. A TEXT or RTEXT directive normally takes as many lines to list as there are characters in the operand. TUNLST causes only the first line of the directive listing to be produced.

WARNOFF - Warning Message Unlist Option

Placing any valid symbol starting with W or w in the option list inhibits the listing of warning diagnostics. Warnings are still counted and the total is still printed at the end of the source listing.

XREF – Cross-Reference Listing Enable

Placing any valid symbol starting with X or x in the option list causes a cross-reference listing to be produced at the end of the source listing. If used, it should be placed at the start of the program.

990 - Tagged Object Output Switch

Placing any valid symbol starting with 9 in the option list causes the assembler to omit the binary coded object module (normally produced as a .bin file) and to produce a tagged object module (as a .mpo file) instead.

4.9.11 PAGE Directive

The PAGE directive forces the assembler to continue the source program listing on a new page. The PAGE directive is not printed in the source listing, but the line counter increments. Use of the label field is optional. When used, a label assumes the current value of the location counter. The command field contains PAGE. The operand field is not used.

The syntax of the PAGE directive is as follows:

```
[<label>] ^ PAGE ^ [<comment>]
```

In the following example:

```
AORG 10
T1 PAGE Force Page Eject
```

the label T1 is assigned the value 10, and listing is resumed at the top of the next page. The line is not printed out, so that although the label T1 is entered into the symbol table and appears in the cross-reference listing, the line in which it is assigned a value does not appear in the listing file.

4.9.12 RBYTE Directive

The RBYTE directive places the value of one or more expressions into successive bytes of program memory in a bit-reversed form. The range of each term is 0 to 255. The command field contains RBYTE. The operand field contains a series of one or more terms separated by commas and terminated by a blank that represents the values to be placed in the successive bytes of program memory.

The syntax of the RBYTE directive is as follows:

```
[<label>] ^ RBYTE ^ <expr_1>[,<expr_2>,...,<expr_n>] ^ [<comment>]
```

The following example:

```
RBYTE #E0,5,data+5
```

Places the numbers 7 (07h), 160 (A0h), and the bit-reversed result of the arithmetic operation (data+5) in successive bytes of program memory. The value of the symbol data must be defined in the assembly process.

4.9.13 RDATA Directive

The RDATA directive places the value of one or more expressions into successive words of program memory in a bit-reversed form. The range of each term is 0 to 65,535. The command field contains RDATA. The operand field contains a series of one or more terms separated by commas and terminated by a blank that represents the values to be placed in the successive words of program memory.

The syntax of the RDATA directive is as follows:

```
[<label>] ^ RDATA <expr_1>[,<expr_2>,...,<expr_n>] ^ [<comment>]
```

The following example:

```
RDATA #E000,'AB'
```

places the following bytes into successive locations in program memory: 00h, 07h, 42h, 82h.

4.9.14 RTEXT Directive

The RTEXT directive writes an ASCII string to the object file in reverse order. If the string is preceded by a minus sign, the last character in the string to be written (which is the first character of the string as given) is written with its most significant bit set high. The use of the label field is optional. When used, the label assumes the current value of the location counter. The command field contains RTEXT. The operand field contains a character string of up to 52 characters long enclosed in single quotes (optionally preceded by a minus sign).

The syntax of the RTEXT directive is as follows:

```
[<label>] ^ RTEXT ^ [-]'<string>' ^ [<comment>]
```

The following examples:

```
RTEXT -'This is a test'
RTEXT 'This is a test'
```

both write the string "tset a si sihT" to the output file. The first example writes the first T in the word "This", which is the last character to be written with its most significant bit set high (that is, as a #D4 instead of a #54).

4.9.15 TEXT Directive

The TEXT directive writes an ASCII string to the object file. If the string is preceded by a minus sign, the last character in the string is written with its most significant bit set high. The use of the label field is optional. When used, the label assumes the current value of the location counter. The command field contains TEXT. The operand field contains a character string of up to 52 characters in length enclosed in single quotes (optionally preceded by a minus sign).

The syntax of the TEXT directive is as follows:

```
[<label>] ^ TEXT ^ [-]'<string>' ^ [<comment>]
```

The following examples:

```
TEXT -'This is a test'
TEXT 'This is a test'
```

both write the string "This is a test" to the output file. The first example writes the final 't' in the word "test" with its most significant bit set high (that is, as a #F4 instead of a #74).

4.9.16 TITL Directive

The TITL directive inserts a title to be printed in the heading of each page of the source listing. When a title is desired in the heading of the listing's page, a TITL directive must be the first source statement submitted to the assembler. Unlike the IDT directive, the TITL directive is not printed in the source listing. The assembler does not print the comment because the TITL directive is not printed, but the line counter does increment. Use of the label field is optional. When used, a label field assumes the current value of the location counter. The command field contains TITL. The operand field contains the title (string) – a character string of up to 50 characters in length enclosed in single quotes. When more that 50 characters are entered, the assembler retains the first 50 characters as the title and prints a syntax error message. The comment field is optional.

The syntax of the TITL directive is as follows:

```
[<label>] ^ TITL '<string>' ^ [<comment>]
```

The following example:

```
TITL 'Sample Program' This is a sample line
```

causes the title, Sample Program, to be printed in the page heading of the source listing. When a TITL directive is the first source statement in a program,

the title is printed on all pages until another TITL directive is processed. Otherwise, the title is printed on the next page after the directive is processed and on subsequent pages until another TITL directive is processed. None of this line is printed to the listing file.

4.9.17 UNL Directive

The UNL directive inhibits the printing of the source listing output until the occurrence of a LIST directive. It is not printed in the source listing, but the source line counter is incremented. The label field is optional. When used, the label assumes the value of the location counter. The command field contains the symbol UNL. The operand field is not used.

The syntax of the UNL directive is as follows:

[<label>] ^ UNL ^ [<comment>]

The following example:

AORG 10

T1 UNL

Turn off source listing

assigns the value 10 to the label T1, and listing is inhibited.

4.9.18 WIDE Directive

The WIDE directive causes the assembler to assume a 130-column form width for the listing file. The default is 80 columns. (See subsection 4.9.9, *NARROW Directive*)

The syntax of the WIDE directive is as follows:

[<label>] ^ WIDE ^ [<comment>]

The following is an example of the WIDE directive:

AORG 10

T1 WIDE

Switch to 130-column listing format

Chapter 5

TSP50C0x/1x Instruction Set

This chapter describes the 61 different TSP50C0x/1x instructions (Table 5–1 and Table 5–2). Each instruction requires either one or two instruction cycles to execute. Each instruction cycle consists of 16 clock cycles; therefore, a clock speed of 9.6 MHz translates to 600,000 instruction cycles per second. When LPC synthesis is enabled, every other instruction cycle is taken for synthesis calculations, and two additional cycles are used for excitation function look up. This causes the instruction cycle rate for the program to drop to 280,000 instruction cycles per second.

Topic	Page
5.1	Instruction Syntax 5-2
5.2	TSP50C0x/1x Assembly Instructions 5-3

5.1 Instruction Syntax

The syntax for the source code instructions is:					
<pre>[<label>]^<opcode mnemonic="">^[<operand>]^ [<comment>]</comment></operand></opcode></label></pre>					
The fields are:					
 A 10-character optional label field A 6-character opcode mnemonic field An opcode-dependent operand field An optional comment field 					
Each of the fields is separated by one or more tabs or spaces.					

5.2 TSP50C0x/1x Assembly Instructions

The following section contains descriptions, opcodes, source code (syntax), object code, execution results, status flag information, and examples for the assembly instructions used to program the TSP50C0x/1x family. Table 5–1 lists the assembly instructions in alphabetical order with operand size in bits, instruction cycles requires, status conditions, number of bytes required, opcode, and a description.

Table 5-1. TSP50C0x/1x Instruction Set

	Operand Size (Bits)							
		Instruction Cycles Required						
			Status (1	l Always S	Set, C Cor	nditional, N/A Does Not Apply)		
	Number of Bytes Required							
					Opcode			
Mnemonic						Description		
ABAAC		1	С	1	2C	Add B register to A register		
ACAAC	12	2	С	2	70	Add constant to A register		
AGEC	8	2	С	2	63	A greater than or equal to constant		
AMAAC		1	С	1	28	Add memory to A register		
ANDCM	8	2	1	2	65	AND constant and memory		
ANEC	8	2	С	2	60	A register not equal to constant		
AXCA	8	2	1	2	68	A register times constant		
AXMA		1	1	1	39	A register times memory		
AXTM		1	1	1	38	A register times timer		
BR	13	2	1	2	40	Branch if status set		
BRA		1	1	1	1F	Branch always to address in A register		
CALL	12	2	1	2	00	Call if status set		
CLA		1	1	1	2F	Clear A register		
CLB		1	1	1	24	Clear B register		
CLX		1	1	1	20	Clear X register		
DECMN		1	С	1	27	Decrement memory		
DECXN		1	С	1	22	Decrement X register		
EXTSG		1	1	1	3C	Extended-sign mode		
GET	3	2	С	1	30	Get bits		

Table 5–1. TSP50C0x/1x Instruction Set (Continued)

	Operand	nd Size (Bits)							
		Instruction Cycles Required							
Status (1 Always Set, C Conditional, N/A Does Not Apply)									
				Number		Required			
					Opcode				
Mnemonic	-	<u> </u>				Description			
IAC		1	С	1	3A	Increment A register			
IBC		1	С	1	25	Increment B register			
INCMC		1	С	1	26	Increment memory			
INTGR		1	1	1	3B	Set integer mode			
IXC		1	С	1	21	Increment X register			
LUAA		2	1	1	6B	Look up A register, result to A register			
LUAB		2	1	1	6D	Look up A register, result to B register			
LUAPS		2	1	1	6C	Start parallel-to-serial transfer			
ORCM	8	2	1	2	64	OR constant with memory			
RETI		1	С	1	3E	Return from interrupt			
RETN		1	1	1	3D	Return from subroutine			
SALA		1	С	1	2E	Shift A register left			
SALA4		1	1	1	1B	Shift A register left 4 bits			
SARA		1	1	1	15	Shift A register right			
SBAAN		1	С	1	2D	Subtract B register from A register			
SBR	7	1	1	1	80	Short branch if status set			
SETOFF		1	N/A	1	3F	Turn processor off			
SMAAN		1	С	1	29	Subtract memory from A register			
TAB		1	1	1	1A	Transfer A register to B register			
TAM		1	1	1	16	Transfer A register to memory			
TAMD	8	2	1	2	6A	Transfer A register to memory direct			
TAMIX		1	1	1	13	Transfer A register to memory, increment X register			
TAMODE		1	1	1	1D	Transfer A register to mode register			
TAPSC		1	1	1	19	Transfer A register to prescale register			
TASYN		1	1	1	1C	Transfer A register to synthesizer register			

Table 5–1. TSP50C0x/1x Instruction Set (Continued)

	Operand	perand Size (Bits)							
		Instruction Cycles Required							
			Status (1			nditional, N/A Does Not Apply)			
	Number of Bytes Required								
					Opcode (Hex)				
Mnemonic						Description			
TATM		1	1	1	1E	Transfer A register to timer register			
TAX		1	1	1	18	Transfer A register to X register			
TBM		1	1	1	2A	Transfer B register to memory			
TCA	8	2	1	2	6E	Transfer constant to A register			
TCX	8	2	1	2	62	Transfer constant to X register			
TMA		1	1	1	11	Transfer memory to A register			
TMAD	8	2	1	2	69	Transfer memory to A register direct			
TMAIX		1	1	1	14	Transfer memory to A register, increment X register			
TMXD	8	2	1	2	6F	Transfer memory direct to X register			
TRNDA		1	1	1	2B	Transfer random number to A register			
TSTCA	8	2	С	2	67	Test constant and A register			
TSTCM	8	2	С	2	66	Test constant and memory			
TTMA		1	1	1	17	Transfer timer to A register			
TXA		1	1	1	10	Transfer X register to A register			
XBA		1	1	1	12	Exchange A register and B register			
XBX		1	1	1	23	Exchange B register and X register			
XGEC	8	2	С	2	61	X register greater than or equal to constant			

Table 5–2 lists the instructions by opcode.

Table 5–2. TSP50C0x/1x Instruction Table

	MSB								
LSB	0	1	2	3	4	5	6	7	8-F
0	CALL	TXA	CLX	GET 1	BR	BR	ANEC	ACAAC	SBR
1	CALL	TMA	IXC	GET 2	BR	BR	XGEC	ACAAC	SBR
2	CALL	XBA	DECXN	GET 3	BR	BR	TCX	ACAAC	SBR
3	CALL	TAMIX	XBX	GET 4	BR	BR	AGEC	ACAAC	SBR
4	CALL	TMAIX	CLB	GET 5	BR	BR	ORCM	ACAAC	SBR
5	CALL	SARA	IBC	GET 6	BR	BR	ANDCM	ACAAC	SBR
6	CALL	TAM	INCMC	GET 7	BR	BR	TSTCM	ACAAC	SBR
7	CALL	TTMA	DECMN	GET 8	BR	BR	TSTCA	ACAAC	SBR
8	CALL	TAX	AMAAC	AXTM	BR	BR	AXCA	ACAAC	SBR
9	CALL	TAPSC	SMAAN	AXMA	BR	BR	TMAD	ACAAC	SBR
Α	CALL	TAB	TBM	IAC	BR	BR	TAMD	ACAAC	SBR
В	CALL	SALA4	TRNDA	INTGR	BR	BR	LUAA	ACAAC	SBR
С	CALL	TASYN	ABAAC	EXTSG	BR	BR	LUAPS	ACAAC	SBR
D	CALL	TAMODE	SBAAN	RETN	BR	BR	LUAB	ACAAC	SBR
E	CALL	TATM	SALA	RETI	BR	BR	TCA	ACAAC	SBR
F	CALL	BRA	CLA	SETOFF	BR	BR	TMXD	ACAAC	SBR

The remainder of this section describes each instruction in detail.

Description ABAAC – Add B Register to A Register

Action Adds the contents of the B register to the contents of the A register and stores

the result in the A register.

Opcode 2C

Syntax [<|abel>]^ABAAC^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 0 1 1 0 0

Execution $A + B \rightarrow A$

Status Flag 1 if there is a carry into bit eight of the ALU; 0 if not.

Note:

The addition is performed independent of the arithmetic mode (EXTSG or INTGR) as an unsigned addition of all 14 bits of the B register and A register.

ACAAC Add Constant to A Register

Description ACAAC – Add Constant to A Register

Action Adds the 12-bit constant specified by the operand to the contents of the A

register and stores the result in the A register.

Opcode 70 – 7F

Syntax [<|abel>]^ACAAC^<CONST12>^...[<comment>]

Object Code

	7	6	5	4	3	2	1	0	
Instruction	0	1	1	1					\leftarrow 4 most significant bits of constant
Constant	CONST12								← 8 least significant bits of constant

Execution

 $A + CONST12 \rightarrow A$

Status Flag

1 if there is a carry into bit 8 of the ALU; 0 if not.

Note:

The results of the addition are dependent on the arithmetic mode. If the processor is in integer mode (INTGR), then the addition is of a 12-bit unsigned number with a 14-bit unsigned number. If the processor is in extended-sign mode (EXTSG), then the 12-bit constant is sign extended to a 14-bit two's complement number prior to the addition.

This instruction is useful when a table index has been placed in the A register. The base address of the table can be added to the index with this instruction, and a look-up can be completed to fetch the desired table element.

Example

TMAD INDEX Bring table index in from memory

ACAAC TABLE Add address of start of table

LUAA Bring table element into A register

TABLE

Description AGEC – A Register Greater Than or Equal to Constant

Action Compares the contents of the lower 8 bits of the A register and the 8-bit

constant specified in the operand. Sets the status flag if the contents of the

lower 8 bits of the A register are greater than the operand.

Opcode 63

Syntax [<|abel>]^**AGEC**^<CONST8>^...[<comment>]

Object Code

	7	6	5	4	3	2	1	0	
Instruction	0	1	1	0	0	0	1	1	
Constant	CONST8								

Execution

 $\mathsf{A} \geq \mathsf{CONST8} \to \mathsf{SF}$

Status Flag

1 if the lower 8 bits of the A register are greater than or equal to the 8-bit constant; 0 if not.

Note:

TARGET

Comparison is always done on an unsigned basis, that is, 0FFh is greater than 0FEh. Only the lower eight bits of the A register are compared to the 8-bit constant value. The upper 6 bits of the A register are not considered, so the result is independent of the arithmetic mode (EXTSG or INTGR).

Example

CLA Prepare A register

LOOP IAC Increment A register

AGEC TEST Is A reg greater than TEST

SBR TARGETYES, escape loop

SBR LOOP No, continue loop

AMAAC Add Memory to A Register

Description AMAAC – Add Memory to A Register

Action Adds the contents of RAM addressed by the X register to the A register and

stores the result in the A register.

Opcode 28

Syntax [<label>]^AMAAC^...[<comment>]

Object Code

Execution $A + *X \rightarrow A$

Status Flag 1 if there is a carry into bit 8 of the ALU; 0 if not.

Note:

When the most significant bit of the memory being used is set, the addition results are dependent on the arithmetic mode (EXTSG or INTGR). A carry into bit eight sets the status flag in all cases.

This instruction may be used when the sum of two variables is desired.

Example

TMAD VALUE1Fetch value from memory

TCX VALUE2 Point to second value

AMAAC Add two values

TAMD VALUE3 Store sum in memory

Description ANDCM – Logical AND a Constant With Memory

Action Bit-wise ANDs the contents of the memory addressed by the X register and

an 8-bit constant and stores the results in the memory location addressed by

the X register.

Opcode 65

Syntax [<label>]^ANDCM^<CONST8>^...[<comment>]

Object Code

Execution

*X && CONST8 → *X

Status Flag

1 always

Note:

The operation is performed independent of the arithmetic mode (EXTSG or INTGR) on the lower 8 bits of the RAM location; any other bits are unaffected.

Performing an ANDCM operation upon a 12-bit RAM location with a nonzero result in the lower 8 bits causes the upper 4 bits of the RAM location to increment. For example, if X register is cleared to zero and RAM[0] contains a value of 1, then performing an ANDCM 1 results in RAM[0] containing the value 101h.

Example

TCX FLAGS Point to FLAGS

ANDCM #F0 Reset lower 4 bits to zero

ANEC A Register Not Equal to Constant

Description ANEC – A Register Not Equal to Constant

Action Compares the lower 8 bits of the A register to the constant specified by the

operand and sets the status flag if they are not equal.

Opcode 60

Syntax [<|abel>]^**ANEC**^<CONST8>^...[<comment>]

Object Code

Execution

 $A \neq CONST8 \rightarrow SF$

Status Flag

1 if the lower 8 bits of the A register are not equal to the 8-bit operand; 0 if they are equal.

Note:

TARGET

Only the lower eight bits of the A register are compared to the 8-bit constant value. This instruction is independent of the arithmetic mode (EXTSG or INTGR).

Example

CLA Prepare A register

LOOP IAC Increment A register

ANEC TEST Is A register equal to TEST

SBR LOOP No, continue loop

SBR TARGETYES, escape loop

Description AXCA – A Register Times Constant

Action Multiplies the contents of the A register and the operand and leaves the results

(right shifted 7 bits) in the A register.

Opcode 68

Syntax [<|abel>]^AXCA^<CONST8>^...[<comment>]

Object Code

Execution

 $(A \times CONST8)/128 \rightarrow A$

Status Flag

1 always

Notes:

- 1) The operation is performed independent of the arithmetic mode (EXTSG or INTGR) as a 2's complement multiplication of all 14 bits of the A register and the 8-bit constant. The result is right shifted 7 bits so that the most significant 14 bits of the 21-bit result are available for further use.
- 2) When the A register contains the value 2000h, the results of the AXCA instruction are not reliable.

Example

AXMA A Register Times Memory

Description AXMA – A Register Times Memory

Action Multiplies the contents of the A register and the lower 8 bits of the contents of

the memory location addressed by the X register; leaves the results (right

shifted by 7 bits) in the A register.

Opcode 39

Syntax [<|abel>]^AXMA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 1 1 0 0 1

Execution $(A \times *X)/128 \rightarrow A$

Status Flag 1 always

Notes:

- 1) The operation is performed independent of the arithmetic mode (EXTSG or INTGR) as a two's complement multiplication of all 14 bits of the A register and the 8-bit value fetched from memory. The result is right shifted 7 bits so that the most significant 14 bits of the 21-bit result are available for further use.
- 2) When the A register contains the value 2000h, the results of the AXMA instruction are not reliable.

Example

TCA #3F Load first value

TCX RAMLOC Point to memory

TAM Store value in RAM

TCA #1F Load second value

AXMA Multiply first value by second value

(result is #0F)

Description AXTM – A Register Times Timer

Action Multiplies the contents of the A register and the contents of the timer register

and stores the results (right shifted by 7 bits) in the A register.

Opcode 38

Syntax [<|abel>]^AXTM^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 0 1 1 1 0 0 0

Execution

 $(A \times TM)/128 \rightarrow A$

Status Flag

1 always

Notes:

- 1) The operation is performed independent of the arithmetic mode (EXTSG/INTGR) as a two's complement multiplication of all 14 bits of the A register and the 8-bit value of the timer register. The result is right shifted 7 bits so that the most significant 14 bits of the 21-bit result are available for further use.
- 2) When the A register contains the value 2000h, the results of the AXTM instruction are not reliable.

Example

TCA #3F Load first value

TATM Store first value in timer register

TCA #1F Load second value

AXTM Multiply first value by second value

(result is #0F if timer has
not decremented)

BR Branch If Status Set

Description BR – Branch If Status Set

Action If the status flag is set to 1, the program counter is loaded with the address

specified by the operand and execution proceeds from that address. If the status flag is set to 0, the instruction following the BR instruction executes.

Opcode 40-5F

Syntax [<|abel>]^BR^<ADDR13>^...[<comment>]

Object Code

Execution if SF = 1, then ADDR13 \rightarrow Program Counter

if SF = 0, then Program Counter + 2 \rightarrow Program Counter

Status Flag 1 always

Note:

The branch instruction is a conditional instruction. When a branch is used following an instruction that always leaves the status flag set high, the branch can be viewed as unconditional. To execute an unconditional branch after a command that affects the status flag, repeat the branch as shown in the example.

Example

ACAAC #3F Perform addition
BR LOC
BR LOC

Description

BRA - Branch Always to Address in A Register

Action

The program counter is loaded with the 14-bit address contained in the A register, and execution proceeds from that address.

Opcode

1F

Syntax

[<label>]^BRA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 1 1 1 1

Execution

A → Program Counter

Status Flag

1 always

Notes:

- This instruction is useful when a subroutine address has been placed in a table. The base address of the table can be added to the index and the address contained in the table can be fetched to the A register.
- 2) The BRA instruction is an unconditional instruction. The branch is always taken, regardless of the value of the status register.
- 3) While the extended-sign mode does not affect the operation of this instruction, it does affect the operation of many other instructions, including most instructions used to transfer values to the A register. Care should be taken that sign extension is not in effect when transferring values to the A register that are subsequently used by the BRA instruction, because the value may be changed during the transfer and unexpected results obtained.

Example

TMAD INDEX Bring table index in from memory

ACAAC TABLE Add address of start of table

LUAA Bring new address into A register

BRA Branch to new address

TABLE

Description

CALL - Call Subroutine If Status Set

Action

If the status flag is 1, the contents of the program counter are pushed onto the stack, and the program counter is loaded with the address specified by the operand. Execution proceeds from that address. If the status flag is 0, the instruction following the CALL instruction executes.

Opcode

00 - 0F

Syntax

[<label>]^CALL^<ADDR12>^...[<comment>]

Object Code

| Topic | Topi

Execution

If SF = 1, then Program Counter \rightarrow Stack, and ADDR12 \rightarrow Program Counter

If SF = 0, then Program Counter + $2 \rightarrow$ Program Counter

Status Flag

1 always

Notes:

- The program counter stack is capable of storing addresses up to three levels deep. An address is pushed onto the stack whenever a CALL instruction occurs or whenever a hardware interrupt is executed. As addresses are pushed to the stack more than three levels deep, the last three addresses pushed to the stack are retained, and previous addresses are lost.
- 2) The CALL instruction is a conditional instruction. When a call is used following an instruction that always leaves STATUS high, it can be viewed as unconditional. Because the CALL address is only 12 bits, subroutines should be placed in the lower 4K bytes of ROM. The BR instruction has 13 bits of address, making it possible to branch to the lower 8K bytes of ROM. Subroutines can therefore be located in the second 4K bytes of ROM by having the entry point in the lower 4K bytes with an immediate branch to the higher 4K bytes.

Description CLA – Clear A Register

Action Sets the contents of the A register to 0.

Opcode 2F

Syntax [<label>]^CLA^...[<comment>]

Object Code

Instruction

Execution $0 \to A$ **Status Flag** 1 always

CLB Clear B Register

Description CLB – Clear B Register

Action Sets the contents of the B register to 0.

Opcode 24

Syntax [<label>]^CLB^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 0 0 1 0 0

Note:

This instruction is used to initialize the B register.

CLX - Clear X Register **Description**

Action Sets the contents of the X register to 0.

20 **Opcode**

Syntax [<label>]^CLX^...[<comment>]

Object Code

Instruction

Execution $\mathbf{0} \to X$ **Status Flag** 1 always

Note:

This instruction is used to initialize the X register.

DECMN Decrement Memory

Description DECMN – Decrement Memory

Action Decrements the contents of the 8-bit RAM location pointed to by the X register.

If the 8 bits are all zero, they are set to one and the status flag is set. If not, they

are simply decremented and the status flag is cleared.

Because the action taken by the DECMN instruction is to add 0FFh to the RAM value, when this instruction is used with 12-bit RAM locations, the lower 8 bits are decremented and the upper 4 bits are incremented whenever there is an

underflow from the lower 8 bits.

Opcode 27

Syntax [<|abel>]^DECMN^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 0 0 1 1 1

Execution $*X + 0FFh \rightarrow *X$

Status Flag 1 if the lower 8 bits of memory went from all 00h to all FFh; 0 if not.

Description DECXN - Decrement X Register

Action Decrements the contents of the X register. If the X register contains 000h, it

is set to 0FFh and the status flag is set to 1. Otherwise, the X register is

decremented and the status flag is cleared to zero.

22 Opcode

Syntax [<label>]^**DECXN**^...[<comment>]

Object Code

Instruction 0

Execution $X-1 \to X$

Status Flag 1 if X register went from 000h to 0FFh; 0 if not.

EXTSG Change to Extended-Sign Mode

Description EXTSG – Change to Extended-Sign Mode

Action Changes TSP50C1x to extended-sign mode

Opcode 3C

Syntax [<|abel>]^EXTSG^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 0 1 1 1 1 0 0

Execution The TSP50C1x is put into extended-sign mode. All data less than 14 bits in

length are sign extended when being added to, subtracted from, or transferred

to the A and B registers.

Status Flag 1 always

Note:

Sign extension means that the most significant bit of the data is copied into bits from 13 to the most significant bit of the data. For example, a 12-bit RAM location's most significant bit is bit 11. In extended-sign mode, bit 11 is copied into bits 12 and 13 when the data are transferred from the RAM location to the A register. This mode is useful if signed arithmetic must be done on values greater than 8 bits. Refer to each instruction description to determine if the arithmetic mode affects that particular instruction.

Description

GET – Get Data From ROM/RAM

Action

Transfers 1 to 8 bits of data from internal ROM, internal RAM, or 1 to 4 bits from external ROM (TSP60C18/81), to the A register via the parallel-to-serial register.

Opcode

30 to 37

Syntax

[<label>]^GET^<N>^...[<comment>]

Object Code

Execution

N bits of data are shifted from the LSB of the parallel-to-serial register into the LSB of the A register. This reverses the order of the bits in the A register from the order in the parallel-to-serial register. If more bits are required than are in the parallel-to-serial register, an additional byte is fetched from ROM or RAM. The previous contents of the A register are left shifted by N bits.

Status Flag

1 if the parallel-to-serial register buffer was emptied and needs to be reloaded on the next GET; 0 if not.

Notes:

 The data is shifted out of the LSB of the parallel-to-serial register and into the LSB of the A register, resulting in a bit reversal of any single byte of data transferred into the A register from the order stored in the ROM.

2) If more bits are requested than are immediately available in the parallel-to-serial register, the next data byte is loaded to the parallel-to-serial register and the remaining bits are transferred to the A register to satisfy the GET instruction.

Notes (continued):

After GET 5 Instruction

- 3) When the parallel-to-serial register is reloaded from ROM, the SAR (which is the address pointer for the GET instruction) is autoincremented as needed. When the parallel-to-serial register is reloaded from RAM, the X register is the address pointer and is not autoincremented.
- 4) Prior to the first use of the GET instruction, the GET counter, the parallel-to-serial register, and the mode register must be initialized. This initialization is accomplished by the TAMODE instruction and the LUAPS instruction, in that order. When using the GET instruction from RAM, a dummy GET 8 instruction must be performed after the LUAPS instruction and before the real GET. See subsection 6.9.3, GET From Internal RAM, for a sample program using RAM GET.
- 5) The source for the data fetched by the GET instruction can be either internal or external ROM or internal RAM. The TAMODE instruction is used to control the source of the data.
- 6) When used to fetch data from external ROM, the GET instruction cannot fetch more than 4 bits of data at a time.
- 7) If the LPC bit is set and the first GET instruction after the LUAPS loads the maximum number of bits allowed (i.e., a GET 4 from external ROM or a GET 8 from internal ROM or RAM), the same data is loaded twice in a row. To avoid this problem, either perform the first GET before entering LPC mode or do a dummy GET (in the case of a GET from internal RAM, a total of two dummy GET 8 commands is required). Refer to Sections 6.8, TSP60C18/81 Interface, and 6.9, Use of the GET Instruction, for more information.
- 8) The status flag after either a GET 7 or a GET 8 is not reliable. If the state of the status flag following the GET instruction is important to the application, a GET 7 or a GET 8 should be avoided.
- Getting more than four bits at a time from external ROM should be avoided.

Description IAC – Increment A Register

Action Increments the contents of the A register by 1

Opcode

Syntax [<label>]^IAC^...[<comment>]

Object Code

Execution $A + 1 \rightarrow A$

Status Flag 1 if the lower 8 bits of the A register go from 0FFh to 000h; 0 if not.

Note:

This instruction increments all 14 bits of the A register, but only the lower 8 bits are used for status-flag determination.

Example

LOOP

IAC Increment loop counter SBR DONE Branch if loop counter overflow SBR LOOP Branch if no loop counter overflow

DONE

IBC Increment B Register

Description IBC – Increment B Register

Action Increments the contents of the B register by 1

Opcode 25

Syntax [<|abel>]^IBC^...[<comment>]

Object Code

Execution $B + 1 \rightarrow B$

Status Flag 1 if the lower 8 bits of the B register go from 0FFh to 000h; 0 if not.

Note:

This instruction increments all 14 bits of the B register, but only the lower 8 bits are used for status-flag determination.

Example

LOOP

IBC Increment loop counter

SBR DONE Branch if loop counter overflow

SBR LOOP Branch if no loop counter overflow

DONE

Description INCMC – Increment Memory

Action Increments the contents of the RAM location pointed to by the X register. If the

lower 8 bits are all ones, they are cleared to all zeros and the status flag is set to 1. When this instruction is used with 12-bit RAM locations, the upper 4 bits

increments whenever the lowest 8 bits change from all 1s to all 0s.

Opcode 26

Syntax [<label>]^INCMC^...[<comment>]

Object Code

Execution $X + 1 \rightarrow X$

Status Flag 1 if the lower 8 bits of memory go from 0FFh to 000h; 0 if not.

INTGR Change to Integer Mode

Description INTGR – Change to Integer Mode

Action Changes TSP50C1x to integer mode

Opcode 3B

Syntax [<|abel>]^INTGR^...[<comment>]

Object Code

Execution The upper bits of data less than 14 bits in length are zero filled when being

transferred to, added to, or subtracted from the A and B registers.

Status Flag 1 always

Note:

This instruction affects all data from RAM, the X register, or the timer register that are transferred to, added to, or subtracted from the A and B registers. It is used when only positive numbers are being used.

Description IXC – Increment X Register

Action Increments the contents of the X register by 1

Opcode

Syntax [<label>]^IXC^...[<comment>]

Object Code

Execution $X + 1 \rightarrow X$

Status Flag 1 if the contents of the X register go from 0FFh to 000h; 0 if not.

Note:

The status flag is only set when the X register contains 0FFh prior to the execution of the IXC instruction. In this case, the status flag is set and the X register value is 0.

Example

LOOP

DONE

IXC Increment loop counter SBR DONE Branch if loop counter overflow SBR LOOP Branch if no loop counter overflow

LUAA Look Up With A Register

Description LUAA – Look Up With A Register

Action Replaces the contents of the A register with the contents of the ROM

addressed by the A register. When in extended-sign mode, the value fetched

is sign extended to 14 bits.

Opcode 6B

Syntax [<|abel>]^LUAA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 1 1 0 1 0 1 1

Execution $*A \rightarrow A$ **Status Flag** 1 always

Extended-Sign Mode

When in extended-sign mode (EXTSG), the value loaded to the A register is sign extended. This can cause problems in two areas: when loading the target address to the A register, the address may be changed if bit 7 is high, causing incorrect data to be loaded with the LUAA instruction; and the data fetched may be sign extended. These problems can be avoided by ensuring that the processor is in integer mode (INTGR) prior to loading the A register.

Example

INTGR Ensure integer mode
TCA TABLE Load table address
ACAAC INDEX Add table offset
LUAA Fetch table entry

Description LUAB – Look Up With B Register

Action Replaces the contents of the B register with the contents of the ROM

addressed by the A register. When in extended-sign mode, the value fetched

is sign extended to 14 bits.

Opcode 6D

Syntax [<label>]^LUAB^...[<comment>]

Object Code

Instruction

Execution $^*A \to B$ **Status Flag** 1 always

Extended-Sign Mode

When in extended-sign mode (EXTSG) the value loaded to either the B register or the A register is sign extended. This can cause problems in two areas: when loading the target address to the A register, the address may be changed if bit 7 is high, causing incorrect data to be loaded with the LUAB instruction; and the data fetched to the B register may be sign extended. These problems can be avoided by ensuring that the processor is in integer mode (INTGR) prior to loading the A register.

Example

Ensure integer mode INTGR TCA TABLE Load table address ACAAC INDEX Add table offset

LUAB Fetch table entry to B register

LUAPS Indirect Look Up With A Register

Description LUAPS – Indirect Look Up With A Register

Action Transfers A register contents to speech address register (SAR) and uses the

resulting address to look up a speech data word. The data word is placed into

the parallel-to-serial buffer and SAR is incremented.

Opcode 6C

Syntax [<|abel>]^LUAPS^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 1 1 0 1 1 0 0

Execution A \rightarrow SAR; *SAR \rightarrow PS; SAR + 1 \rightarrow SAR

Status Flag 1 always

Note:

This instruction is used to initialize the parallel-to-serial register prior to GET instructions. It should be used even if the data are coming from external ROM or internal RAM. In these cases, the SAR does not need initialization, but the bit counter in the parallel-to-serial register still does.

Example

TCA SPEECHLoad address of data

LUAPS Initialize PS register

GET 4 Get first data

Description ORCM – OR Constant With Memory

Action Logically ORs the contents of RAM pointed to by the X register with the 8-bit

operand and stores the results in RAM.

Opcode 64

Syntax [<|abel>]^**ORCM**^<CONST8>^...[<comment>]

Object Code

Execution

 $^*X \parallel CONST8 \rightarrow ^*X$

Status Flag

1 always

Note:

This instruction can be used to set an individual bit in RAM to 1.

Example

SILENCE EQU #01

.

.

TCX FLAGS Point to flags variable ORCM SILENCE Set silence bit high

Description

RETI – Return From Interrupt

Action

If the interrupt is a level-1 interrupt, retrieves the old contents of the A register, B register, status flag, integer mode bit, and X register from the interrupt storage locations; pops the top value from the stack to the program counter; and resumes execution from the new address in the program counter. If the interrupt is a level-2 interrupt, only the status flag, integer mode bit, and program counter are retrieved. If a RETI instruction is executed with interrupts enabled and without an interrupt first occurring, the stack control can be corrupted. The mode register is not saved and restored during interrupts. Any changes made to the mode register during interrupts stay in effect after the RETI instruction. The RETI acts as a NO-OP instruction if no interrupt has occurred. If a RETI is executed with interrupts disabled, any interrupt pending flag is cleared.

Opcode

3E

Syntax

[<label>]^RETI^...[<comment>]

Object Code

Instruction

7	6	5	4	3	2	1	0
0	0	1	1	1	1	1	0

Execution

level-1:
$$A' \rightarrow A$$
; $B' \rightarrow B$; $X' \rightarrow X$; $SF' \rightarrow SF$;

$$\mathsf{IF'} \to \mathsf{IF}$$

Top of Program Counter Stack → Program Counter

level-2: SF' \rightarrow SF; IF' \rightarrow IF

Top of Program Counter Stack → Program Counter

Status Flag

Restored to value before interrupt

Note:

If a level-1 interrupt is followed immediately by a RETI, then the potential exists with some single-byte instructions to corrupt the A register upon return. To avoid this problem, do not place a RETI immediately at the interrupt vector. Instead, precede the RETI with a CLA or some other instruction. See the following example.

AORG #1E	Address level-1 pcm interrupt
CLA	Dummy instruction at interrupt
RETI	Return from interrupt

Description RETN – Return From Subroutine

Action Pops the top value from the stack and resumes execution from the new

address.

Opcode 3D

Syntax [<label>]^RETN^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 1 1 1 0 1

 $\textbf{Execution} \hspace{1.5cm} \textbf{Top of Stack} \rightarrow \textbf{Program Counter}$

Status Flag 1 always

Notes:

- If stack is underflowed, RETN functions as a no-operation command. Control goes to the next consecutive address. Calls can be made indefinitely, but calls can only return three levels.
- 2) When using the EVM, a stack overflow can occur. Therefore, only three levels of CALL can be executed in an EVM simulation.

SALA Shift A Register Left

Description SALA – Shift A Register Left

Action Shifts the A register left towards MSB by one bit and fills the LSB with a 0.

Opcode 2E

Syntax [<label>]^SALA^...[<comment>]

Object Code

Status Flag 1 if A.7 was a 1 before execution; 0 if A.7 was a 0 before execution.

Note:

The bit shifted out of bit 13 of the A register is lost. The results do not depend on the arithmetic mode (EXTSG or INTGR).

Description SALA4 – Shift A Register Left Four Bits

Action Shifts the A register left towards MSB by four bits and fills the lower 4 bits with

zeros

Opcode 1B

Syntax [<|abel>]^SALA4^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 0 0 1 1 0 1 1

Execution A.i \rightarrow A.i+4; 0 \rightarrow A.0, A.1, A.2, A.3

Status Flag 1 always

Note:

Bits 10 to 13 of the A register are lost. The results do not depend on the arithmetic mode (EXTSG or INTGR).

SARA Shift A Register Right One Bit

Description SARA – Shift A Register Right One Bit

Action Shifts the A register right towards LSB by one bit and fills the MSB with its old

value.

Opcode 15

Syntax [<label>]^SARA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 0 0 1 0 1 0 1

Execution A.i \rightarrow A.i-1; A.13 \rightarrow A.13

Status Flag 1 always

Note:

Data shifted out of bit 0 of the A register is lost. The results do not depend on the arithmetic mode (EXTSG or INTGR).

Description SBAAN – Subtract B Register From A Register

Action Subtracts the contents of the B register from the contents of the A register and

stores the result in the A register. If the subtraction requires a borrow operation from bit 8 of the A register, the status flag is set to 1. Otherwise, the status flag

is cleared to 0.

Opcode 2D

Syntax [<label>]^SBAAN^...[<comment>]

Object Code

 7
 6
 5
 4
 3
 2
 1
 0

 Instruction
 0
 0
 1
 0
 1
 1
 0
 1

Status Flag

1 if the lower 8 bits of A register are less than the lower 8 bits of the B register;

0 if not.

Note:

The subtraction is performed independent of the arithmetic mode (EXTSG or INTGR) as a two's complement subtraction of all 14 bits of the B register from the A register.

Description

SBR - Short Branch If Status Set

Action

When the status flag is set to 1, the lower seven bits of the program counter are replaced by the value specified and execution proceeds from that address. Otherwise, the instruction following the SBR instruction is executed.

Opcode

80 to FF

Syntax

[<label>]^SBR^<ADDR7>^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 1 ADDR7

Execution

If SF = 1, ADDR7 + Program Counter PAGE \rightarrow PC

If SF = 0, Program Counter + 1 \rightarrow Program Counter

Status Flag

1 always

Note:

- 1) The short branch instruction is a conditional instruction. When a short branch is used following an instruction that always leaves the status flag high, the short branch can be viewed as unconditional.
- 2) The program counter is incremented when the instruction is fetched. If the program counter value is 0080h when the instruction is executed, placing an SBR with an operand of 1 at address 007Fh results in a branch to 81.
- 3) An SBR instruction executed at XX7Fh or XXFFh with status cleared (branch not taken) goes to XX00h or XX80h, respectively. Version 1.06 or greater of the assembler generates a warning message for all SBR instructions that occur at addresses ending in 7Fh or FFh.

Description SETOFF – Set Processor to OFF Mode

Action Places the processor in a low-power mode. The clock is stopped and I/O ports

are placed in a high-impedance state.

Opcode 3F

Syntax [<|abel>]^SETOFF^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 1 1 1 1 1

Execution Processor powered down

Status Flag State at power up not guaranteed.

Note:

A rising edge on the $\overline{\text{INIT}}$ pin is necessary to restart the processor. The register values are not retained, but the RAM values are retained provided that power continues to be applied to the chip.

Description SMAAN – Subtract Memory From A Register

Action Subtracts the contents of RAM addressed by the X register from the contents

of the A register and stores the result in the A register. If the initial value in the lower 8 bits of the A register is less than the value in the lower 8 bits of RAM, the status bit is set to 1; otherwise, the status bit is cleared to 0. If the processor is in extended-sign mode, the value stored in memory is sign extended to a

14-bit value prior to the subtraction.

Opcode 29

Syntax [<|abel>]^SMAAN^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 0 1 0 0 1

Execution $A - *X \rightarrow A$

Status Flag

1 if the lower 8 bits of A register are less than the lower 8 bits in the RAM; 0

if not.

Note:

When the most significant bit of the memory being used is set, the subtraction results are dependent on the arithmetic mode (EXTSG or INTGR). A borrow from bit 8 sets the status flag in all cases.

This instruction may be used when the difference between two variables is desired. It subtracts the contents of the memory indexed by the X register from the A register.

Example

TMAD VALUE1 Fetch value from memory
TCX VALUE2 Point to second value
SMAAN Subtract two values
TAMD VALUE3 Store result in memory

TAB – Transfer A Register to B Register Description

Action Copies the contents of the A register into the B register

Opcode

Syntax [<label>]^TAB^...[<comment>]

Object Code

Instruction

Execution $\mathsf{A}\to\mathsf{B}$ **Status Flag** 1 always

TAM Transfer A Register to Memory

Description TAM – Transfer A Register to Memory

Action Copies the contents of the A register into the memory location addressed by

the X register. Since the memory location is too small to hold the complete contents of the A register, the most significant bits are lost in the transfer.

Opcode 16

Syntax [<|abel>]^TAM^...[<comment>]

Object Code

 Description TAMD – Transfer A Register to Memory Direct

Action Copies the contents of the A register into the memory location addressed by

the operand. Since the memory location is too small to hold the complete contents of the A register, the most significant bits are lost in the transfer.

Opcode 6A

Syntax [<|abel>]^**TAMD**^<CONST8>^...[<comment>]

Object Code

Execution A \rightarrow *CONST8

TAMIX Transfer A Register to Memory and Increment X Register

Description TAMIX – Transfer A Register to Memory and Increment X Register

Action Copies the contents of the A register into the memory location addressed by

the X register and then increments the X register. Since the memory location is too small to hold the complete contents of the A register, the most significant

bits are lost in the transfer.

Opcode 13

Syntax [<|abel>]^TAMIX^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 0 0 1 1

Execution $A \rightarrow *X; X + 1 \rightarrow X$

Description TAMODE – Transfer A Register to Mode Register

Action Copies the lower 8 bits of the A register into the mode register

Opcode 1D

Syntax [<|abel>]^TAMODE^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 1 1 0 1

Execution $A \rightarrow Mode Register$

Status Flag 1 always

Note:

The bit definition for the mode register is in subsection 2.1.19, *Mode Register*.

TAPSC Transfer A Register to Prescale Register

Description TAPSC – Transfer A Register to Prescale Register

Action Copies the lower 8 bits of the A register into the prescale register

Opcode 19

Syntax [<|abel>]^TAPSC^...[<comment>]

Object Code

Execution A \rightarrow Prescale Register

Status Flag 1 always

Note:

The prescale circuit divides the timer clock by the value set by this instruction plus 1. The output of the prescale circuit is used as a clock for the timer register. Refer to subsection 2.1.14, *Timer Prescale Register*, for more information.

Description

TASYN – Transfer A Register to Synthesizer Register

Action

Copies the 14-bit A register to a speech-processor register. The specific register and resulting control function depend on the operating mode: LPC (load 14-bit pitch register; MSB and LSB of A register must be set to zero), PCM/LPC (load 14-bit LPC excitation register), and PCM (load 12-bit DAC register; see Section 6.10, *Generating Tones Using PCM*). If none of these modes are active, the value goes into the pitch register just as if LPC mode were active. This is done to allow preloading the pitch before turning on LPC mode.

Opcode

1C

Syntax

[<label>]^TASYN^...[<comment>]

Object Code

Instruction

7	6	5	4	3	2	1	0
0	0	0	1	1	1	0	0

Execution

A → Speech-Processor Register

Status Flag

1 always

Note:

The TASYN copies the 14-bit contents of the A register to the following destinations depending on the contents of the MODE register (see subsection 2.1.19, *Mode Register*).

Mode Bit		
LPC	PCM	TASYN Destination
0	0	Pitch register
0	1	DAC register
1	0	Pitch register
1	1	Excitation register

Wh	nen loading the pitch register:							
	The least significant bit and most significant bit of the A register are required to be zero.							
	For voiced frames, the value in the A register:							
	 is required to be 0042h or higher is strongly recommended to be 0142h or higher is recommended to be 0202h or higher (see subsection 2.1.15, Pitch Register and Pitch-Period Counter (PPC)) 							
	For unvoiced frames, the value in the A register is required to be between 0042h and 03FEh. Note that even when a frame is unvoiced, a pitch-register value must be loaded							

Description TATM – Transfer A Register to Timer Register

Action Copies the lower 8 bits of the A register into the timer register

Opcode 1E

Syntax [<|abel>]^**TATM**^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 0 0 1 1 1 1 0

TAX Transfer A Register to X Register

Description TAX – Transfer A Register to X Register

Action Copies the contents of the lower 8 bits of the A register into the X register

Opcode 18

Syntax [<label>]^TAX^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 1 0 0 0

 Description TBM – Transfer B Register to Memory

Action Copies the contents of the B register into the memory location addressed by

the X register. Since the memory location is too small to hold the complete contents of the B register, the most significant bits are lost in the transfer.

Opcode 2A

Syntax [<|abel>]^TBM^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 1 0 1 0 1 0

Execution $B \rightarrow *X$ **Status Flag** 1 always

TCA Transfer Constant to A Register

Description TCA – Transfer Constant to A Register

Action Copies the 8-bit constant specified by the operand into the A register. When

in extended-sign mode, the 8-bit value is sign extended to a 14-bit two's

complement value in the A register.

Opcode 6E

Syntax [<|abel>]^**TCA**^<CONST8>^...[<comment>]

Object Code

Execution Extended-sign mode: CONST8 \rightarrow A.7 – A.0; CONST8 (7) \rightarrow A.13 – A.8

Integer mode: CONST8 \rightarrow A.7 – A.0; 0 \rightarrow A.13 – A.8

Description TCX - Transfer Constant to X Register

Action Copies the 8-bit constant specified by the operand into the X register

Opcode

Syntax [<label>]^**TCX**^<CONST8>^...[<comment>]

Object Code

0 Instruction 0 0 0 Constant CONST8

Execution $\text{CONST8} \to X$

TMA Transfer Memory to A Register

Description TMA – Transfer Memory to A Register

Action Copy the contents of the memory addressed by the X register into the A

register. When in extended-sign mode, the value fetched from RAM is sign

extended to a 14-bit 2's complement value in the A register.

Opcode 11

Syntax [<|abel>]^TMA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 0 0 0 1

Execution $*X \rightarrow A$

Result depends on whether the TSP50C1x is in integer mode or

extended-sign mode.

Description TMAD – Transfer Memory to A Register Direct

Action Copies the contents of the memory addressed by the operand into the A

register. When in extended-sign mode, the value fetched from memory is sign

extended to a 14-bit two's complement value in the A register.

Opcode 69

Syntax [<label>]^**TMAD**^<CONST8>^...[<comment>]

Object Code

Execution *CONST8 \rightarrow A

Result depends on whether the TSP50C1x is in integer mode or

extended-sign mode

TMAIX Transfer Memory to A Register and Increment X Register

Description TMAIX – Transfer Memory to A Register and Increment X Register

Action Copies the contents of the memory location addressed by the X register into

the A register and then increments the X register. When the processor is in extended-sign mode, the value fetched from RAM is sign extended to a 14-bit

two's complement in the A register.

Opcode 14

Syntax [<|abel>]^TMAIX^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 0 1 0 0

Execution $*X \rightarrow A; X + 1 \rightarrow X$

Result depends on whether the TSP50C1x is in integer mode or

extended-sign mode

Description TMXD – Transfer Memory Directly to X Register

Action Copies the lower 8 bits of the memory addressed by the operand into the X

register

Opcode 6F

Syntax [<|abel>]^**TMXD**^<CONST8>^...[<comment>]

Object Code

| Tonstant | Tonstruction | Tonstant | Tonstruction | Tonstant | T

Execution *CONST8 \rightarrow X

Description TRNDA – Transfer Random Number into A Register

Action Copies an 8-bit random number into the A register. Extended-sign mode does

not affect the operation of this instruction. The value is not sign extended.

Opcode 2B

Syntax [<|abel>]^TRNDA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 0 1 0 1 0 1 1

Execution Random Number \rightarrow A

Status Flag 1 always

Notes:

- 1) The random number register generates a pseudorandom count with 32,767 states. The algorithm is summarized in the following paragraph.
- 2) At power up, the random number is initialized to 0. At every subsequent instruction cycle, the register is left shifted once, and bit 0 is set to the exclusive NOR of bits 13 and 14 with a delay of one instruction cycle. The transfer to the A register in response to TRNDA is done prior to this operation.
- 3) The random register takes several hundred instruction cycles to become significantly randomized. The software should not expect TRNDA to give a very random response immediately after an initialization.

Description TSTCA – Test Constant With A Register

Action Compares the constant specified by the operand and the contents of the A

register. If any bit in the operand is high with the corresponding bit in the A register low, the status flag is cleared to zero. Otherwise, the status flag is set

to 1.

Opcode 67

Syntax [<|abel>]^**TSTCA**^<CONST8>^...[<comment>]

Object Code

| Total Constant | Tota

Execution (A && CO

(A && CONST8 == CONST8) \rightarrow SF

Status Flag Conditionally set to 1 if every bit that is high in the operand has a corresponding

high bit in the A register; otherwise set to 0.

Note:

This instruction logically ANDs the value stored in the A register with the value of the 8-bit constant and sets the status flag if the result is equal to the 8-bit constant. The value in the A register does not change.

TSTCM Test Constant With Memory

Description TSTCM – Test Constant With Memory

Action Compares the constant specified by the operand and the contents of the

memory location addressed by the X register. If any bit in the operand is high with the corresponding bit in the memory location low, the status flag is cleared

to zero. Otherwise, the status flag is set to 1.

Opcode 66

Syntax [<|abel>]^**TSTCM**^<CONST8>^...[<comment>]

Object Code

Execution (*X && CONST8 == CONST8) \rightarrow SF

Status Flag

Conditionally set to 1 if every bit that is high in the operand has a corresponding high bit in the memory addressed by the X register; otherwise set to 0.

Note:

This instruction logically ANDs the value stored in the RAM location pointed to by the X register with the value of the 8-bit constant and sets the status flag if the result is equal to the 8-bit constant. The value in memory is not affected.

Description TTMA – Transfer Timer Register to A Register

Action Copies the contents of the timer register into the A register. When in

extended-sign mode, the value fetched from the timer register is sign extended

to a 14-bit 2's complement number in the A register.

Opcode 17

Syntax [<label>]^TTMA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 0 1 1 1

Execution extended-sign mode: Timer Register \rightarrow A.7 – A.0;

Timer Register.7 \rightarrow A.13 – A.8

integer mode: Timer Register \rightarrow A.7 – A.0; 0 \rightarrow A.13 – A.8

TXA Transfer X Register to A Register

Description TXA – Transfer X Register to A Register

Action Copies the contents of the X register into the A register. When in extended-sign

mode, the value transferred from the X register is sign extended into a 14-bit

two's complement number in the A register.

Opcode 10

Syntax [<label>]^TXA^...[<comment>]

Object Code

7 6 5 4 3 2 1 0
Instruction 0 0 0 1 0 0 0 0

Execution extended-sign mode: $X \rightarrow A.7 - A.0$; $X.7 \rightarrow A.13 - A.8$

integer mode: $X \rightarrow A.7 - A.0$; $0 \rightarrow A.13 - A.8$

Description XBA – Exchange Contents of B Register and A Register

Action Exchanges the contents of the B register with the contents of the A register

Opcode

Syntax [<label>]^XBA^...[<comment>]

Object Code

Instruction

Execution $\mathsf{A} \leftrightarrow \mathsf{B}$ **Status Flag** 1 always

XBX Exchange Contents of B Register and X Register

Description XBX – Exchange Contents of B Register and X Register

Action Exchanges the contents of the B register with the contents of the X register.

The upper 6 bits of the B register are truncated in the move to the X register. When in extended-sign mode, the value transferred from the X register is sign

extended into a 14-bit 2's complement number in the B register.

Opcode 23

Syntax [<|abel>]^XBX^...[<comment>]

Object Code

7 6 5 4 3 2 1 0

Instruction 0 0 1 0 0 0 1 1

Execution sign-extended mode: $X \rightarrow B.7 - B.0$; $X.7 \rightarrow B.13 - B.8$; $B \rightarrow X$

integer mode: $X \rightarrow B.7 - B.0$; $0 \rightarrow B.13 - B.8$; $B \rightarrow X$

Description XGEC – X Register Greater Than or Equal to Constant

Action Compares the contents of the X register and the constant specified by the

operand and sets the status flag if the contents of the X register are greater

than or equal to the operand.

Opcode 61

Syntax [<label>]^XGEC^<CONST8>^...[<comment>]

Object Code

5 2 0 4 3 Instruction 0 Constant CONST8

Execution $SF = X \ge CONST8$

Status Flag 1 if the contents of the X register are greater than or equal to the operand; 0

if not.

Example

XGEC TESTV Is X ≥ TESTV SBR GTE Branch if so

LESS GTE

Chapter 6

TSP50C0x/1x Applications

To help in developing your system, this chapter contains application information on the synthesizer, arithmetic modes, standby mode, slave mode, interfacing to the TSP60C18, external ROM interface, and generating tones with the TSP50C0x/1x.

Topic		Page
6.1	Synthesizer Control	. 6-2
6.2	Program Overview	. 6-9
6.3	Synthesis Program Walk-Through	6-11
6.4	Arithmetic Modes	6-39
6.5	Operation of the Multiply Instruction	6-42
6.6	Standby Mode	6-43
6.7	Slave Mode	6-44
6.8	TSP60C18/81 Interface	6-48
6.9	Use of the Get Instruction	6-60
6.10	Generating Tones Using PCM	6-66
6.11	TSP50C19 Programming	6-75

6.1 Synthesizer Control

In this section, a sample program demonstrates how to control the synthesizer in a TSP50C0x/1x device. This program causes the device to synthesize speech from data stored in D6 format.

6.1.1 Speech Coding and Decoding

The TSP50C0x/1x device supports linear-predictive coding (LPC) with ten or twelve K parameters. The LPC model requires the following three types of information: pitch, energy, and up to twelve K parameters. The pitch parameter controls the input into the LPC system by providing one of two excitation signals. If the coded-pitch code is nonzero, a periodic pulse similar to that produced by human vocal cords is created. A good example of the periodic sound is the |A| vowel sound. If the coded-pitch code is zero, a white noise source similar to the turbulence generated by constricted air flow in the mouth is used. An example is the |F| sound. The LPC model is entirely digital; thus, the excitation function is a series of digital data samples.

The excitation function specified by the pitch code is multiplied by the energy parameter. The output of the multiplication is put into a filter whose resonance is determined by a number of K parameters (normally 10 or 12) to model the resonance of the human vocal tract. The output of the LPC model is a series of digital samples, typically at an 8-kHz or 10-kHz clock rate, that are put into the digital-to-analog converter.

The pitch, energy, and K parameters are stored in a coded form in a series of frames of various bit lengths. The sample program uses the D6 format for storing the speech data. In this format, each frame represents 200 samples. For a 10-kHz sampling rate, this corresponds to 20 ms per frame. Each parameter is stored using a set number of bits (see Table 6–1).

Table 6-1. D6 Parameter Size

Parameter	Energy	Repeat	Pitch	K1	K2	К3	K4	K5	K6	K7	K8	K9	K10	K11	K12
# Bits	4	1	7	6	6	5	5	4	4	4	3	3	3	0	0

As shown in Figure 6–1, the different frame sizes range from 4 bits to 55 bits depending on which parameters are needed for the specific frame type. The D6 format is an LPC-10 model, meaning that it uses ten K parameters to control the digital filter. K11 and K12 are therefore always set to zero and no bits are needed to specify them.

Figure 6-1. D6 Frame Decoding

Frame	Energy	Repeat	Pitch	K1	K2	K3	K4	K5	K6	K7	K8	K9	K10
Voiced 55 bits		0											
Unvoiced 34 bits		0	0000000										
Repeat 12 bits		1											
Silent 4 bits	0000												
Stop 4 bits	1111												

A silence is represented with a silent frame (specified by an energy of zero). No additional information is needed. A stop frame, indicated by an energy value of 1111 (binary), tells the processor that a particular word or phrase has ended and that control must be returned to the phrase selection program. Because a zero energy indicates a silence frame and a coded energy of 15 represents a stop frame, valid audible energies can range from 1 to 14.

The voiced frame is the longest frame type. All ten K parameters are used together with energy and pitch to specify a voiced frame. An unvoiced frame is indicated by a zero pitch value. It is specified by a nonzero energy, a zero pitch, and the first four K parameters.

If the vocal tract resonances change relatively slowly (e.g., with long vowels), two or more frames in a row may have the same values for their K parameters. If this occurs, the repeat bit is set high, and the K parameters are omitted. This is called a repeat frame.

All of the frames are arranged as serial bit streams. This means that a frame can start at any bit position within a given byte of memory. The GET instruction is used to get bits from memory in a serial fashion, freeing the programmer from bit-manipulation tasks. Once the bits for a particular parameter are extracted from the bit stream, they must be decoded before use in the synthesizer. The K10 unpacking and decoding process is shown in Figure 6–2.

Figure 6-2. Speech Parameter Unpacking and Decoding

To decode speech, the processor must do the following three things:

- 1) Determine the frame type
- 2) Unpack each parameter
- 3) Using a table lookup, decode each parameter

The specific details of these operations are given in Sections 6.2, *Program Overview*, and 6.3, *Synthesis Program Walk-Through*. The processor is also required to decide if each frame should be interpolated. Interpolation is used to smooth out the transitions between frames.

Most of the time, speech changes smoothly. If 20-ms frames are used without interpolation, changes occur abruptly and the speech sounds rough. The TSP50C0x/1x devices require the program to interpolate the parameters. When speech changes quickly, as in the case of a transition between a voiced frame and an unvoiced frame, interpolation should not be performed. Therefore, the sample program disables interpolation at voicing transitions.

6.1.2 RAM Usage

In the following discussion, all the addresses are given in hexadecimal notation.

The sample program uses 03Ch RAM locations. During synthesis, use of the 12-bit RAM locations 001h through 00Fh is fixed by the architecture of the TSP50C0x/1x. As shown in Table 6–2, these locations are assumed by the

synthesizer to contain the working values of the LPC speech parameters. The names given in parentheses are the variable names used in the sample program. When synthesis is disabled, these locations may be used at the programmer's discretion.

Table 6-2. Hardware-Fixed RAM Locations

RAM Location	Function
01	Energy working value (EN)
02	K12 working value (K12)
03	K11 working value (K11)
04	K10 working value (K10)
05	K9 working value (K9)
06	K8 working value (K8)
07	K7 working value (K7)
80	K6 working value (K6)
09	K5 working value (K5)
0A	K4 working value (K4)
0B	K3 working value (K3)
0C	K2 working value (K2)
0D	K1 working value (K1)
0E	C1 working value (C1)
0F	C2 working value (C2)

Use of other RAM locations is detailed in Table 6–3. Energy, pitch, and the first four K factors are stored with 12 bits of precision, with the most significant byte stored in one location and the least significant nibble stored in the next consecutive location. The remaining K factors are stored with 8 bits of precision.

Table 6–3. Other RAM Locations Used in Sample Program

RAM Location	Function	RAM Location	Function
10	New energy value (ENV2)	11	Current energy value (ENV1)
12	New pitch value (PHV2)	13	New fractional pitch value
14	Current pitch value (PHV1)	15	Current fractional pitch value
16	New K1 value (K1V2)	17	New fractional K1 value
18	Current K1 value (K1V1)	19	Current fractional K1 value
1A	New K2 value (K2V2)	1B	New fractional K2 value
1C	Current K2 value (K2V1)	1D	Current fractional K2 value
1E	New K3 value (K3V2)	1F	New fractional K3 value
20	Current K3 value (K3V1)	21	Current fractional K3 value
22	New K4 value (K4V2)	23	New fractional K4 value
24	Current K4 value (K4V1)	25	Current fractional K4 value
26	New K5 value (K5V2)	27	Current K5 value (K5V1)
28	New K6 value (K6V2)	29	Current K6 value (K6V1)
2A	New K7 value (K7V2)	2B	Current K7 value (K7V1)
2C	New K8 value (K8V2)	2D	Current K8 value (K8V1)
2E	New K9 value (K9V2)	2F	Current K9 value (K9V1)
30	New K10 value (K10V2)	31	Current K10 value (K10V1)
32	New K11 value (K11V2)	33	Current K11 value (K11V1)
34	New K12 value (K12V2)	35	Current K12 value (K12V1)
36	Stored value of timer used to determine if update needed (TIMER)	37	Stored value of timer used in INTP routine (SCALE)
38	LPC status and control flags (FLAGS)	39	Miscellaneous flags (FLAG1)
3A	Buffer used to store current mode register contents (MODE_BUF)	3B	Most significant byte of phrase address (ADR_MSB)
3C	Least significant byte of phrase address (ADR_LSB)		

The program maintains copies of each decoded speech parameter for two separate frames: the current frame and the new frame. Normally, the synthesis routine interpolates smoothly between the current value of a given speech parameter and its new value. The interpolated value is written to the working value. However, in cases for which interpolation is not desired, the current value is written to the working value.

The value in the timer register is used for two purposes; to determine when a frame update needs to be performed and as a scale factor during interpolation. To serve these two purposes, two locations are reserved for freezing values read from the timer register. FLAGS contains the status and control flags as detailed in Table 6–4. Because the mode register cannot be read, the sample program maintains a copy of it in RAM in the location MODE_BUF.

Table 6-4. FLAGS Bit Descriptions for Sample Program

Bit	Usage
0	Set if stop frame detected.
1	Set if new frame is a repeat frame.
2	Set if an update has been performed.
3	Set if current frame is a silent frame.
4	Set if current frame is an unvoiced frame.
5	Set if interpolation is not desired for frame.
6	Set if new frame is a silent frame
7	Set if new frame is an unvoiced frame.

6.1.3 ROM Usage

The sample program uses approximately 1.4K-bytes of ROM, leaving approximately 2.6K-bytes (TSP50C04), 4.6K-bytes (TSP50C06), 6.6K-bytes (TSP50C10/13), 14.6K-bytes (TSP50C11/12/14), or 29.6K-bytes (TSP50C19) for other functions and speech data. Table 6–5 summarizes ROM usage.

Table 6-5. ROM Usage

		ROM Locations	3		
'04	'06	'10/'13	'11/'12/'14	'19	Function
0000	0000	0000	0000	0000	Execution start location after INIT rising edge
0000-000F	0000-000F	0000-000F	0000-000F	0000-000F	Device initialization code
0010-001F	0010-001F	0010-001F	0010-001F	0010-001F	Interrupt start locations
0020-05BE	0020-05BE	0020-05BE	0020-05BE	0020-05BE	Synthesis program and tables
05BF-0FDF	05BF-17DF	05BF-1FDF	05BF-3FDF	05BF-3FDF, 4000-5FFC, 6000-7FFC	Available for user program and speech data
0FE0-0FFF	17E0-17FF	1FE0-1FFF	3FE0-3FFF	3FE0-3FFF, 5FFD-5FFF, 7FFD-7FFF	Test codes (not available to user)
4000-417F	4000-417F	4000-417F	4000-417F	8000-817F	Excitation codes (not available to user)

6.2 Program Overview

The sample synthesis program, parts of which are used in this section for explanation, is reproduced in its entirety in Appendix B, *TSP50C0x/1x Sample Synthesis Program*. The following is an outline of the program flow:

Initialize processor						
Initialize speech address register, pitch, C1, and C2						
Decode first two frames of speech						
Start synthesizer						
Enable interrupt						
Until stop frame reached:						
Decode each frame						
When interrupt occurs, recalculate working parameter values						
Wait two frames, then stop synthesizer Return to calling routine						

The five main sections of the program are summarized in the following sections.

6.2.1 Initialization

The device state is unknown at device power up. The initialization section initializes the RAM and the mode register to a known state. In the sample program, this is accomplished by writing zeros to all RAM locations and to the mode register.

6.2.2 Phrase Selection

In general, this section contains all application-specific code. In the sample program, this section merely contains repeated calls to the subroutine SPEAK, causing successive utterances to be spoken.

6.2.3 Speech Initialization

This section consists of the subroutine SPEAK. It decodes the number contained in the A register for a series of words into the addresses in ROM. It initializes the TSP50C0x/1x for LPC synthesis and speaks the series of words that comprise the desired sentence. For each word in the sentence, SPEAK enables synthesis and the level-1 interrupt and loops until the utterance is complete. It then branches back to speak the next word in the sentence. This continues until the sentence is complete.

During each branch of the loop, the value in the timer register is polled. The next frame of speech data is read in each time the timer register underflows.

6.2.4 Level-1-Interrupt Service Routine

Once the synthesizer is enabled by SPEAK, it writes a new value to the digital-to-analog converter (DAC) once every 30 instruction cycles. The value that is written is calculated from the values contained in RAM locations 01 to 0F and the contents of the pitch-period counter (PPC). Loading these locations with the correct values is the responsibility of the level-1-interrupt service routine (INTP). This routine is invoked whenever the interrupt is enabled and the PPC decrements below 200h.

If interpolation is not inhibited, INTP performs a linear interpolation between the current value of each speech parameter and its new value using the value in the timer register to scale the interpolation. While it is possible to simply load the frame data to the working data, in practice, this results in speech that sounds rough due to the sharp transition between the different frames. To minimize this problem, INTP normally performs a linear interpolation between the current and new frames for each of the speech parameters. However, this is not always appropriate.

There are two cases in which the interpolation is inhibited and the transition is handled abruptly. When done, INTP simply copies the current values into the working values.

- □ Transition between voiced and unvoiced frames or between unvoiced and voiced frames A different number of K parameters are used in voiced frames than in unvoiced frames, and the K parameters are different. Attempting to interpolate across the voicing transition results in strange sounds.
- An unvoiced frame following a silence Plosives (e.g., the "Phaa" in the letter |P|) are abrupt unvoiced sounds. Trying to interpolate this case results in a gradual ramp up of a plosive, which is incorrect. In the corresponding case of a voiced frame following a silence, it is acceptable to interpolate.

6.2.5 Frame-Update Routine

LPC speech is coded as a series of frames spaced in time. Periodically, the next frame must be read so that INTP (the level-1-interrupt service routine) has new data to work with. This is the responsibility of the update routine. It reads the coded speech data contained in the next frame, determines what type of frame it is, decodes the speech data contained in the frame, and determines whether or not interpolation should be performed by INTP.

If a stop frame is encountered, a flag is set that causes the INTP routine to interpolate down to a silence. The synthesizer and the level-1 interrupt are both inhibited on the next pass through the update routine.

6.3 Synthesis Program Walk-Through

The following is a walk-through of a simple TSP50C0x/1x speech synthesis program. The approach used in this program is not the only possible approach, but it has the advantage of being relatively easy to explain. The complete listing of this program can be found in Appendix B, *TSP50C0x/1x Sample Synthesis Program*.

On power up, the processor begins executing code at location 000h. The following code initializes the processor by clearing the mode register and the RAM. After that, the processor branches around the interrupt vectors. Since the first TMAD instruction after power up is not guaranteed to function correctly, a TMAD instruction is included in the initialization code. This ensures that the internal addressing is initialized correctly.

0244	ŀ		******	*****	*****	* * * * * * * * * * * * * * * * * * * *
0245	,		* Start	of progra	ım	
0246	,		******	*****	*****	*********
0247	0000			AORG	#0000	
0248	0000	69		TMAD	0	
	0001	00				
	0001	00				
0249)					
0250)		*	Initiali	ze mode re	gister*
0251						
0252	0002	2F		CLA		
0253	0003	1D		TAMODE		
0254	Ŀ					
0255	,		*	Clear al	l ram to z	ero*
0256	;					
0257	0004	20		CLX		-Start at bottom of RAM
0258	0005	13	RAM_LOOP	TAMIX		-Clear RAM, increment pointer
0259	0006	61		XGEC	MAX_RAM+1	-Finished all RAM?
	0007	80				
0260	0008	40		BR	GO	yes, skip vector tables
	0009	24				
0261	A000	40		BR	RAM_LOOP	no, loop back
	000B	05				

In this sample program, ROM addresses 000Ch to 000Fh are not used. ROM addresses 0010h to 001Fh contain branches to the interrupt service routines. This section of the ROM address space is dedicated to this purpose by the TSP50C0x/1x architecture. When an interrupt condition is generated, if the interrupt is enabled in the mode register, the contents of the program counter are replaced by the address of the appropriate interrupt vector. For example, when the PPC is decremented below 0200h, the program counter is replaced

with the value 0018h. When the next RETI instruction is encountered, the original value of the program counter is restored. Normally, the instruction placed at the interrupt vector address is a branch to the actual routine. Because any branch instruction is conditional upon the value of the status bit and the value of the status bit is unknown, two short branches to the interrupt routine are used instead of a long branch. If the interrupt service routine is not within reach of a short branch, the target of the short branches should be a long branch to the interrupt service routine.

In this sample program, only one of the possible eight interrupt conditions is used. The remaining seven vectors point to a dummy routine that has no effect. In the following code fragment, because the routine INTP is out of reach of a short branch, the interrupt vector points to INT1_01, which is a long branch to INTP as previously discussed.

0263			*****	*****	****	*******
0264			* Inter	rupt vect	ors	
0265			*****	*****	****	********
0266	0010			AORG	#0010	
0267	0010	A2		SBR	INT2_01	-Timer Underflow, PCM=0, LPC=1
0268	0011	A2		SBR	INT2_01	-Timer Underflow, PCM=0, LPC=1
0269	0012	A2		SBR	INT2_00	-Timer Underflow, PCM=0, LPC=0
0270	0013	A2		SBR	INT2_00	-Timer Underflow, PCM=0, LPC=0
0271	0014	A2		SBR	INT2_11	-Timer Underflow, PCM=1, LPC=1
0272	0015	A2		SBR	INT2_11	-Timer Underflow, PCM=1, LPC=1
0273	0016	A2		SBR	INT2_10	-Timer Underflow, PCM=1, LPC=0
0274	0017	A2		SBR	INT2_10	-Timer Underflow, PCM=1, LPC=0
0275	0018	A0		SBR	INT1_01	-PPC < 200 hex interrupt
0276	0019	A0		SBR	INT1_01	-PPC < 200 hex interrupt
0277	001A	A2		SBR	INT1_00	-Pin (B1) goes low interrupt
0278	001B	A2		SBR	INT1_00	-Pin (B1) goes low interrupt
0279	001C	A2		SBR	INT1_11	-10 kHz Clock interrupt
0280	001D	A2		SBR	INT1_11	-10 kHz Clock interrupt
0281	001E	A2		SBR	INT1_10	-20 kHz Clock interrupt
0282	001F	A2		SBR	INT1_10	-20 kHz Clock interrupt
0283			*			
0284	0020	40	INT1_01	BR	INTP	-PPC < 200 hex interrupt
	0021	В4				
0285			*			
0286		0022	INT2_00			
0287		0022	INT2_01			
0288		0022	INT2_10			
0289		0022	INT2_11			
0290		0022	INT1_00			
0291		0022	INT1_10			
0292	0022	2F	INT1_11	CLA		
0293	0023	3E		RETI		

speech address tables. Often, there are three levels of pointers:
 Sentence pointers that point to the start addresses of entries in the concatenation tables
 Concatenation tables that contain lists of word numbers that define specific sentences (each word number is used as an index into the word address table)
 A word address table containing the actual address of the start of each word in memory

Generally, user programs have several levels of indirection in their use of

Sometimes there are several sentences randomly selected for a given situation. This can lead to a fourth level of pointers that point to sentence groups. All of these levels of pointers are easily accessed using either the GET, LUAA, or LUAB instructions. The structure is dependent on the specific application.

This sample program uses three levels of indirection as previously described. The three tables are shown in the following code. Note that the use of single bytes to store the word numbers in the concatenation table restricts the vocabulary to 255 words. If a larger vocabulary is required, the BYTE directive should be replaced with a DATA directive and the appropriate changes made in the routine SPEAK.

The label VOC has the value of the start of the speech data. The number that is added to it is the offset into the speech data where a given word begins. Each of these word addresses occupies two bytes of memory.

1565			*************
1566			*
1567			* This is the lookup table giving the starting address *
1568			* of each concatenation list. *
1569			*
1570			************
1571	05BF	05C5′	SENTENCE DATA PHRASEO
1572	05C1	05CA'	DATA PHRASE1
1573	05C3	05CF′	DATA PHRASE2
1574			*************
1575			*
1576			* This is the concatenation table giving the lists *
1577			* of word numbers that define each phrase. Each *
1578			* list is terminated by an #FF. *
1579			*
1580			************
1581	05C5	01	PHRASEO BYTE 1,2,3,4,#FF
	05C5 05CA	01 04	PHRASE0 BYTE 1,2,3,4,#FF PHRASE1 BYTE 4,3,2,1,#FF
1582			, , , , , , , , , , , , , , , , , , ,
1582	05CA	04	PHRASE1 BYTE 4,3,2,1,#FF
1582 1583	05CA	04	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF
1582 1583 1584	05CA	04	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF ***********************************
1582 1583 1584 1585	05CA	04	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF ***********************************
1582 1583 1584 1585 1586	05CA	04	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************
1582 1583 1584 1585 1586 1587	05CA	04	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************
1582 1583 1584 1585 1586 1587 1588 1589	05CA 05CF	04	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************
1582 1583 1584 1585 1586 1587 1588 1589	05CA 05CF	04	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************
1582 1583 1584 1585 1586 1587 1588 1589 1590	05CA 05CF 05D5 05D5	04 05	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591	05CA 05CF 05D5 05D7 05D9	04 05 0000' 05E3'	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593	05CA 05CF 05D5 05D7 05D9 05DB	04 05 0000' 05E3' 0667'	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************
1582 1583 1584 1585 1586 1587 1588 1599 1591 1592 1593 1594	05CA 05CF 05D5 05D5 05D7 05D9 05DB 05DD	04 05 0000' 05E3' 0667' 06D9'	PHRASE1 BYTE 4,3,2,1,#FF PHRASE2 BYTE 5,4,3,2,1,#FF **********************************

The following code speaks a series of sentences and then turns off the processor. The number of the desired sentence is loaded into the A register and the routine SPEAK is called to process the sentence. Three sentences are spoken, and then the processor is turned off.

0294			******	******	*****	*****	*******
0295			* Speak pl	nrases			
0296			******	******	*****	*****	*******
0297	0024	6E	GO	TCA	0	-Speak	1st phrase
	0025	00					
0298	0026	00		CALL	SPEAK		
	0027	31					
0299			*				
0300	0028	6E		TCA	1	-Speak	2nd phrase
	0029	01					
0301	002A	00		CALL	SPEAK		
	002B	31					
0302			*				
0303	002C	6E		TCA	2	-Speak	3rd phrase
	002D	02					
0304	002E	00		CALL	SPEAK		
	002F	31					
0305			*				
0306	0030	3F		SETOFF		-Quit p	program

What follows is the routine SPEAK that is called to speak each of the sentences. Before this routine is entered, the desired sentence number is loaded in the A register. Because each sentence pointer is two bytes long, the sentence number is doubled to get the correct offset into the sentence pointer table. This offset is added to the start address of the table to get the address of the table entry. The LUAA and LUAB instructions are used to get the two byte address of the concatenation table entry.

0307	******	*****	*******
0308	* Speak U	tterance - Phrase	number in A register
0309	******	******	*******
0310 0031 3	3B SPEAK	INTGR	
0311 0032 2	2E	SALA	-Double index to get offset
0312 0033	75	ACAAC SENTENCE	-Add base of table
0034 E	BF		
0313 0035 6	6D	LUAB	-get address MSB
0314 0036 3	3A	IAC	
0315 0037 6	6B	LUAA	-Get address LSB
0316 0038 1	12	XBA	
0317 0039 1	1B	SALA4	-Combine MSB and LSB
0318 003A 1	1B	SALA4	
0319 003B 2	2C	ABAAC	

In the following code, the selected concatenation table entry contains the word number of the first word in the selected sentence. The address of the selected concatenation table entry is stored in ADR_MSB and ADR_LSB.

0321	003C	1A	TAB		-Save address
0322	003D	6A	TAMD	ADR_LSB	-Save LSB of address
	003E	3C			
0323					
0324	003F	68	AXCA	1	-Shift address right
	0040	01			
0325	0041	15	SARA		by 8 bits
0326					
0327	0042	6A	TAMD	ADR_MSB	-Save MSB of address
	0043	3B			
0328	0044	12	XBA		
0329	0045	40	BR	SPEAK2	
	0046	59			
0330					

The following code gets the address of the current concatenation table entry, increments to the next entry, and then stores that address. This code is reached when the processor has finished speaking one word in a sentence and is ready to speak the next word.

0331	0047	69	SPEAK1	TMAD	ADR_LSB	-Fetch and combine
	0048	3C				
0332	0049	1A		TAB		address
0333	004A	69		TMAD	ADR_MSB	
	004B	3B				
0334	004C	1B		SALA4		
0335	004D	1B		SALA4		
0336	004E	2C		ABAAC		
0337						
0338	004F	3A		IAC		-Increment address
0339						
0340	0050	1A		TAB		-Save new address
0341	0051	бΑ		TAMD	ADR_LSB	-Save LSB of address
	0052	3C				
0342						
0343	0053	68		AXCA	1	-Shift address right
	0054	01				
0344	0055	15		SARA		by 8 bits
0345						
0346	0056	бΑ		TAMD	ADR_MSB	-Save MSB of address
	0057	3B				
0347	0058	12		XBA		

The next section of code uses the LUAA instruction to fetch the next byte of the concatenation table entry, tests to see if it marks the end of the concatenation table entry, and, if true, exits the routine.

0349	0059	6B	SPEAK2	LUAA		-Get word number
0350	005A	60		ANEC	StopWord	-End of phrase?
	005B	FF				
0351	005C	40		BR	SPEAK3	no, continue
	005D	5F				
0352	005E	3D		RETN		yes, exit loop

Now a word number is in the A register. The following code uses the word number as an index into the word address table to get the starting address of the word in memory. Because each address in the table is two bytes long, the word number is doubled to get the correct offset into the table before adding the address of the start of the table to the offset.

0354 005F	2E	SPEAK3	SALA		-Double index to get offset
0355 0060	75		ACAAC	SPEECH	-Add base of table

The A register now contains the address in ROM where the starting address of the desired word is stored. The following fragment of code retrieves this address and loads it into the SAR (speech address register). The LUAB instruction gets the most significant byte of the address into the B register. The LUAA gets the least significant byte of the address into the A register. The most significant byte is then left shifted by 8 bits and the least significant byte is added to it. The complete address is now in the A register. The LUAPS transfers this address into the SAR. Speech begins at this address.

0356 0062	6D	LUAB	-Get address	MSB
0357 0063	3A	IAC		
0358 0064	6B	LUAA	-Get address	LSB
0359 0065	12	XBA		
0360 0066	1B	SALA4	-Combine LSB	and MSB
0361 0067	1B	SALA4		
0362 0068	2C	ABAAC		
0363				
0364 0069	6C	LUAPS	-Load Speech	Address Register

Because LPC-10 coding is used in this example, the parameters K11 and K12 are not used. This section of code clears K11 and K12 and sets all the speech flags to the default condition (zero).

0366	006A	2F	CLA		-Kill	K11 an	d K12	parameters	
					11111	ICII GII	G 1112	parameters	
0367	006B	6A	TAMD	K11					
	006C	03							
0368	006D	6A	TAMD	K12					
	006E	02							
0369									
0370	006F	6A	TAMD	FLAGS	-Init	flags	for s	peech	
	0070	38							

The values in C1 and C2 control the behavior of the output filter. For most applications, the values should be set as shown in the following code.

0372	0071	2F	CLA		-Load	C2 parameter
0373	0072	7B	ACAAC	C2_Value	(a	device constant)
	0073	67				
0374	0074	6A	TAMD	C2		
	0075	OF				
0375						
0376	0076	2F	CLA		-Load	C1 parameter
0377	0077	7F	ACAAC	C1_Value	(a	device constant)
	0078	61				
0378	0079	6A	TAMD	C1		
	007A	0E				

The following code assigns a default pitch to cover the case in which the first frame is a silence frame. If this is the case, and no pitch was otherwise loaded, the pitch period counter is loaded with a zero and the synthesis of the first frame is then incorrect.

0383	007B	70	ACAAC	#0C
	007C	0C		
0384	007D	бA	TAMD	PHV1
	007E	14		
0385	007F	6A	TAMD	PHV2
	0080	12		

The first two frames are now preloaded. In the following code, each call to UPDATE loads one frame of speech. With two frames loaded into memory, the synthesis routine can properly do its interpolation function.

0389 0081	01	CALL	UPDATE	-Load first frame
0082	B5			
0390 0083	01	CALL	UPDATE	-Load 2nd frame
0084	B5			

In the following code, the first interpolation is done by calling the routine INTP. This is the same routine that is invoked by the interrupt after it is enabled later. Before INTP is called, however, the timer and prescaler values need to be initialized so that the interpolation function of INTP yields the correct value.

0397	0085	6E	TCA	PSVALUE	-Initialize prescale
	0086	2E			
0398	0087	19	TAPSC		
0399	0088	6E	TCA	#7F	-Pretend there was a previous
	0089	7F			
0400	A800	6A	TAMD	TIMER	update
	008B	36			
0401	008C	6E	TCA	#FF	-Set timer to max value to
	008D	FF			
0402	008E	1E	TATM		disable interpolation
0403	008F	00	CALL	INTP	-Do first interpolation
	0090	B4			

The last step before the start of speech is to turn on the synthesizer and then enable the interrupt. This is done by setting the appropriate bits in the mode register with the TAMODE instruction.

There are many cases in which a program may need to know what value is currently in the mode register. This is a problem because there is no way to read directly from the mode register. The best way around this problem is to maintain a copy of the mode register that can be read. This program, therefore, designates a RAM location as MODE_BUF. Any changes to the mode register are made in the following three-step procedure:

- 1) The change is made in MODE_BUF.
- 2) The value in MODE_BUF is transferred to the A register.
- 3) The mode register is changed with a TAMODE instruction.

In the following code, first the synthesizer is turned on and then a RETI is executed to ensure that the interrupt-pending latch is not set before interrupts are enabled. Once the interrupt is enabled, the routine INTP is reached whenever the pitch period counter decrements below 200h.

0412	0091	62	TCX	MODE_BUF	-Turn on LPC synthesizer
	0092	3A			
0413	0093	64	ORCM	LPC	
	0094	02			
0414	0095	11	TMA		
0415	0096	1D	TAMODE		
0416					
0417	0097	3E	RETI		-Reset interrupt pending latch
0418					
0419	0098	64	ORCM	INT1	-Enable interrupt
	0099	01			
0420	009A	11	TMA		
0421	009B	1D	TAMODE		

In the following code, when the synthesis routine detects the stop frame, it branches back to SPEAK1 to start speaking the next word. Until then, the program polls the value of the timer register and updates the frame data whenever the timer decrements below zero. First, it tests whether the timer has already decremented below zero; if true, an update is performed. Second, it tests whether the timer is equal to zero; if true, UPDATE is immediately called. By the time UPDATE completes processing, the timer register has underflowed.

0430		009C	SPEAK_LP			
0431	009C	62		TCX	FLAGS	
	009D	38				
0432	009E	66		TSTCM	Update_Fl	g -Is Update already done?
	009F	04				
0433	00A0	40		BR	SPEAK_LP	yes, loop
	00A1	9C				
0434						
0435	00A2	62		TCX	TIMER	-Get old timer
	00A3	36				
0436	00A4	11		TMA		register value
0437	00A5	1A		TAB		into B register
0438						
0439	00A6	17		TTMA		-Get new timer register
0440	00A7	15		SARA		value and scale it.
0441						
0442	00A8	16		TAM		-Store new value
0443	00A9	12		XBA		-Exchange new and old values
0444	00AA	2D		SBAAN		-Subtract new from old
0445	00AB	41		BR	UPDATE	-If underflowed, do an update
	00AC	В5				
0446						
0447	00AD	11		TMA		-Get new timer value again.
0448	00AE	60		ANEC	0	-Is it about to underflow?
	00AF	00				
0449	00B0	40		BR	SPEAK_LP	no, loop again
00B1	9C					
	0450	00B2	41	BR	UPDA	TE yes, do update now
00B3	В5					

In the following code, INTP is the interrupt service routine for the level-1 interrupt. It is reached whenever the pitch-period counter decrements below 200h. Its purpose is to do any necessary interpolation of the reflection coefficients (K parameters) and to load the result into the working registers.

On entry to INTP, the current value of the timer register is stored. This value is used later when interpolation is performed.

0461 00B4	3B INTP	INTGR	-Ensure we are in integer mode
0462 00B5	17	TTMA	-Get timer register contents
0463 00B6	15	SARA	shift to make positive
0464 00B7	6A	TAMD SCALE	and store it
00B8	37		

If interpolation has been turned off by the UPDATE routine, INTP is exited. This is shown in the following code.

0469 00B9	62	TCX	FLAG1	-Point to flag
00BA	39			
0470 00BB	66	TSTCM	Int_Off	-If routine disabled
00BC	01			
0471 00BD	41	BR	IRETI	branch to exit point
00BE	В3			

If there is a transition between a voiced frame and an unvoiced frame, then no interpolation should be performed between the two frames because the K parameters of a voiced frame are not compatible with the K parameters of an unvoiced frame. Any transition between frame types is detected in the UPDATE routine and signaled by setting the Int_Inh bit in FLAGS. The following code tests FLAGS to see if interpolation should be performed between frames.

0479 (00BF	62	TINTP	TCX	FLAGS	-Point to status flags
(00C0	38				
0480 (00C1	66		TSTCM	Int_Inh	-Is interpolation inhibited?
(00C2	20				
0481 (00C3	40		BR	NOINT	yes, inhibit interpolation
(00C4	C7				
0482 (00C5	40		BR	INTPCH	no, interpolate
(00C6	E4				

The following code is reached if interpolation is inhibited. It sets the stored value of the timer register to 7F, which effectively forces the interpolation to yield the old values for the working values, thereby effectively disabling interpolation.

0490	00C7	бE	NOINT	TCA	#7F	-Set	Scale	factor	to
	00C8	7F							
0491	00C9	бA		TAMD	SCALE	h:	ighest	value	
	00CA	37							

If there is a transition between a voiced and an unvoiced frame, the energy needs to be cleared until the K parameters and the unvoiced bit in the mode register all have been updated. This prevents the processor's LPC filter from using a mixture of voiced and unvoiced parameters. If the unvoiced bit in the mode register does not match the unvoiced bit in FLAGS, the energy is cleared. This is done in the following code.

0501	00CB	62		TCX	FLAGS	
	00CC	38				
0502	00CD	66		TSTCM	Unv_Flg2	-Is current frame unvoiced?
	OOCE	80				
0503	00CF	40		BR	Uv	yes, go to unvoiced branch
	00D0	D9				
0504						
0505	00D1	62		TCX	Mode_Buf	-Current frame is voiced
	00D2	3A				
0506	00D3	66		TSTCM	UNV	-Has mode changed to unvoiced?
	00D4	80				
0507	00D5	40		BR	ClrEN	yes, clear the energy
	00D6	DF				
0508	00D7	40		BR	INTPCH	no, no action required
	00D8	E4				
0509						
0510	00D9	62	Uv	TCX	Mode_Buf	-New frame is unvoiced
	00DA	3A				
0511	00DB	66		TSTCM	UNV	-Has voicing mode changed?
	00DC	80				
0512	00DD	40		BR	INTPCH	no, no action required
	00DE	E4				•
0513						
0514	00DF	2F	ClrEN	CLA		-Zero Energy during update
0515	00E0	6A		TAMD	EN	51 5 1
	00E1	01				
0516	00E2	40		BR	INTPCH	
	00E3	E4				
0508 0509 0510 0511 0512 0513 0514 0515	00D6 00D7 00D8 00D9 00DA 00DB 00DC 00DD 00DE 00DF 00E0 00E1 00E2	DF 40 E4 62 3A 66 80 40 E4 2F 6A 01 40		BR TCX TSTCM BR CLA TAMD	INTPCH Mode_Buf UNV INTPCH	no, no action required -New frame is unvoiced -Has voicing mode changed? no, no action required

We are now ready to do the interpolation. Interpolation is done at this point with the standard linear equation:

y = mx + b

rewritten to:

 $P = (Pcurrent - Pnew) \times TIMER + Pnew$

where:

P = interpolated parameter

Pcurrent = value of parameter in current frame

Pnew = value of parameter in new frame

TIMER = value in TIMER

The multiplication using the AXMA function scales the result by 080h. The value in TIMER ranges from 07Fh to 000h. If interpolation is inhibited, TIMER contains 07Fh and the interpolation results in P = Pcurrent.

The following code interpolates pitch. Pitch (as well as K1 and K2) is stored using two bytes. The program reads the most significant byte, left shifts it by one nibble, and then adds the least significant nibble of the value (stored in the second byte). The result is a 12-bit value. This is done both for the current and new values.

Unlike the K parameters, decoded pitch is always positive. The INTGR instruction at the start of INTP ensures the integer mode so that when the program gets the decoded pitch from the decoding tables, it is not sign extended. See Section 6.4, *Arithmetic Modes*, for additional information on arithmetic modes.

0522	00E4	62	INTPCH	TCX	PHV2	-Combine new pitch and new
	00E5	12				
0523	00E6	14		TMAIX		fractional pitch and
0524	00E7	1B		SALA4		leave in the B register
0525	00E8	28		AMAAC		
0526	00E9	21		IXC		
0527	00EA	1A		TAB		
0528	00EB	14		TMAIX		-Combine current pitch and
0529	00EC	1B		SALA4		current fractional pitch
0530	00ED	28		AMAAC		and leave in A register
0531						
0532	OOEE	2D		SBAAN		-(Pcurrent - Pnew)
0533	00EF	62		TCX	SCALE	
	00F0	37				
0534	00F1	39		AMMA		-(Pcurrent-Pnew)*Timer
0535	00F2	2C		ABAAC		-Pnew+(Pcurrent-Pnew)*Timer

Unlike the other speech parameters, the interpolated pitch is not written to RAM. Instead, it is written to the pitch register using the TASYN instruction. Because the value in the PPC is used to address the excitation function values, each of which is two bytes long, the interpolated pitch needs to be multiplied by two before writing it to the PPC. This is done in following code using the SALA instruction.

0536 00F3	2E	SALA	-Adjust for 2 byte excitation
0537 00F4	1C	TASYN	-Write to pitch register

Because the decoded K parameters can be both positive and negative, the program goes to extended-sign mode so that the values do not change sign when they are read into the A or B registers. This is done with the following line of code.

0542 00F5 3C EXTSG —Allow negative K parameters

K1 through K4 are interpolated in the same manner as energy. The interpolation of K1 is shown in the following code. K2 through K4 are not shown.

0543	00F6	62	TCX	K1V2	-Combine New K1 and New
	00F7	16			
0544	00F8	14	TMAIX		fractional K1 and
0545	00F9	1B	SALA4		leave in the B register
0546	00FA	28	AMAAC		
0547	00FB	21	IXC		
0548	00FC	1A	TAB		
0549					
0550	00FD	14	TMAIX		-Combine current K1 and
0551	OOFE	1B	SALA4		current fractional K1 and
0552	00FF	28	AMAAC		leave in the A register
0553					
0554	0100	2D	SBAAN		-(K1current - K1new)
0555	0101	62	TCX	SCALE	
	0102	37			
0556	0103	39	AMAA		-(Klcurrent - Klnew) * Timer
0557	0104	2C	ABAAC		-Klnew+(Klcurrent-Klnew)*Timer
0558	0105	6A	TAMD	K1	-Load interpolated K1 value
	0106	0D			

Since K5 through K10 are stored using an 8-bit precision instead of the 12-bit precision used for K1 through K4, the interpolation is simpler. The following fragment of code shows the interpolation used for K5. The code for K6 through K10 is similar.

0623	013A	62	TCX	K5V2	-Put New K5 (adjusted to
	013B	26			
0624	013C	14	TMAIX		12 bits) in B register
0625	013D	1B	SALA4		
0626	013E	1A	TAB		
0627	013F	14	TMAIX		-Put Current K5 (adjusted to
0628	0140	1B	SALA4		12 bits) in A register
0629					
0630	0141	2D	SBAAN		-(K5current - K5new)
0631	0142	62	TCX	SCALE	
	0143	37			
0632	0144	39	AXMA		-(K5current - K5new) * Timer
0633	0145	2C	ABAAC		-K5new+(K5current-K5new)*Timer
0634	0146	6A	TAMD	K5	-Load interpolated K5 value
	0147	09			

The decoded energy, like the pitch, is always positive. The INTGR instruction places the processor in integer mode so that the decoded energy is not sign extended. The following code interpolates the energy.

0761	018E	3B	INTGR		-Back to integer mode for energy
	018F	62	TCX	ENV2	-Combine new energy and
	0190	10			
0763	0191	14	TMAIX		fractional energy and
0764	0192	1B	SALA4		leave in the B register
0765	0193	1A	TAB		
0766	0194	14	TMAIX		-Combine current energy and
0767	0195	1B	SALA4		current fractional energy
0768	0196	2D	SBAAN		-(Ecurrent - Enew)
0769	0197	62	TCX	SCALE	
	0198	37			
0770	0199	39	AXMA		-(Ecurrent - Enew) * Timer
0771	019A	2C	ABAAC		-Enew+(Ecurrent-Enew)*Timer
0772	019B	6A	XBA		-Save energy

If there has been a voicing change, the mode register needs to be changed to reflect the new value. The following code fragment changes the voicing bit in the mode register to reflect the state of the current frame (which is stored in FLAGS). After changing the mode register, the program stores the interpolated energy and then exits from the INTP routine with either RETN or RETI depending on whether this routine was reached using a subroutine call or in response to an interrupt.

0781	019C	62	STMODE	TCX	FLAGS	
0782	019E 019E	38 65		ANDCM	~Update Fl	lg -Signal that interp done
0,02	019F	FB		11112011	opua00 <u>_</u> 13	ry Signar chao incorp ache
0783	01A0	66		TSTCM	Unv Flq2	-Is current frame unvoiced?
	01A1	80				
0784	01A2	41		BR	SETUV	-yes, set mode to unvoiced
	01A3	AA				
0785	01A4	62		TCX	MODE_BUF	no,
	01A5	3A				
0786	01A6	65		ANDCM	~UNV	set mode to voiced
	01A7	7F				
0787	01A8	41		BR	WRITEMODE	
	01A9	AE				
0788						
0789	01AA	62	SETUV	TCX	MODE_BUF	-Current frame is unvoiced, so
	01AB	3A				
0790	01AC	64		ORCM	UNV	-set mode to unvoiced.
	01AD	80				
0790						
	01B1	11	WRITEMODE	TMA		-Write mode information
	01AF	1D		TAMODE		to mode register
0794	0150	1.0				
	01B0	12		XBA		-Write energy
0796	01B1	6A		TAMD	EN	to filter
0707	01B2	01				
0797	01.00	2.11	TDEET	DEMI		Datama faran intermet
	01B3	3E	IRETI	RETI		-Return from interrupt
0799	01B4	3D		RETN		-Return from first call

The last major section in this sample program is the routine that reads in the next frame and decodes it. The routine is called both from the speech-initialization section (where it is used to preload the first two frames before enabling synthesis) and from the SPEAK_LP loop (where it is used to refresh the speech parameters when necessary).

The routine UPDATE does the following:

	If stop frame encountered on last pass, then stop speaking Copies new unvoiced flag to current unvoiced flag
	Copies new silence flag to current silence flag
\Box	Set new silence flag, new unvoiced flag, and interpolation flag to zero
$\bar{\exists}$	Copies new speech parameters to current speech parameters
5	Get coded energy
	If silence frame, then set new silence flag
	If stop frame, then set stop flag
	Look up decoded energy from table and put in new energy
	If last frame was silent, then inhibit interpolation (this one is not silent)
	Get repeat bit, if repeat bit is one, then set repeat flag
	Get coded pitch
	If unvoiced frame, then set new unvoiced flag
	Look up decoded pitch from table and store as new pitch
5	If new voicing is different from current voicing, then inhibit interpolation
$\bar{\exists}$	Get coded K parameters
	Look up decoded K parameters from table and store as new values

First, the level-1 interrupt is disabled so that an interpolation is not attempted during the period that the frame data is not valid. The level-1 interrupt is reenabled before exiting UPDATE. This is done in the following code.

0805	01B5	62	UPDATE	TCX	MODE_BUF
	01B6	3A			
0806	01B7	65		ANDCM	~INT1
	01B8	FE			
0807	01B9	11		TMA	
0808	01BA	1D		TAMODE	

To prevent double updates, if the stored value of the timer register is zero, then it needs to be changed to 7F. This is done in the following code. If this is not done, then the polling routine discovers an underflow and calls UPDATE a second time.

0815	01BB	62	TCX	TIMER	-Get stored value
	01BC	36			
0816	01BD	11	TMA		of Timer into A
0817					
0818	01BE	60	ANEC	0	-Is it zero?
	01BF	00			
0819	01C0	41	BR	UPDT00	no, do nothing
	01C1	C5			
0820	01C2	6E	TCA	#7F	yes, replace value
	01C3	7F			
0821	01C4	16	TAM		

Now the program tests the stop flag. If it was set on the last pass through UPDATE, then the end of the current utterance has been reached, and the program needs to disable synthesis and branch back to prepare for the next utterance in the phrase. This is done in the following code.

0828	01C5	62	UPDT00	TCX	FLAGS	
	01C6	38				
0829	01C7	66		TSTCM	STOPFLAG	-Was stop frame encountered
	01C8	01				
0830	01C9	42		BR	STOP	yes, stop speaking
	01CA	EF				

Now, before the next frame is loaded in, the flags from the new frame (the ones that tell the voicing of the frame and whether the frame is silent or not) need to be copied into the flags for the current frame. This is done in following code.

0835	01CB	66		TSTCM	Unv_Flg1	-Was previous frame unvoiced?
	01CC	10				
0836	01CD	41		BR	SUNVL	yes, current frame=unvoiced
	01CE	D3				
0837	01CF	65		ANDCM	~Unv_Flg2	no, current frame=voiced
	01D0	7F				
0838	01D1	41		BR	TSIL	and continue
	01D2	D5				
0839						
0840	01D3	64	SUNVL	ORCM	Unv_Flg2	-Set current frame unvoiced.
	01D4	80				
0845	01D5	66	TSIL	TSTCM	Sil_Flg1	-Was previous frame silent?
	01D6	80				
0846	01D7	41		BR	SSIL	yes, current frame silent
	01D8	DD				
0847	01D9	65		ANDCM	~Sil_Flg2	no, current frame not sil.
	01DA	BF				
0848	01DB	41		BR	ZROFLG	and continue
	01DC	DF				
0849						
0850	01DD	64	SSIL	ORCM	Sil_Flg2	-Set current frame silent
	01DE	40				

In the following code, the program resets the repeat flag, silence flag, unvoiced flag, and interpolation-inhibit flag to zero. They are set later if the next frame requires them to be set.

0856	01DF	62	ZROFLG	TCX	FLAGS
	01E0	38			
0857	01E1	65		ANDCM	#C5
	01E2	C5			

In the following code, the new speech parameters are saved as current speech parameters prior to loading the next frame. Pitch, K1, and K10 are shown.

0862	01E3	62		TCX	ENV2	-Transfer new	frame energy
	01E4	10					
0863	01E5	14		TMAIX		from new fi	rame location
0864	01E6	13		TAMIX		to current	frame location
0865			*PITCH				
0866	01E7	14		TMAIX		-Transfer new	frame pitch
0867	01E8	6A		TAMD	PHV1	to current	frame location
	01E9	14					
0868							
0869	01EA	14		TMAIX		-Transfer new	fractional pitch
0870	01EB	21		IXC		to current	frame location
0871	01EC	13		TAMIX			
0872			*K1				
0873	01ED	14		TMAIX		-Transfer new	frame K1 param.
0874	01EE	6A		TAMD	K1V1	to current	frame location
	01EF	18					
0875	01F0	14		TMAIX		-Transfer new	fractional K1
0876	01F1	21		IXC		to current	frame location
0877	01F2	13		TAMIX			
0911			*K10				
0912	020F	14		TMAIX		-Transfer new	frame K10 param.
0913	0210	13		TAMIX		to current	frame location

The program is now ready to read in the new frame, decode it, and store the decoded values. Energy and pitch require special handling because of the special significance attached to certain values.

If energy has a value of 0, then the new frame is a silence frame. If the energy has a coded value of 15 (in this example), then the new frame is a stop frame. In the case of a stop frame, the program interpolates down to zero and then stops speaking. Between these two values, energy is decoded using a table look-up. The decoded value is stored in RAM.

The following code fragment reads the coded energy, sets the silence flag if the energy is zero and sets the stop-frame flag and the silent-frame flag if the energy is 15. If the coded energy is either zero or 15, the processor branches to a section of code that clears the energy and the K parameters.

0932	0211	2F		CLA		
0933	0212	62		TCX	FLAGS	
	0213	38				
0934	0214	33		GET	EBITS	-Get coded energy
0935	0215	60		ANEC	ESILENCE	-Is it a silent frame?
	0216	00				
0936	0217	42		BR	UPDT0	No, continue
	0218	1D				
0937	0219	64		ORCM	Sil_Flq1+	Int_Inh Yes, set silence flag
	021A	28				
0938	021B	42		BR	ZeroKs	and zero K params
	021C	CD				
0939	0210	CD	*			
	021D	60	UPDT0	ANEC	FCT∩D	-Is it a stop frame?
0940	021E	0F	OPDIO	ANEC	ESTOP	-is it a scop frame:
0041				D.D.	IIDD#1	
0941	021F	42		BR	UPDT1	no, continue
	0220	25				
0942	0221	64		ORCM	STOPFLAG+S	Sil_Flg1+Int_Inh yes, set flags
	0222	29				
0943	0223	42		BR	ZeroKs	and zero Ks
	0224	CD				

In the following code fragment, the energy is decoded. The LUAA instruction is used to get the decoded energy.

0945 0225	73 UPDT1	ACAAC TBLEN	-Add table offset to energy
0226	27		
0946 0227	6B	LUAA	-Get decoded energy
0947 0228	6A	TAMD ENV2	-Store the Energy in RAM
0229	10		

If this is a silent frame (tested for earlier), no more parameters need to be read. In this code fragment, the program branches to the routine exit point.

0953 022	2A 62	Γ	ГСХ	FLAGS			
022	2B 38						
0954 022	2C 66	T	rstcm	Sil_Flg1	-Is this	a silent	frame?
022	2D 08						
0955 022	2E 43	E	3R	RTN	yes, e	xit	
022	2F 0C						

The next code fragment is reached if the new frame is not silent. It reads the repeat bit. This bit is set to indicate that all of the K parameters between the new frame and the previous are identical. If this is so, the K parameters are not provided. A flag is set indicating that this is a repeat frame. Later, this flag is tested, and if this flag is not set, new K parameters are read in.

0960 0961	0230 0231	30 67	UPDT2	GET TSTCA	RBITS #01	-Get the Repeat bit -Is this a repeat frame?
	0232	01				
0962	0233	42		BR	SFLG1	yes, set repeat flag
	0234	37				
0963	0235	42		BR	UPDT3	
	0236	39				
0964						
0965	0237	64	SFLG1	ORCM	R_FLAG	-Set repeat flag
	0238	02				

The next step is to read the coded pitch. This value is zero for an unvoiced frame and nonzero for a voiced frame. If it is unvoiced, then the unvoiced flag is set. This is done in the following code.

0969	0239	2F	UPDT3	CLA		
0970	023A	33		GET	4	-Get coded pitch
0971	023B	32		GET	3	-Get coded pitch
0972	023C	60		ANEC	PUnVoiced	-Is the frame unvoiced?
	023D	00				
0973	023E	C1		SBR	UPDT3A	no, continue
0974	023F	64		ORCM	Unv_Flg1	yes, set unvoiced flag
	0240	10				

In the next fragment of code, the pitch is decoded. The SALA instruction doubles the index to compensate for the fact that pitch is stored as two bytes. The LUAB instruction gets the most significant byte of the decoded pitch. The LUAA gets the least significant nibble of the decoded pitch.

0976 0241	2E UPDT3A	SALA	-Double coded pitch and
0977 0242	73	ACAAC TBLPH	add table offset to point
0243	37		
0978			
0979 0244	6D	LUAB	-Get decoded pitch
0980 0245	3A	IAC	
0981 0246	6B	LUAA	-Get decoded fractional pitch
0982			
0983 0247	62	TCX PHV2	-Store the pitch and
0248	12		
0984 0249	2A	TBM	fractional pitch in RAM
0985 024A	21	IXC	
0986 024B	16	TAM	

If the voicing has changed between voiced and unvoiced or vice versa, interpolation needs to be inhibited because the tonal qualities of an unvoiced frame differ markedly from those of a voiced frame. It is inappropriate to blend them with an interpolation. The following code tests for a change in voicing and sets a flag to inhibit interpolation if necessary. First, the new frame is tested.

0991	024C	62	TCX	FLAGS	
	024D	38			
0992	024E	66	TSTCM	Unv_Flg1	-Is the new frame unvoiced?
	024F	10			
0993	0250	D3	SBR	UPDT3B	yes, continue
0994	0251	42	BR	VOICE	no, go to voiced code
	0252	5D			

If the frame is unvoiced, the program reaches the following code. It tests the current frame to see if it is silent or voiced. If either condition is true, then a flag is set to inhibit interpolation. If the previous frame was silent, interpolation should be inhibited to avoid distorting a plosive that follows a silence. A plosive is an abrupt unvoiced sound that should not be interpolated. First, the program tests to see if the previous frame was silent.

1002 0	253 6	56	UPDT3B	TSTCM	Sil_Flg2	-Was th	e last	frame silent?
0	254 4	10						
1003 0	255 4	12		BR	UPDT5	yes,	inhibi	t interpolation
0	256 6	53						

Then the program tests to see if the previous frame was voiced.

1005	0257	66	TSTCM	Unv_Flg2	-Was the last frame unvoiced
	0258	80			
1006	0259	42	BR	UPDT4	yes, don't change anything
	025A	65			
1007	025B	42	BR	UPDT5	no, inhibit interpolation
	025C	63			

The following code is reached if the new frame is voiced. It simply tests to see if the previous frame was also voiced. If it was not, then interpolation is inhibited. Because it is acceptable to ramp up a voiced frame, the program does not need to test for a leading silent frame as with the unvoiced frame.

1014	025D	66	VOICE	TSTCM	Unv_Flg2	-Was the last frame voiced?
	025E	80				
1015	025F	42		BR	UPDT5	no, disable interpolation
	0260	63				
1016	0261	42		BR	UPDT4	yes, continue
	0262	65				

The following code inhibits interpolation.

1018 0263	64	UPDT5	ORCM	Int_Inh	-Inhibit	interpolation
0264	20					

Previously, the repeat bit was read to see if this is a repeat frame. If it is a repeat frame, then the new K parameters are the same as the current K parameters and no further action needs to be taken. If it is not a repeat frame, the program needs to continue reading the new K parameters. This section of code branches to the general routine exit if this is a repeat frame.

-Is repeat flag set?	R_FLAG	TSTCM	UPDT4	66	0265	1025
				02	0266	
yes, exit routine	RTN	BR		43	0267	1026
				0C	0268	

The first four K parameters (K1 through K4) are now loaded. Each of these decoded K parameters is a 12-bit value that is stored in two bytes. The most significant 8 bits are contained in the first byte, and the least significant 4 bits are contained in the second byte.

In the following code, the GET instruction reads the coded K factor into the A register. It is left shifted (multiplied by two) to convert it into an offset in the table that contains the two-byte uncoded K parameters. The offset is added to the starting address of the table with the ACAAC instruction. The LUAB instruction reads the most significant byte of the K factor, and the LUAA instruction reads the byte containing the least significant nibble. K1 is shown in the following code. K2 through K4 are similar to K1.

1046			*K1			
1047	0269	2F		CLA		
1048	026A	33		GET	4	-Get coded K1
1049	026B	31		GET	2	-Get coded K1
1050	026C	2E		SALA		-Convert it to a
1051	026D	74		ACAAC	TBLK1	pointer to table element
	026E	37				
1052	026F	6D		LUAB		-Fetch MSB of uncoded K1
1053	0270	3A		IAC		
1054	0271	6B		LUAA		-Fetch fractional K1
1055	0272	62		TCX	K1V2	
	0273	16				
1056	0274	2A		TBM		-Store uncoded K1
1057	0275	21		IXC		
1058	0276	16		TAM		-Store fractional K1

Now the program tests to see if the new frame is unvoiced. Unvoiced frames use only four K parameters, and the remaining K parameters are set to zero. At this point, the first four K parameters are already loaded. The following code fragment tests to see if the new frame is unvoiced, and, if it is, branches to code that zeroes the rest of the K parameters.

1098	029В	62	TCX	FLAGS					
	029C	38							
1099	029D	66	TSTCM	Unv_Flg1	-Is this	an ·	unvoice	ed	frame?
	029E	10							
1100	029F	42	BR	UNVC	Yes,	zero	rest o	of	factors
	02A0	ΕO							

The remaining K parameters differ from the first four K parameters in that they have only an 8-bit precision for their decoded values instead of the 12-bit precision used for the first four K parameters. This precision reduction simplifies the code. K5 is shown the following code fragment. K6 through K10 are similar to K5.

1109		*K5			
1110	02A1 2F	7	CLA		
1111	02A2 33	3	GET	K5BITS	-Get Index into K5 table
1112	02A3 75	5	ACAAC	TBLK5	and add offset of table
	02A4 77	7			
1113					
1114	02A5 6E	3	LUAA		-Get uncoded K5
1115	02A6 6A	A	TAMD	K5V2	and store it in RAM
	02A7 26	5			

After all the K parameters for a voiced frame have been loaded, the UPDATE routine can be exited by branching to the general routine exit. This is done in the following code.

This section of code clears K parameters that are not used. Silent and stop frames result in a branch to ZeroKs. Unvoiced frames result in a branch to UNVC.

1172	02CD	2F	ZeroKs	CLA			
1173	02CE	6A		TAMD	ENV2	-Kill	Energy
	02CF	10					
1174	02D0	6A		TAMD	K1V2	-Kill	K1
	02D1	16					
1175	02D2	бA		TAMD	K1V2+1		
	02D3	17					
1176	02D4	бA		TAMD	K2V2	-Kill	K2
	02D5	1A					
1177	02D6	бA		TAMD	K2V2+1		
	02D7	1B					
1178	02D8	6A		TAMD	K3V2	-Kill	K3
	02D9	1E					
1179	02DA	6A		TAMD	K3V2+1		
	02DB	1F					
1180	02DC	6A		TAMD	K4V2	-Kill	K4
	02DD	22					
1181	02DE	6A		TAMD	K4V2+1		
	02DF	23					
	02E0		UNVC	CLA			
1183	02E1	6A		TAMD	K5V2	-Kill	K5
	02E2	26					
1184	02E3	6A		TAMD	K6V2	-Kill	K6
	02E4	28					
1185	02E5	бA		TAMD	K7V2	-Kill	K7
	02E6	2A					_
1186	02E7	6A		TAMD	K8V2	-Kill	K8
	02E8	2C					_
1187	02E9	6A		TAMD	K9V2	-Kill	К9
	02EA	2E					
1188	02EB	6A		TAMD	K10V2	-Kill	K10
	02EC	30					
1189			*	TAMD	K11V2	-Kill	
1190	00	4.0	*	TAMD	K12V2	-Kill	K12
1191		43		BR	RTN		
	02EE	0C					

If the stop flag has been set, the following code is reached. It turns off the synthesizer, writes a zero to the DAC in PCM mode, disables the interrupt, sets the voicing to voiced as a default for the next utterance, and then branches to SPEAK1 to begin the next utterance.

1201	02EF	62	STOP	TCX	MODE_BUF	
	02F0	3A				
1202	02F1	65		ANDCM	~LPC	-Turn off synthesis
	02F2	FD				
1203	02F3	65		ANDCM	~INT1	-Disable interrupt
02F4	FE					
1204	02F5	65		ANDCM	~UNV	-Back to voiced for next word
	02F6	7F				
1205	02F7	64		ORCM	PCM	-Enable PCM mode
	02F8	04				
1206	02F9	11		TMA		
1207	02FA	1D		TAMODE		-Set mode per above setting
1208	02FB	2F		CLA		
1209	02FC	1C		TASYN		-Write a zero to the DAC
1210	02FD	6E		TCA	#FA	
	02FE	FA				
1211	02FF	3A	BACK	IAC		-Wait for minimum of 30
1212	0300	43		BR	out	instruction cycles
	0301	04				
1213	0302	42		BR	back	
	0303	FF				
1214	0304	62	OUT	TCX	MODE_BUF	-Disable PCM
	0305	3A				
1215	0306	65		ANDCM	~PCM	
	0307	FB				
1216	0308	11		TMA		
1217	0309	1D		TAMODE		-Set mode per above setting
1218	030A	40		BR	SPEAK1	-Go back for next word
	030B	47				

The following code sets a flag to indicate that a new frame has been loaded and then tests to see if LPC synthesis is enabled. If it is enabled, the processor reenables the level-1 interrupt and branches back to SPEAK_LP where it waits until the next interrupt and periodically polls the timer register until the next frame update is required. If LPC synthesis is not enabled, then the UPDATE routine was reached by a CALL instruction to preload the first two frames, and a RETN is executed to exit the UPDATE routine.

1220	030C	62	RTN	TCX	FLAGS	-Set a flag indicating that
	030D	38				
1221	030E	64		ORCM	Update_Fl	g the parameters are updated
	030F	04				
1222						
1223	0310	62		TCX	MODE_BUF	-Get mode
	0311	3A				
1224	0312	66		TSTCM	LPC	-Are we speaking yet?
	0313	02				
1225	0314	43		BR	RTN1	yes, reenable interrupt
	0315	17				
1226	0316	3D		RETN		no, return for more data
1227						
1228	0317	62	RTN1	TCX	FLAG1	-Inhibit any pending
	0318	39				
1229	0319	64		ORCM	Int_Off	interpolation interrupt
	031A	01				
1230						
1231	031B	62		TCX	MODE_BUF	-Reenable the interrupt
	031C	3A				
1232	031D	64		ORCM	INT1	
	031E	01				
1233	031F	11		TMA		
1234	0320	1D		TAMODE		
1235						
1236	0321	62		TCX	FLAG1	-Reenable execution
	0322	39				
1237	0323	65		ANDCM	~Int_Off	of the interpolation routine
	0324	FE				
1238	0325	40		BR	SPEAK_LP	-Go back to loop
	0326	9C				

The speech data decoding tables can be seen in the complete sample program shown in Appendix B, TSP50C0x/1x Sample Synthesis Program.

6.4 Arithmetic Modes

The interpretation of the value stored in a register or memory location is arbitrary and depends on the assumptions that programmers put into their software. A given value can represent a series of flags, a character value, a fractional number, or a range of integers. Normally, multiplication instructions assume a fractional value interpretation, and addition/subtraction instructions assume a range-of-integers interpretation.

Even if it is known that the value represents a range of integers, a problem remains—what range of integers is represented? If it is assumed that the contents of an 8-bit register represent a value ranging from -128_{10} to 127_{10} with 000h representing the most negative value and 0FFh representing the most positive value, the following problem arises: the addition of -127_{10} and 5_{10} should yield -122_{10} instead of:

$$0000\ 0001_2 + 1000\ 0101_2 = 1000\ 0110_2$$
, or 6_{10} .

To solve this problem, negative numbers are usually represented with twos complement notation. Using this notation, a negative value is represented by one plus the inversion of its positive equivalent. Thus, to represent a negative one, its positive equivalent 0000 0001 is inverted to 1111 1110 and one is added to it:

$$1111\ 1110_2 + 0000\ 0001_2 = 1111\ 1111_2$$

Following is the calculation of the sum of –127 and 5 using this notation:

$$1000\ 0001_2 + 0000\ 0101_2 = 1000\ 0110_2$$
, or -122_{10}

This is the correct result and solves the problem with negative values, but it restricts the range of positive values. The most significant bit now operates as a sign bit, leaving the remaining 7 bits to represent the absolute value. Only 127₁₀ discrete positive values can be represented with those 7 bits, which is too restrictive in many applications.

To solve this problem, the TSP50C0x/1x allows two different arithmetic modes. Upon initialization, the processor is in integer mode. In the integer mode, numbers are presumed by the processor to be integers ranging positive from zero. In the extended-sign mode, numbers are presumed by the processor to be values ranging positive or negative from zero, with negative numbers represented by twos complement notation.

The EXTSG and INTGR instructions are used to control the arithmetic mode of the TSP50C0x/1x. The EXTSG instruction puts the processor in extended-sign mode, and the INTGR instruction puts the processor in integer

mode. Please note that the integer mode and the extended-sign mode are mutually exclusive; the processor is either in extended-sign mode or in integer mode but cannot be in both at the same time.

Transferring a value between the X register and the A register illustrates the difference in operation between the two modes. The X register has a size of 8 bits, and the A register has a size of 14 bits. A value of 0FFh in the X register represents 255 in integer mode or -1 in extended-sign mode. To maintain these values, the value left in the A register needs to be different between the two modes. Table 6–6 illustrates the difference.

Table 6–6. TXA Operation

Mode	X Register		A Register		Value
Integer Mode	0FFh	\rightarrow	00FFh	=	255 ₁₀
Extended-Sign Mode	0FFh	\rightarrow	3FFFh	=	-1 ₁₀
Integer Mode	005h	\rightarrow	0005h	=	5 ₁₀
Extended-Sign Mode	005h	\rightarrow	0005h	=	5 ₁₀

In extended-sign mode, the most significant bit acts as a sign bit. Because the value needs to be maintained over the transfer, the high-order bits of the A register are set to the state of the most significant bit of the X register. In integer mode, the high-order bits of the A register are simply set to zero.

Note that there is no difference in the operation between the two modes if the value represented is positive because in extended-sign mode, the most significant bit of a positive value is zero. When the value is transferred, the high-order bits are set to zero the same as in the integer mode.

The operation of the following instructions are modified by the arithmetic mode:

ACAAC	Add 12-bit constant to A register
AMAAC	Add memory data to A register
LUAA	Look up memory addressed by A register, result in A register
LUAB	Look up memory addressed by A register, result in B register
SMAAN	Subtract memory data from A register
TCA	Transfer 8-bit constant to A register
TMA	Transfer memory data to A register (indirect)
TMAD	Transfer memory data to A register (direct)
TMAIX	Transfer memory data to A register, increment X register
TXA	Transfer X register contents to A register
XBX	Exchange B register and X register contents

In general, these instructions transfer a value to the 14-bit A or B registers from a smaller register or memory location. Figure 6–3 illustrates the operation of the ACAAC instruction in extended-sign mode. The 12-bit constant must be sign-extended to 14 bits (to match the size of the A register) prior to the addition. This modifies the value of the constant added to the A register from FFFh to 3FFFh.

Figure 6-3. ACAAC in Extended-Sign Mode

CARRY 11 1111 1111 11₂ A REGISTER 3202h 11 001000000010₂ CONSTANT 0FFFh 11 1111 1111 1111₂ RESULT 3201h 11 001000000001₂

Figure 6–4 illustrates the same operation in integer mode. In integer mode, the sign extension is not performed; consequently, the value added to the A register remains FFFh.

Figure 6-4. ACAAC in Integer Mode

CARRY 11 1111 1111 11₂ A REGISTER 3202h 11 001000000010₂ CONSTANT 0FFFh 00 1111 1111 1111₂ RESULT 0201h 00 001000000001₂

6.5 Operation of the Multiply Instruction

On digital computers, a multiplication frequently results in a value that is much larger than either multiplicand. An example is the multiplication of two 2-bit numbers:

$$11_2 \times 11_2 = 1001_2$$

The result of multiplying two 2-bit numbers is a four-bit number. Similarly, multiplying the 14-bit A register with the contents of an 8-bit memory location results in a 22-bit value. This creates a problem because a value this large cannot be stored. One solution is to limit the size of the multiplicands, but this severely restricts the utility of the multiply instruction. A better solution is to interpret the multiplicands as fractions and to truncate the least significant part of the result. This solution minimizes overflow problems, and truncation affects the least significant portion of the result instead of the most significant part. In this scheme, an n-bit binary number is interpreted as follows:

value =
$$(-A.1 \times 2^0)$$
 + $(A.2 \times 2^{-1})$ + . . . + $(A.n \times 2^{1-n})$

where A.1 . . . A.n are the bit values of the number. For example, the four-bit number 1010 is interpreted to have the following value:

value =
$$(-1 \times 2^0)$$
 + (0×2^{-1}) + (1×2^{-2}) + (0×2^{-3})

value =
$$-1 + (0 \times 0.5) + (1 \times 0.25) + (0 \times 0.125)$$

value = -0.75

Several points need to emphasized:

= 00 0000 0000 0000

The possible values using this scheme range from -1 to slightly less
than 1.
Since the TSP50C0x/1x instructions are all 8-bit by 14-bit multiply instruc-
tions, the lower 8 bits of the result are truncated.
Since the lower 8 bits of the result are truncated, many multiplications give
a zero result; for example:
(00 0000 0000 1111) × (0000 0011) = 00 0000 0000 0000 0010 1101

6.6 Standby Mode

The TSP50C0x/1x can be put in a low-power-dissipation standby mode by either executing a SETOFF instruction or by taking $\overline{\text{INIT}}$ low. If the device is placed in standby with the SETOFF instruction, it may be brought to an active state by pulsing $\overline{\text{INIT}}$ low and high. If the device is placed in a standby state by taking $\overline{\text{INIT}}$ low, it may be brought to an active state by taking $\overline{\text{INIT}}$ high.

When the device is placed in the standby state, output data is cleared, the I/O pins are placed into a high-impedance input mode, the program counter is cleared to zero, the registers are left in an undefined state, and the values stored in RAM are retained. The clock stops running and no instructions are executed until $\overline{\text{INIT}}$ goes from low to high.

6.7 Slave Mode

Setting bit 6 of the mode register high places the TSP50C0x/1x in the slave mode. This specialized mode is intended for applications in which the TSP50C0x/1x device needs to be controlled by a master microprocessor. When in slave mode, the functionality of the following ports is modified:

PB0 becomes a chip enable strobe. It is normally held high. When it is taken low, data is read from or written to the PA0 – PA7 pins depending on the value of PB1.

PB1 becomes a read/write select input. If PB1 is low, data is written to the TSP50C0x/1x when PB0 goes low. If PB1 is high, data may be read from the TSP50C0x/1x when PB0 goes low.

Port A becomes a general bidirectional port controlled by PB0 and PB1. Pin PA7 is used as a busy signal. If bit 7 in the output latch is set high by the software, PA7 of the output latch is reset to a low state when PB0 goes low to write data to the TSP50C0x/1x.

Because the PA7 output latch is used as a busy flag, leaving only PA0– PA6 for data, normally only seven bits of data may be exchanged between the master and the slave in any one read operation from the TSP50C0x/1x. In write operations to the TSP50C0x/1x, all 8 pins of port A can be used to transfer data.

During read operations from the slave TSP50C0x/1x, the master is responsible for maintaining its outputs connected to the TSP50C0x/1x port A in a high-impedance state. Otherwise, bus contention results.

The TSP50C0x/1x I/O ports must be configured in input mode for slave mode to work properly. Pin PA7 may be put in output mode, if desired. It then functions as a handshaking line rather than a polled handshake bit.

Note:

Simultaneous configuration of SLAVE and EXTROM is not allowed. The ten I/O lines cannot be arranged to give both capabilities.

Note:

Becauses of the use of Port B1 for this function, it will not work on TSP50C10, TSP50C11, and TSP50C12 devices using the 2 pin digital DAC option.

6.7.1 Slave-Mode Write Operation

A typical sequence for an 8-bit write operation to the TSP50C0x/1x in the slave mode is shown in Figure 6–5.

At the beginning of the operation, the TSP50C0x/1x has a low in the PA7 output latch. It is there either because it was written there with software or because it was set low by the hardware on completion of a previous write operation. The data transfer occurs as follows:

- 1) The master microprocessor sets R/\overline{W} high to indicate a read operation.
- 2) The master polls the output state of PA7 by pulsing STR (on PB0) low and reading the state of PA7 while STR is low.
- Eventually, the TSP50C0x/1x completes processing any previous data or instructions from the master. When it does, it writes a one to the PA7 output latch.
- 4) When the master senses that PA7 has gone high, it sets the R/W signal low to indicate a write operation.
- 5) The master presents valid data to port PA0- PA6.
- 6) The master pulses STR (on PB0) low, which causes the data on port PA0 PA6 pins to be latched to the port A input latch. The TSP50C0x/1x hardware causes the PA7 output latch to be cleared to zero, indicating that the TSP50C0x/1x has accepted the data.
- 7) The TSP50C0x/1x polls the PA7 output latch. When it sees it go low, it knows that data is being written to the port A input latch.
- 8) The TSP50C0x/1x polls the PB0 (STR) input line. When PB0 goes high, the write is complete, and the data in PA0 is valid.
- 9) When it is ready to accept another command, the TSP50C0x/1x writes a one to the PA7 output latch, thus starting another cycle.

Figure 6–5. Slave-Mode Write Operation

6.7.2 Slave-Mode Read Operation

A typical sequence for an 8-bit read operation from the TSP50C0x/1x in the slave mode is shown in Figure 6–6.

Figure 6-6. Slave-Mode Read-Then-Write Operation

At the beginning of the operation, the TSP50C0x/1x, which is in slave mode, has a low in the PA7 output latch. The slave has received a command or a request for information from the master. When the TSP50C0x/1x is ready to respond, the data transfer occurs as follows:

- The TSP50C0x/1x writes the data to PA0 PA6 and a logic one to port PA7. The one on port PA7 is a signal that valid data is available in the pins connected to port A.
- 2) The master periodically polls port A. When it finds PA7 has gone high, it knows that PA0 PA6 contains valid data.
- 3) PA7 remains high, indicating that the slave is prepared for another command. The master can write to the slave at any time. When the slave polls the PA7 output latch and finds it low, it knows that a new command from the master is in the port A latch.

6.8 TSP60C18/81 Interface

The TSP60C18 is 256K-bit ROM organized internally as 16K-bits × 16 bits and the TSP60C81 is a 1024K-bit ROM organized as 64K-bits by 16 bits. It is designed specifically to provide additional low-cost ROM storage for the Texas Instruments family of speech chips.

Note:

The TSP60C18 and the TSP60C81 devices have been obsoleted. The material in this section is included for reference only.

6.8.1 External ROM Mode

Setting bit four of the mode register high places the TSP50C0x/1x device in external ROM mode. When placed in this mode, the TSP50C0x/1x port operation is modified to provide an efficient interface to the TSP60C18/81. The ports affected are summarized in the following list:

PB0 is dedicated as a strobe output. It should be configured as an output
by the software. Its output value is the logical AND of the PB0 output latch
and a hardware-generated strobe active signal. Software pulses this sig-
nal low to write addresses to the TSP60C18/81. Hardware pulses this sig-
nal low during GET instructions.

PA7 is dedicated as a system clock signal going to the TSP60C18/81. It
should be configured by software as an output with a logical one written
to its output latch. Its value is the logical AND of the PA7 output latch and
a clock that runs at one-fourth the rate of the master clock

PA0	PA1	PA2	and PA3	are dedicated	as data	transfer nins
 rau.	$\Gamma \cap \Gamma$	$\Gamma \wedge \Delta$.	allu FAS	are uculcated	as uata	נומווסוכו טוווס.

Control of other ports is necessary to complete communications with the TSP60C18/81, but the selection of which of the non-dedicated ports to use for which signal is optional.

Note:

Simultaneous configuration of SLAVE and EXTROM is not allowed.

6.8.2 TSP60C18/81 I/O Signals

The TSP60C18/81 has ten functional pins in addition to power and ground. The TSP60C81 adds an additional output for cascading ROMs. Table 6–7 summarizes the function of each signal, and Table 6–8 details the pinout of the TSP60C18/81.

Table 6–7. TSP60C18/81 Pin Functional Descriptions

Signal	Direction	Function/Action
HCLB	Input	If this pin is low, the device is initialized and forced into an input mode (output buffers are put in the high-impedance state). This signal is not affected by the state of the CEB input.
CEB	Input	If this pin is high, the $C(0-3)$ pins are unconditionally in the high-impedance state. This pin is provided to permit ROM expansion to greater than 1M bit.
STR	Input	When this pin is taken low, depending upon the state of the R/\overline{W} signal, data is read from or an address is written to the TSP60C18/81.
R/W	Input	When this pin is high, data is output from the device when STR goes low. When this pin is low, one nibble of the 16-bit address is input to the device when STR goes low.
C(0-3)	Input or Output	When \overline{STR} goes low and R/W is low, the data present on these pins is latched into the device as one nibble of the four-nibble address. When \overline{STR} goes low and R/W is high, one nibble of the currently addressed data is presented on these pins for output. C(0) is the least significant bit and C(3) is the most significant bit of the address/data nibble.
A0	Input	When this pin is low, the address that is loaded is understood to point directly to the data that is desired for output. When this pin is high, the address that is loaded is understood to point to a table entry that contains the address of the data that is desired for output. See Section 6.8.5, <i>TSP60C18/81 Addressing Modes</i> , for more information.
SRCK	Input	Free-running system clock for internal sequential logic (runs ~4x the TSP50C1x nominal instruction rate)
CE [†]	Output	Inverted state of CEB input. This allows the use of two TSP60C81s in parallel.

[†] Applicable to the TSP60C81 only.

Table 6-8. TSP60C18/81 Pinout

	Pin					
Name	TSP60C18	TSP60C81	Function			
A0	2	27	Address mode control pin			
C(0)	14	25	Address/data bit 0 (LSB)			
C(1)	15	18	Address/data bit 1			
C(2)	16	17	Address/data bit 2			
C(3)	1	26	Address/data bit 3 (MSB)			
CEB	7	11	Chip enable input			
HCLB	6	3	Hardware clear input			
R/\overline{W}	8	12	I/O direction control			
SRCK	10	14	System clock			
STR	9	13	Chip enable strobe signal			
V_{DD}	3	28	Positive supply, 2.5 V to 6.5 V			
V_{SS}	11	15	Power return			
CE	-	16	Cascaded chip enable			
NC	4, 5, 12, 13	1, 2, 4-10, 19-24	No internal connection			

6.8.3 TSP60C18 Addressing

The TSP60C18 uses a 16-bit address on 16-bit boundaries to provide addressing capabilities to 1M-bit. The TSP60C18 has a storage capability of 256K-bits. To achieve the full internal 1M-bit capability, the address space of each TSP60C18 is internally masked so that up to four TSP60C18 devices can be connected in parallel to produce a 1M-bit ROM system. While operating in parallel, all like-numbered pins are connected together, the most significant address bits are used to control which of the devices are addressed, and the remaining 14 bits are used to control the relative address within the address space of each device.

6.8.4 TSP60C81 Addressing

The TSP60C81, like the TSP60C18, uses a 16-bit address on 16-bit boundaries with a total addressing range of 1M-bit per device. Two devices can be cascaded by daisy-chaining the CE—output of the first device to the CEB—input of the second device. This allows a total of 2M-bits of address space.

6.8.5 TSP60C18/81 Addressing Modes

The TSP60C18/81 provides the following three addressing modes: 16-bit direct addressing, 16-bit indirect addressing, and 8-bit indirect addressing. The signal A0 determines which addressing mode is used.

When STR goes low to latch the second and fourth nibbles of the address, A0 is sampled. As shown in Table 6–9, the state of A0 during the two samples determines the addressing mode.

Table 6-9. TSP60C18/81 Addressing Modes

State Of A0 During Address Latch		Address Mode [†]				
Second Fourth Nibble Nibble		TSP60C18	TSP60C81			
0	0	16-bit direct address	16-bit direct address			
0	1	16-bit indirect address	16-bit indirect address			
1	0	8-bit indirect address	No mode change			
1	1	8-bit indirect address	8-bit indirect address			

[†] Applicable in single-chip applications only.

For the TSP60C18, if A0 is set high when the second nibble of the address is latched in, no other nibbles are latched in. The two nibbles that were latched in are presumed to be the least significant byte of a two-byte address that is pointing to a 16-bit boundary of ROM with the most significant byte of the address equaling 0. If any additional address nibbles are latched in, they are treated as the beginning of a new and different address.

For the TSP60C81, if A0 is set high when the second and fourth nibbles of the address are latched in, then the address is an 8-bit indirect address. If A0 is high during the second nibble latch and is low during the fourth nibble latch, then there is no mode change. The TSP60C81 remains in the same mode that it was in before the latch.

For either the TSP60C18 or the TSP60C81, if A0 is low as the second nibble of the address is latched in, the address is treated as a 16-bit address. The state of A0 is sampled as the fourth nibble of the address is being latched in to determine if the address is direct or indirect.

TSP60C18/81 Direct-Addressing Mode

If the TSP60C18/81 is loaded in the direct-addressing mode, the 16-bit address loaded is presumed to point directly to the desired data.

TSP60C18/81 Indirect-Addressing Mode

If the TSP60C18/81 is loaded in the indirect-addressing mode, the 8-bit or 16-bit address does not point directly to the desired data. Instead, it points to a location in the ROM that contains the address that points to the location of the desired data. The TSP60C18/81 then automatically sets the internal data pointer to the 16-bit address found in this location.

As an example, assume that the ROM contains the data shown in Table 6–10.

Table 6–10. Indirect Address Example

Address	Data
0000	05A2
0001	0200
0002	0302
• • •	
• • •	
0200	1234
0201	5678

If the address 0001 is latched into the TSP60C18/81 with the signal A0 placing the device in the indirect-addressing mode, the data that is fetched by subsequent GET operations is pointed to by the address found in location 0001, that is, the data contained in location 0200. The first word returned by subsequent GET statements is therefore 1234. Note that all addresses in this example are 16-bit addresses.

Extreme care should be taken when using indirect-addressing mode in multichip TSP60C18/81 systems. Device damage could result if it is not properly executed.†

[†] Because the indirect-addressing mode is an internal function within each device and not between devices, there are no special provisions made to use indirect addressing in multichip TSP60C18/81 systems. Unless the table data is repeated in each TSP60C18/81 device at the same lower 14-bit address location, the function works improperly and device damage may result. If care is not taken to place identical tables within each chip, multiple devices may be enabled at the same time, causing bus contention on C(3-0).

6.8.6 TSP60C18/81 Control

In the remaining discussion of the TSP60C18/81, the device is assumed to be connected to the TSP50C0x/1x as shown in Figure 6–7. PB0 must be used for \overline{STR} on the TSP60C18/81. PA7 must be used for SRCK and PA0 – PA3 must be used for the data bus. The interconnection of the remaining pins is optional depending on the application. In the hookup shown in Figure 6–7, HCLB is not accessible to the TSP50C0x/1x.

Figure 6-7. TSP60C18/81-to-TSP50C0x/1x Hookup

6.8.7 Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized with either hardware or software. Either way, after initialization the desired starting address of the data must still be loaded as described in subsections 6.8.8, *Direct-Address Initialization of the TSP60C18/81*, 6.8.9, *8-Bit Indirect-Address Initialization of the TSP60C18/81*, and 6.8.10, 16-Bit Indirect-Address Initialization of the TSP60C18/81.

Hardware Initialization

The TSP60C18/81 can be initialized with hardware by taking HCLB low and then high, which effectively does a power-up initialization of the device. This initializes the internal pointer counter, puts the device in load mode, and resets the internal chip enable. The desired starting address of data must still be loaded as described in the following section.

Software Initialization

The second way that the TSP60C18/81 can be initialized is through software, which is accomplished by the following sequence:

- 1) Configure port B, PA0, PA1, PA2, PA3, and PA7 as outputs
- 2) Take PB0, PB1, and PA7 high
- 3) Place TSP50C0x/1x in external ROM mode
- 4) Execute LUAPS to initialize TSP50C0x/1x
- 5) Do a dummy load address operation
- 6) Do a dummy read
- 7) Load a valid address
- 8) Burn 8 or 16 instruction cycles, depending on address mode
- 9) Prime the device with two GET2 commands.

Subsections 6.8.8, *Direct-Address Initialization of the TSP60C18/81*, 6.8.9, 8-Bit Indirect-Address Initialization of the TSP60C18/81, and 6.8.10, 16-Bit Indirect-Address Initialization of the TSP60C18/81 discuss the different processes for initializing the TSP60C18/81.

6.8.8 Direct-Address Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized in the 16-bit direct mode in the following manner:

- 1) Hold A0 of the TSP60C18/81 low
- 2) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
- 3) Take PB0, PB1, and PA7 high
- 4) Place the TSP50C0x/1x in external ROM mode
- 5) Execute LUAPS to initialize TSP50C0x/1x
- 6) Do a dummy read
 - a) Take R/W low
 - b) Pulse STR low
 - c) Take R/W high
 - d) Pulse STR low
- 7) Load the valid address
 - a) Present the least significant nibble of the address on C0-C3
 - b) Pulse STR low
 - c) Present the second nibble of the address on C0-C3
 - d) Pulse STR low
 - e) Present the third nibble of the address on C0-C3
 - f) Pulse STR low
 - g) Present the most significant nibble of the address on C0-C3
 - h) Pulse STR low
- 8) Put PA0 PA3 in high-impedance (3-state) mode
- 9) Set R/W high
- 10) Burn eight instruction cycles
- 11) Execute two GET2 instructions

The TSP60C18/81 is now prepared to output data to the TSP50C0x/1x in response to GET instructions. See Appendix C, *External ROM Initialization*, for a sample listing of a routine that performs this function.

6.8.9 8-Bit Indirect-Address Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized in the 8-bit indirect mode in the following manner:

- 1) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
- 2) Take PB0, PB1, and PA7 high
- 3) Place the TSP50C0x/1x in external ROM mode
- 4) Execute LUAPS to initialize TSP50C0x/1x
- 5) Do a dummy read
 - a) Take R/W low
 - b) Pulse STR low
 - c) Take R/W high
 - d) Pulse STR low
- 6) Take A0 of the TSP60C18/81 high
- 7) Load the valid address
 - a) Present the least significant nibble of the address on C0-C3
 - b) Pulse STR low
 - c) Present the second nibble of the address on C0-C3
 - d) Pulse STR low
- 8) Burn 16 instruction cycles
- 9) Execute two GET2 instructions

The TSP60C18/81 is now prepared to output data to the TSP50C0x/1x in response to GET instructions. The data is pointed to by the table entry located at the address that was loaded.

6.8.10 16-Bit Indirect-Address Initialization of the TSP60C18/81

The TSP60C18/81 can be initialized in the 16-bit indirect mode in the following manner:

- 1) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
- 2) Take PB0, PB1, and PA7 high
- 3) Place the TSP50C0x/1x in external ROM mode
- 4) Execute LUAPS to initialize TSP50C0x/1x
- 5) Do a dummy read
 - a) Take R/W low
 - b) Pulse STR low
 - c) Take R/W high
 - d) Pulse STR low
- 6) Take A0 of the TSP60C18/81 low
- 7) Load the least significant byte of address
 - a) Present the least significant nibble of the byte on C0-C3
 - b) Pulse STR low
 - c) Present the most significant nibble of the byte on C0-C3
 - d) Pulse STR low
 - e) Take A0 of the TSP60C18/81 high
 - f) Load the most significant byte of address
 - g) Present the least significant nibble of the byte on C0-C3
 - h) Pulse STR low
 - i) Present the most significant nibble of the byte on C0-C3
 - i) Pulse STR low
- 8) Burn 16 instruction cycles
- 9) Execute two GET2 instructions

The TSP60C18/81 is now prepared to output data to the TSP50C0x/1x in response to GET instructions. The data is pointed to by the table entry located at the address that was loaded.

6.8.11 Placing the TSP60C18/81 in a Low-Power Standby Condition

The TSP60C18/81 can be placed in a low-power standby condition by removing the clock while the nodes of the device are in a precharged condition. This can be done in one of two ways.

- 1) Placing the TSP60C18/81 in a low-power mode by loading it with a partial address and maintaining R/W and STR high, as shown in the following list:
 - a) Configure port B, PA0, PA1, PA2, PA3, and PA7 as outputs
 - b) Load PB0, PB1, and PA7 output ports with a logical 1
 - c) Place the TSP50C0x/1x in external ROM mode
 - d) Load the partial address (an address of one to three nibbles)
 - Take R/W low
 - Pulse STR low
 - e) Put the TSP50C0x/1x in internal ROM mode
 - f) Maintain PB0 and PB1 configured as outputs in the high state.
- 2) Placing the TSP60C18/81 in a low-power mode by loading it with a complete address and maintaining R/W high and STR low, as shown in the following list:
 - a) Configure port B, PA0, PA1, PA2, PA3, PA4, and PA7 as outputs
 - b) Load PB0, PB1, and PA7 output ports with a logical 1
 - c) Load PA0, PA1, PA2, and PA3 output ports with a logical 0
 - d) Place the TSP50C0x/1x in external ROM mode
 - e) Load the complete address (an address of four nibbles or 16 bits)
 - Take R/W low
 - Pulse STR low 4 times
 - Wait a minimum of 16 instruction cycles
 - Take R/W high
 - Take STR low
 - f) Put the TSP50C0x/1x in internal ROM mode
 - g) Maintain PB0 low and PB1 high
 - To bring the TSP60C18/81 to an active condition, do an initialization as previously discussed

Notes:

- 1) The SETOFF instruction places all outputs in a high-impedance state. If a SETOFF instruction is executed to place the TSP50C0x/1x in a low-power state, then pullup or pull-down resistors should be provided to maintain the TSP60C18/81 control lines in the correct state after the SETOFF is executed.
- 2) If the PA0 PA4 and PA7 lines are used for purposes other than interfacing to the TSP60C18/81, there can continue to be current drain after the TSP60C18/81 is put into a low-power mode.

6.9 Use of the GET Instruction

The GET instruction is used to retrieve a bit stream from RAM, internal ROM, or external ROM. It allows the program to unpack speech data in a time-efficient manner. As shown in Figure 6–8, it is implemented through the use of a parallel-to-serial shift register.

The parallel-to-serial register (P/S register) is loaded in a parallel manner from the parallel-to-serial buffer (P/S buffer), which is in turn parallel loaded from the source of the data (which could be internal ROM, external ROM, or internal RAM). When the GET instruction is executed, the number of bits specified in the operand of the GET instruction are shifted out of the LSB of the P/S register into the LSB of the A register.

Figure 6-8. Register Connections for GET Instruction

If the number of valid bits in the P/S register is less than the specified number of bits, the contents of the P/S buffer are loaded on the fly to the P/S register and the contents of the P/S buffer are refreshed from the data source the next time that a GET instruction is executed and the status bit is set. If the buffer did not need to be reloaded, the status bit is cleared.

Note that because the data is shifted out of the LSB of the P/S register and into the LSB of the A register, there is a byte reflection of the data in this process as illustrated in Figure 6–9. This figure shows the state of the P/S register and the A register both before and after a GET 5 instruction. Prior to the GET 5, the P/S register contains 0B7h, and the A register contains all zeros. After the instruction, the least significant five bits of the P/S register are shifted into the A register. Because of the bit flip, the A register contains 01Dh after the shift operation. The P/S register has only three valid bits left after the operation. If more than three bits are requested in the next GET operation, the P/S register is reloaded from the P/S buffer.

The source for the data is controlled by the EXTROM and RAMROM bits in the mode register as shown in Table 6–11.

Table 6-11. Mode Register Control of GET Data Source

Mode Reg	ister Bits	
RAMROM	EXTROM	Data Source
0	0	Internal ROM
0	1	External ROM
1	0	Internal RAM
1	1	Internal RAM

Figure 6-9. Parallel-to-Serial Operation for GET 5 Instruction

Prior to GET 5 Instruction

Parallel-to-Serial Register 1 0 1 1 0 1 1 1 1

A Register 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

After GET 5 Instruction

Note:

Timing problems may cause data to be fetched from the data source twice in a row the first two times the GET instruction is executed. Unless special precautions are taken, do not initialize the GET intruction while the LPC bit of the mode register is set.

Specifically, if the LPC bit is set and the first GET instruction is a GET 4 from external ROM or a GET 8 from internal ROM or RAM, the P/S is loaded with the same data twice in a row. To avoid this problem, either do a double GET in this situation, or, more simply, never be in LPC mode during the interval between the LUAPS instruction and the first GET instruction.

6.9.1 GET From Internal ROM

If both the RAMROM and EXTROM bits of the mode register are zero, the data source for GET instructions is the internal ROM. As detailed in Section 6.9, *Use of the GET Instruction*, the data is read into the A register in a byte-flipped form referenced to the value stored in ROM, meaning that the LSB of the ROM data byte is shifted into the A register first. The recommended sequence for preparing to GET from internal ROM is as follows:

- **Step 1:** Load the starting address of the first desired GET source into the A register.
- **Step 2:** Execute a LUAPS instruction, which performs all required initialization. The processor is now ready to execute a GET instruction starting at the address loaded in Step 1.
- **Step 3:** If a nonsequential address is desired for a GET, repeat Step 1 and Step 2 for the new address.

6.9.2 GET From External ROM

If the RAMROM bit is cleared and the EXTROM bit is set in the mode register, the data source for GET instructions is the external ROM. Unlike GETs from internal ROM, GETs from external ROM do not byte flip the data. Because the external ROM needs to be initialized in addition to the TSP50C0x/1x, the procedure is somewhat more complicated than that for the internal ROM case. See Section 6.8, *TSP60C18/81 Interface*, for details on interfacing a TSP60C18/81 to the TSP50C0x/1x.

The recommended sequence for preparing to GET from external ROM is as follows:

- Step 1: Configure all control lines as outputs.
- **Step 2:** Place the TSP50C0x/1x in external ROM mode.
- **Step 3:** Execute LUAPS to initialize the counters in the TSP50C0x/1x. When preparing to execute a GET from external ROM, the value in the A register during the LUAPS is unimportant.
- Step 4: Initialize the external ROM. The processor is now ready to execute a GET instruction starting at the address loaded to the ROM in this step.
- **Step 5:** If a nonsequential address is desired for a GET, repeat steps 3 and 4 for the new address.
- **Step 6:** Be very careful not to disturb the value on the control lines when not doing GET instructions.

Note:

When in external ROM mode, only four or fewer bits may be fetched at a time. While GET 5, GET 6, GET 7, and GET 8 may work, the results are not guaranteed to be accurate because only four bits are fetched from the ROM at a time. If more than four bits are required, the preferred solution is to execute multiple GET instructions.

6.9.3 GET From Internal RAM

If the RAMROM bit is set in the mode register, the data source for GET instructions is the internal RAM. As detailed in Section 6.9, *Use of the GET Instruction*, the data is read into the A register in a byte-flipped form from the value stored in RAM, meaning that the LSB of the RAM data byte is shifted into the A register first.

The usage of the GET instruction while in RAM mode is somewhat more complicated than when the data source is from ROM because the burden of providing the address used to refresh the P/S buffer falls on the software.

If a GET instruction exhausts the P/S register, the value stored in the P/S buffer is loaded into the P/S register, and the GET instruction returns with status set. When the next GET instruction is executed, the P/S buffer is loaded with the value stored in the RAM location pointed to by the X register.

The recommended sequence for preparing to GET from RAM is as follows:

- **Step 1:** Place the TSP50C0x/1x in internal RAM mode.
- **Step 2:** Place the RAM address of the first desired GET source in the X register.
- Step 3: Execute LUAPS to initialize the counters in the TSP50C0x/1x and to load the first byte from RAM into the P/S register. When preparing to GET from RAM, the value in the A register during the LUAPS is unimportant. After this, the P/S buffer is empty and the P/S register is full.
- **Step 4:** Execute a dummy GET 8 instruction.
- **Step 5:** Load the X register with the RAM address of the second desired GET source.

The following sequence occurs when the first GET is executed:

- 1) The P/S buffer is empty, so it is loaded with the value stored in the RAM location pointed to by the X register.
- 2) The number of bits specified by the operand of the GET instruction is shifted into the A register.

On all subsequent GET operations, the status at completion should be tested by software. If status is set, then the P/S buffer is empty and the software should ensure that the X register contains the next desired address before the next GET is executed. The following code is a sample program that uses the GET from RAM:

SAMPLE PROGRAM USING RAM GET DTA EQU #10 TCX DTA SET X REG TO POINT TO DTA TCA #020 SET TO RAM MODE TAMODE LUAPS SET UP PARALLEL TO SERIAL REG GET 8 DUMMY GET CALL UPX BR LOOP UPX IXC

RETN

6.10 Generating Tones Using PCM

The TSP50C0x/1x can generate speech and tones using pulse code modulation (PCM) as well as LPC. When using PCM, a periodically sampled waveform may be loaded directly into the DAC, providing the ability to synthesize arbitrary waveforms. The value that is loaded into the DAC can be derived using a calculation, a table look-up, or a combination of the two methods. Smoothing between the data points is provided by the external low-pass filter.

PCM mode is enabled by setting the PCM bit in the mode register high and the LPC bit in the mode register low. Once PCM mode is enabled, the software must load the DAC with a value every 30 or 60 instruction cycles using the TASYN instruction.

6.10.1 Operation of the TASYN Instruction in PCM Mode

While in PCM mode, executing the TASYN instruction transfers the contents of the A register to the input of the DAC as shown in Figure 6–10. TASYN transfers the data in the A register to a temporary buffer register whose contents are periodically transferred to the DAC once every 30 instruction cycles.

Figure 6-10. Operation of TASYN in PCM Mode

The data in the A register should be in a modified two's complement format, described as follows:

The A register is 14 bits long. When the contents of the A register are transferred to the DAC, the bits are interpreted as shown in Figure 6–11. The least significant bits (bits A.0 and A.1) are ignored and normally set to zero. The two most significant bits (bits A.12 and A.13) are the sign bits. If they are both 1, then the value loaded to the DAC is negative. The remaining 10 bits of the A register (bits A.2 – A.11) contain magnitude data. The greatest magnitude is \pm 480. Any greater magnitude is clipped. The relative weights of the magnitude bits are listed in Table 6–12.

Figure 6-11. Format of Data in A Register Before TASYN

Table 6-12. Relative Weights of DAC Magnitude Bits

Bit Position	11	10	9	8	7	6	5	4	3	2
Relative Weight	256	128	64	32	16	8	4	2	1	1

6.10.2 Timing Considerations in PCM Mode

While in PCM mode, the contents of the DAC are refreshed every 30 instruction cycles. The new data must be loaded with TASYN instructions at an integer multiple of this rate. If the new data is not synchronous with the 30-cycle refresh rate, samples may be missed or doubled, resulting in tone deterioration.

There are two approaches to keeping the TASYN instruction synchronous with the DAC refresh. The first (and normally preferred) approach is to use the level-1 interrupt to synchronize the program. When the mode register is set with the PCM bit high, the LPC bit low, and the ENA1 bit high, a level-1 interrupt is generated every 30 instruction cycles. If the interrupt-service routine is longer than 30 instruction cycles, the interrupt is generated every 60 instruction cycles. The second approach is to program a tight loop using exactly 30 or 60 instruction cycles per loop. This method works and avoids the instruction-cycle overhead associated with the interrupt but is more difficult to program reliably.

6.10.3 DTMF Program Walk-Through

This section contains a walk-through of the DTMF (dual-tone multifrequency or touch-tone) program found in Appendix D, *DTMF Program*. The program generates a series of DTMF tones triggered by PA0 going high and terminated by PA0 going low.

The following code fragment shows the RAM locations used in the program. For each of the two sine waves that are added together to make the DTMF tone, a register that contains the angular difference between each data point (PERIOD1 and PERIOD2) and a register that contains the current angle for each frequency (TIME1 and TIME2) are required. Additionally, a temporary buffer is required to hold the intermediate result (PCMBUF).

In this application, each of these registers must be twelve bits long to maintain sufficient accuracy, which means that they must be in the lower 16 locations of RAM. These are the same registers that are used in the LPC routines, which is acceptable because the LPC can not be executed at the same time as PCM.

0061		*			
0062		* PCM re	egister	variables	
0063		*			
0064	0000	PERIOD1	EQU	#00	-Period of 1st Wave
0065	0001	TIME1	EQU	#01	-Cumulative angle of 1st wave
0066	0002	PERIOD2	EQU	#02	-Period of 2nd Wave
0067	0003	TIME2	EQU	#03	-Cumulative angle of 2nd wave
0068	0004	PCMBUF	EQU	#04	-Intermediate data buffer
0069		*			
0070		*			
0071		* LPC st	atus va	riable loca	ations
0072		*			
0073	0010	MODE_BUF	EQU	#10	;Mode register buffer
0074		*			
0075		* Device	Constan	ts	
0076		*			
0077	007F	MAX_RAM	EQU	#7F	-Highest RAM location
0078		*			
0079		* MODE Re	gister	Bit Definit	tions
0800		*			
0081	0001	ENA1	EQU	#01	-Enable Level 1 interrupt
0082	0002	LPC	EQU	#02	-Enable LPC synthesis
0083	0004	PCM	EQU	#04	-Enable PCM synthesis
0084	8000	ENA2	EQU	#08	-Enable Level 2 interrupt
0085	0010	EXTROM	EQU	#10	-Set external ROM mode
0086	0020	RAMROM	EQU	#20	-Enable GETs from RAM
0087	0040	MASTER	EQU	#40	-Master/Slave Toggle
0088	0800	UNV	EQU	#80	-Enable Unvoiced excitation

Next are the DTMF frequency definition table and the sine wave look-up table. Each line in the DTMF frequency definition table contains four bytes, two bytes for each of the two frequencies that make up a DTMF tone. These two-byte numbers represent the angular interval by which the sine wave must be incremented between samples. For example, if the sample rate is 10,000 samples per second, the sine-wave table must be accessed at intervals of 25.092 degrees in order to produce a 697-Hz sine wave.

 $\frac{697 \text{ cycles/second} \times 360 \text{ degrees/cycle}}{10,000 \text{ samples/second}} = 25.092 \text{ degrees/sample}$

Note that 10,000 samples per second assumes a 9.6-MHz crystal and a level-1 interrupt code length of between 30 and 60 instruction cycles. Table 6–13 contains sample rates based on different assumptions:

Table 6-13. Sample Rates

	Level-1 Interrupt Code Length				
Crystal	< 30 Instruction Cycles	< 60 Instruction Cycles			
7.68 MHz	16,000 samples/second	8,000 samples/second			
9.6 MHz	20,000 samples/second	10,000 samples/second			

The sine-wave table contains information for 32 points of a sine wave, spaced 11.25 degrees apart. Therefore, the number that was calculated is divided by 11.25 degrees to determine the number of sine-wave table entries to skip between samples.

$$\frac{25.092 \text{ degrees/sample}}{11.25 \text{ degrees/entry}} = 2.230 \text{ entries/sample}$$

Finally, the number is normalized, truncated, and converted to a two-byte hexadecimal value before placing it in the DTMF frequency definition table.

TRUNC
$$(2.230 \times 128) = 285 = 011Dh$$

The first byte on each line of the sine wave table is an amplitude and the second byte is an amplitude offset. The offset byte is multiplied by a fractional value and added to the amplitude byte to allow interpolation of the sine-wave values. Because of the way the interpolation is performed, the fractional value for odd-numbered table entries is negative and the fractional value for even-numbered table entries is positive. Therefore, the first line of the table has a positive fractional value that is multiplied by the offset byte and then added to the amplitude byte to allow $\sin(0^\circ)$ up through $\sin(11.25^\circ)$ to be represented. The second line of the table has a negative fractional value that is multiplied by the offset byte and then added to the amplitude byte to allow $\sin(22.5^\circ)$ down through $\sin(11.25^\circ)$ to be represented.

```
0102 0024
               DTMF
                             RBYTE
                                     #01, #81, #02, #23
                                                        -zero = 941 Hz + 1336 Hz
0103 0028
                                     #01,#1D,#01,#EF
                                                      -One = 697 \text{ Hz} + 1209 \text{ Hz}
            80
                             RBYTE
0104 002C
            80
                             RBYTE
                                     #01,#1D,#02,#23
                                                        -two = 697 Hz + 1336 Hz
0105 0030
            80
                             RBYTE
                                     #01,#1D,#02,#5D
                                                        -three= 697 Hz+1477 Hz
0106 0034
            80
                             RBYTE
                                     #01,#3B,#01,#EF
                                                       -four = 770 Hz + 1209 Hz
0107 0038
                                                        -five = 770 Hz + 1336 Hz
            80
                             RBYTE
                                     #01,#3B,#02,#23
0108 003C
                                     #01,#3B,#02,#5D
                                                        -six = 770 Hz + 1477 Hz
            80
                             RBYTE
0109 0040
                                     #01,#5D,#01,#EF
                                                        -seven= 852 Hz+1209 Hz
            80
                             RBYTE
0110 0044
                                     #01,#5D,#02,#23
                                                       -eight= 852 Hz+1336 Hz
           80
                             RBYTE
0111 0048
                                     #01, #5D, #02, #5D
                             RBYTE
                                                        -nine = 852 Hz + 1477 Hz
0112
0113
                      Digitized sine wave table
0114
0115 004C
            00 SINEW
                             BYTE
                                     #00,#19
                                               0 degrees-->11.25 degrees
0116 004E
                                     #31,#18
                                              11.25 degrees-->22.5 degrees
            31
                             BYTE
0117 0050
                                              22.5 degrees-->33.75 degrees
            31
                             BYTE
                                     #31,#16
0144 0086
            CF
                             BYTE
                                     #CF,#16
                                              326.25 degrees-->337.5 degrees
0145 0088
            CF
                             BYTE
                                     #CF,#18
                                              337.5 degrees-->348.75 degrees
0146 008A
                             BYTE
                                     #00,#19 348.75 degrees-->360
                                                                       degrees
```

The executable code follows. The code that is used to clear RAM and the mode register is not shown. After initializing the device, the program invokes the subroutine that generates the tone, passing the table index that defines the tone in the A register.

0150	008C 008D	6E 00	GOGO	TCA	0	-Tone	'Zero'
0151	008E 008F	00 B5		CALL	DO_PCM		
0152			*				
0153	0090	6E		TCA	1	-Tone	'One'
	0091	01					
0154	0092	00		CALL	DO_PCM		
	0093	B5					
0174	00AC	6E		TCA	8	-Tone	'Eight'
	00AD	80					
0175	00AE	00		CALL	DO_PCM		
	00AF	В5					
0176			*				
0177	00B0	6E		TCA	9	-Tone	'Nine'
	00B1	09					
0178		00		CALL	DO_PCM		
	00B3	B5					
0179			*				
0180	00B4	3F		SETOFF			

The following code is used to wait until DTMF tone generation is requested. The program loops until PA0 goes high.

0192	00B5	62	DO_PCM	TCX	#80	-Point to port A
	00B6	80				
0193	00B7	66		TSTCM	#01	-Loop until A(0)
	00B8	01				
0194	00B9	40		BR	GO_PCM	goes high
	00BA	BD				
0195	00BB	40		BR	DO_PCM	
	00BC	В5				

Since each table entry in the DTMF definition table is four bytes long, the value of the table index is quadrupled by left shifting it twice. Then the address of the start of the table is added, and a LUAPS is executed to point the speech address register to the desired table entry. The program uses two GET 8 instructions to fetch each number.

	00BD 00BE	2E 2E	GO_PCM	SALA SALA		-Adjust value to table index
0199	00BF	70		ACAAC	DTMF	-Add offset of table
	00C0	24				
0200	00C1	6C		LUAPS		-Point to table entry
0201						
0202	00C2	37		GET	8	-Get first frequency
0203	00C3	37		GET	8	period
0204	00C4	6A		TAMD	PERIOD1	-Store it away
	00C5	00				
0205						
0206	00C6	37		GET	8	-Get second frequency
0207	00C7	37		GET	8	period
0208	00C8	6A		TAMD	PERIOD2	-Store it away
	00C9	02				

The program initializes other necessary RAM locations and sets the mode register to enable PCM and level-1 interrupt.

0210	00CA	2F	CLA		-Clear cumulative data
0211	00CB	6A	TAMD	TIME1	
	00CC	01			
0212	00CD	6A	TAMD	TIME2	
	00CE	03			
0213					
0214	00CF	62	TCX	MODE_BUF	-Turn on PCM and INT1
	00D0	10			
0215	00D1	64	ORCM	PCM	
	00D2	04			
0216	00D3	64	ORCM	ENA1	
	00D4	01			
0217	00D5	11	TMA		
0218	00D6	1D	TAMODE		

The actual PCM code is in the interrupt-service routine. When the program is not executing PCM code, PA0 is continually polled. When PA0 goes low, the program disables PCM and returns for the next tone.

0220	00D7	62	L1	TCX	#80	-Loop until A(0)
	00D8	80				
0221	00D9	66		TSTCM	#01	goes low
	00DA	01				
0222	00DB	40		BR	L1	
	00DC	D7				
0223						
0224	00DD	62		TCX	MODE_BUF	-Turn off PCM and INT1
	OODE	10				
0225	00DF	65		ANDCM	~PCM	
	00E0	FB				
0226	00E1	65		ANDCM	~ENA1	
	00E2	FE				
0227	00E3	11		TMA		
0228	00E4	1D		TAMODE		
0229	00E5	3D		RETN		

The following code is the level-1 interrupt-service routine, INTPCM. This code performs the actual PCM calculations, which are done twice, once for each of the two sine waves. Then the results are summed together and transferred to the DAC buffer with the TASYN instruction. Because the interrupt-service routine is longer than 30 instruction cycles but less than 60 instruction cycles, it is invoked every 60 instruction cycles.

First the delta angle is added to the cumulative angle to generate a new cumulative angle.

0234	00E6	3B	INTPCM	INTGR	
0235	00E7	20		CLX	
0236					
0237	00E8	14		TMAIX	-Add delta angle to
0238	00E9	28		AMAAC	cumulative angle
0239					
0240	00EA	16		TAM	-Save cumulative angle
0241	00EB	11		TMA	-Discard high bits of cum

The cumulative angle is shifted right seven bits in order to strip off its fractional part. The result is shifted left one bit to adjust for the two-byte size of each sine wave table entry. The address of the start of the table is then added to get the address of the desired table entry.

0242					
0243 0	0EC	68	AXCA	01	-right shift 7 bits
0	0ED	01			
0244 0	OEE	2E	SALA		-Left 1 bit
0245 0	0EF	70	ACAAC	SINEW	-Add table offset
0	OFO	4C			

The sine-wave amplitude byte is put into the B register and the offset byte is put into the A register. The offset byte is multiplied by the fractional part of the cumulative angle and the result is added to the amplitude byte to interpolate between points. The SALA4 instruction correctly positions the value in the A register for transfer to the DAC buffer. This intermediate value is scaled for twist and then saved in PCMBUF before calculating the other wave.

0247	00F1	3C	EXTSG		
0248	00F2	6D	LUAB		-get data point
0249	00F3	3A	IAC		
0250	00F4	6B	LUAA		-get slope between points
0251	00F5	39	AXMA		-interpolate slope
0252	00F6	2C	ABAAC		-add interpolated slope
0253	00F7	1B	SALA4		and scale for DAC
0254	00F8	68	AXCA	#78	-Scale value for twist
	00F9	78			
0255					
0256	00FA	6A	TAMD	PCMBUF	-Save intermediate data
	00FB	04			

The only difference between the calculation of the first wave and the second wave is that the second wave is not scaled for twist. After both waves have been calculated, the result for the second wave is placed in the B register, the result for the first wave is retrieved to the A register, and the two values are added together. The result is divided by two to correctly scale it. TASYN is used to transfer the result to the DAC.

0279 010E	1A	TAB	-Store 2nd data point
0280			
0281 010F	21	IXC	-Retrieve 1st data point
0282 0110	11	TMA	
0283			
0284 0111	2C	ABAAC	-Sum two waves together
0285 0112	15	SARA	and normalize
0286 0113	1C	TASYN	-transfer data to D/A
0287 0114	3E	RETI	

6.11 TSP50C19 Programming

The TSP50C19 is identical to the TSP50C14 except for those changes necessary to expand the internal ROM to 32K bytes. These changes are summarized as:

- Add bits B2 and B3 to port B.
- Modify initialization of bits B2 and B3 of port B so that the bits initialize to totempole outputs programmed low.
- Add additional ROM paged by bits B2 and B3 of the port B.

6.11.1 Memory Block Selection

Addressing the internal ROM of the TSP50C19 is very different than addressing the internal ROM of the TSP50C14. Table 6–14 shows the two 8K-byte blocks of memory addressed by the TSP50C14.

Table 6-14. TSP50C14 Memory Blocks

Address 0K – 8K	Address 8K – 16K
Block 1	Block 2

When the most significant bit of the register that is addressing ROM, (which may be either the program counter, the A register, or the speech address register) is high, then block 2 is selected. Otherwise, block 1 is selected.

For the TSP50C19, two additional 8K-byte blocks of ROM were added. To address these additional blocks, two bits were added to the port B. Table 6–15 shows these two additional bits combined with the ROM address data and how they select the additional blocks of ROM.

Table 6–15.TSP50C19 ROM Block Selection

B Port Bits			
В3	B2	Address 0K – 8K	Address 8K – 16K
0	0	Block1	Block2
0	1	Block1	Block3
1	0	Block1	Block4
1	1	Block1	Not Addressed

When bit 13 of the address is low, block 1 is selected regardless of the state of the port B. When bit 13 is high, the value in port B bits 2 and 3 control the block selected.

Setting both port B bits 2 and 3 to 1 selects a nonexistent block of memory. On the EVM50C19 and the SEB50C19 attempts to read the data in the range of 2000h to 3FFFh with these two bits set to 1 reads data in the range of 0000h to 1FFFh. On the production part itself, the result of such a read is all 1s.

When initialized with $\overline{\text{INIT}}$, bits 2 and 3 of the port B are programmed to the output state with the output data set to zero.

6.11.2 Data Block Selection

Although the production device initializes port B bits 2 and 3 to the output mode; the development tools do not necessarily do this. Therefore, it is better to use software commands that explicitly put the bits in the correct state. The following example shows how to set the bits in block 4 to zero:

TCX	#86	-Make B2 and B3
ORCM	#C	both outputs
TCX	#87	-Set B3 high to
ORCM	8	select block 4
ANDCM	#FB	-Clear B2 to zero

The data from the selected block is available in the address range from 2000h to 3FFFh. To access data in other blocks, select the appropriate block setting or clear the appropriate bits in port B.

6.11.3 Preparing the Source Code

The ASM50C1x Assembler (version 1.09 or greater) does correctly prepare files for the TSP50C19. The code is loaded into the different blocks that are determined by the relative address. Table 6–16 lists the relative addresses and the block accessed by that address.

Table 6–16. ASM50C1x Assembler Relative Address and Block Selected

Decimal Address	Hexadecimal Address	Block Addressed
0000 – 8191	0000 – 1FFF	Block 1
8192 – 16383	2000 – 3FFFF	Block 2
16384 – 24575	4000 – 5FFF	Block 3
24576 – 32767	6000 – 7FFF	Block 4
32768 – 33791	8000 – 83FF	Excitation Function

6.11.4 Program Location in ROM

The assumption in the TSP50C19 design is that all program code is to be located in block 1. If this is not the case, care should be taken that selection of blocks is not changed unless the program is currently executing out of block 1, unless completely duplicate program code is contained in all blocks.

A common practice is setting or clearing bits in the port B as a broadside load. For example, to set bits 1 and 2 of the port B output buffer, the following code could be executed:

```
TCA 3
TAMD #87
```

This assumes that port B bits 2-7 do not exist. On the TSP50C19, bits 2 and 3 do exist and this results in the page select being corrupted. Care should be taken to not disturb the upper bits of the B register when setting or clearing the lower bits. For example, the code could be rewritten to read:

```
TCX #87
ORCM 3
```

To clear the same bits, the following code works:

```
TCX #87
ANDCM ~3
```

After changing the block selected, the GETn counter and the parallel-to-serial register needs to be reinitialized before executing any GET instruction that accesses data from any address above 8191 or 1FFFh.

Chapter 7

Customer Information

Customer information on development cycle organization, development and production sequence, mechanical information and packaging availability, ordering information, and example ordering forms are included in this chapter.

Горі	C Pag	е
7.1	Development Cycle	2
7.2	Summary of Speech Development/Production Sequence 7-3	3
7.3	Mechanical Information	1
7.4	Ordering Information 7-11	1
7.5	New Product Release Forms (TSP50C0x/1x)	1

7.1 Development Cycle

The TSP50C0x/1x development cycle is more complex than microprocessor development, because it adds speech development to the normal microprocessor development cycle. (Figure 7–1). The software design cycle is similar to that for other microprocessors. Speech development is discussed in Appendix A, *Script Preparation and Speech Development Tools*.

Figure 7–1. Speech Development Cycle

7.2 Summary of Speech Development/Production Sequence

The following is a summary of the speech development/production sequence:

- For the speech development group at TI to accept a custom device program, the customer must submit a new product release form (NPRF). This form describes the custom features of the device (e.g., customer information, prototype and production qualities, symbolization, etc.). A copy of the NPRFs can be found in Section 7.5, New Product Release Forms.
- 2) TI generates the prototype photomask and processes, manufactures, and tests 25 packaged or 196 die initial prototype devices for shipment to the customer. Limited quantities of prototype devices in addition to the initial prototypes may be purchased for use in customer evaluation. All prototype devices are shipped against the following disclaimer: "It is understood that, for expediency purposes, the initial prototype devices (and any additional prototype devices purchased) were assembled on a prototype (i.e., not production-qualified) manufacturing line whose reliability has not been characterized. Therefore, the anticipated inherent reliability of these devices cannot be expressly defined."
- 3) The customer verifies the operation and quality of these prototypes and responds with either written customer prototype approval or disapproval.
- 4) A nonrecurring mask charge that includes the initial prototype devices is incurred by the customer.
- 5) A minimum purchase may be required during the first year of production.

Note:

Texas Instruments recommends that prototype devices not be used in production systems because their expected end-use failure rate is undefined but is predicted to be greater than standard qualified production.

7.3 Mechanical Information

Most of the TSP50C0x/1x family is available in either a 16-pin, plastic, dual-in-line N package (DIP) or a 20-pin plastic small-outline wide-body (SOWB) DW package. The TSP50C12, because of its additional features, is available only in a 68-pin plastic chip carrier package (PLCC) or in die form.

7.3.1 N016 300-Mil Plastic Dual-In-Line Package

The dual-in-line package of the TSP50C04/06/10/11/13/14/19 (Figure 7–2) consists of a circuit mounted in a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound withstands soldering temperature with no deformation, and circuit performance characteristics remain stable when operated in high-humidity conditions. Once the leads are compressed and inserted, sufficient tension is provided to secure the package in the board during soldering. Leads require no additional cleaning or processing when used in soldered assembly.

Figure 7-2. TSP50C04/06/10/11/13/14/19 16-Pin N Package

N/R-PDIP-T** 16-PIN SHOWN

Plastic Dual-In-Line Package

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Each lead centerline is located within 0.010 (0,254) of its true longitudinal position.

7.3.2 DW020 Plastic Small-Outline Wide-Body (SOWB) Package

The DW020 plastic SOWB package of the TSP50C04/06/10/11/13/14/19 (Figure 7–3) consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound withstands soldering temperature with no deformation, and circuit performance characteristics remain stable when operated in high-humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

Figure 7-3. TSP50C04/06/10/11/13/14/19 20-Pin DW Package

DW/R-PDSO-G** 20-PIN SHOWN

Plastic Wide-Body Small-Outline Package

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Leads are within 0.005 (0,127) radius of true position at maximum material condition.
 - D. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

7.3.3 FN068 68-Lead Plastic Leaded Chip Carrier (PLCC) Package

The 68-lead plastic chip carrier package, which is available only for the TSP50C12, consists of a circuit mounted on a lead frame and encapsulated within an electrically nonconductive plastic compound. The compound withstands soldering temperatures with no deformation, and circuit performance characteristics remain stable when the device is operated in high-humidity conditions. The package is intended for surface mounting on solder lands with 1,27 (0.050) centers. Leads require no additional cleaning or processing when used in soldered assembly.

When reflow soldering is required, refer to subsection 7.3.4, *TSP50C12 (PLCC) Reflow Soldering Precautions*, on page 7–10 for special handling instructions.

Figure 7-4. TSP50C12 68-Lead PLCC Package

FN/S-PQCC-J** 20-PIN SHOWN

Plastic J-Leaded Chip Carrier

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-047.

7.3.4 TSP50C12 (PLCC) Reflow Soldering Precautions

Recent tests have identified an industry-wide problem experienced by surface mounted devices exposed to reflow soldering temperatures. The problem involves a package cracking phenomenon sometimes experienced by large (e.g., 68-lead) plastic-leaded chip carrier (PLCC) packages during surface mount manufacturing. This phenomenon can occur if the TSP50C12 is exposed to uncontrolled levels of humidity prior to reflow solder. The moisture can flash to steam during solder reflow, causing sufficient stress to crack the package and compromise device integrity. If the TSP50C12 is being socketed, no special handling precautions are required. In addition, once the device is soldered into the board, no special handling precautions are required.

In order to minimize moisture absorption, TI ships the TSP50C12 in dry pack shipping bags with an RH indicator card and moisture absorbing desiccant. These moisture-barrier shipping bags adequately block moisture transmission to allow shelf storage for 12 months from date of seal when stored at less than 60% relative humidity (RH) and less than 30°C. Devices may be stored outside the sealed bags indefinitely if stored at less than 25% RH and 30°C.

Once the bag seal is broken, the devices should be stored at less than 60% RH and 30°C as well as reflow-soldered within two days of removal. In the event that either of the above conditions is not met, TI recommends these devices be baked in a clean oven at 125°C and 10% maximum RH for 24 hours. This restores the devices to their dry packed moisture level.

Note:

Shipping tubes *will not* withstand the 125°C baking process. Devices should be transferred to a metal tray or tube before baking. Standard ESD precautions should be followed.

In addition, TI recommends that the reflow process not exceed two solder cycles and the temperature not exceed 220°C.

If you have any additional questions or concerns, please contact your local TI representative.

7.4 Ordering Information

Because the TSP50C0x/1x are custom devices, they receive a distinct identification as follows:

7.5 New Product Release Forms (TSP50C0x/1x)

The new product release form is used to track and document all the steps involved in implementing a new speech code onto one of the parent speech devices. Blank forms are provided in subsections 7.5.1 through 7.5.8 (note that the addresses on these forms are subject to change). Copy the new product release forms (NPRF) provided or get one from your TI field sales office to initiate the implementation process. The next step is to complete Section 1. As seen on the blank forms, Section 1 allows you to choose the options pertinent to the parent device you wish to use. Section 1 also allows you to choose your own customer part number used for ordering your parts. If no customer part number is indicated, then TI defaults to the CSM1xxxxxx part number for ordering purposes. Completion of the company name, project name, and option fields is mandatory. Completion of all other fields in Section 1 is optional. After completion of Section 1, you must submit the NPRF (along with your speech code) to the speech products group via your local TI field sales office.

Once the speech products group receives the speech code and the NPRF, you have completed the initial steps involved in implementing this code onto production devices. Since all parent speech devices are mask programmable, the speech code must first be converted into a format that the speech products mask vendor can use to generate this new mask. This format is called a PG output. Once this PG output is generated, the original speech code is reconstructed from the PG output file and sent back to you for recheck. This recheck ensures that the PG output file was generated correctly. Along with the reconstructed speech code, the NPRF is also returned to you with Section 2 completed by TI. In this section, TI assigns your own CSMxxxxxx part number and, in the case of packaged devices, TI also proposes a symbol format to you. If you wish to deviate from the suggested symbol format, you must consult TI for requested changes.

After you verify the reconstructed speech code and accept the proposed symbol format, you are required to sign section 3 as authorization for TI to generate the mask, prototypes, and risk units in accordance with the pertinent purchase order. You then need to send or fax the NPRF to the speech products group via the local TI field sales office. TI should have the prototypes shipped to you approximately six weeks after receiving the NPRF with section 3 signed. Once you receive these prototypes, you need to verify the functionality of the prototypes, sign section 4, and send the NPRF (with section 4 signed) back to TI. At this point, you can start ordering production units.

7.5.1 New Product Release Form for TSP50C04

NEW PRODUCT RELEASE FORM FOR TSP50C04

	FOR TSP50C04
SECTION 1. OPTION SELECTION This section is to be comp the microprocessor code ar	pleted by the customer and sent to TI along with ad speech data.
Company:	Division:
Project Name:	Purchase Order #:
Management Contact:	Phone:()
	Phone:()
Customer Part Number:	
D/A Output (check one): 2 pin push-pull single pin sing	(2D) le ended (1D) (not recommended)
Internal RC Oscillator (check of the control of the	ihz - 10.1Mhz) Mhz - 8.18Mhz)
Pulse width modulation (check o PW1 PW2	one)
Package Type (check one): N (16 Pin) die SOWB (20 Pin) Tube Reel	

II Part Number:	
SECTION 2B. PACKAGE UNIT SYMBOI This section is to be comp The first line of the symb	
Top Side Symbolization (16pin '	
	<pre></pre>
	er may choose between 980 or the TI LOGO on the
Top Side Symbolization (20pin '	
+ 	<pre>The continuation of the continuation of t</pre>

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS This section is to be completed by the customer and sent to TI after after the following data has been met:

- 1) The customer has verified that the TI computer generated data matches the original data.
- 2) The customer approves of the symbolization format in Section 2B. (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization format illustrated in section 2B on all devices.

Bv:	Title:
(FAX this fo	orm to 214-480-7301. Attn: Code Release Team)
SECTION 4. This se	APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION ection is to be completed by the customer after prototype devices een received and tested.
found to be	rtify that the prototype devices have been received and tested and acceptable, and I authorize TI to start normal production in with purchase order #
Ву:	Title:
****	********************
Return to:	Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199
OR Fax to:	(214)480-7301 Attn: Code Release Team
Have Questic	ons?: Code Release Team (214)480-4444
OR E-MAIL:	code-rel@msp.sc.ti.com

7.5.2 New Product Release Form for TSP50C06

NEW PRODUCT RELEASE FORM

	FOR TSP50C06
SECTION 1. OPTION SELECTION This section is to be comp the microprocessor code ar	pleted by the customer and sent to TI along with and speech data.
Company:	Division:
Project Name:	Purchase Order #:
Management Contact:	Phone:()
Technical Contact :	Phone:()
Customer Part Number:	
D/A Output (check one): 2 pin push-pull single pin sing	l (2D) gle ended (1D) (not recommended)
Internal RC Oscillator (check of particular control of the control	Mhz - 10.1Mhz) BMhz - 8.18Mhz)
Pulse width modulation (check of PW1 PW2	one)
Package Type (check one): N (16 Pin) die SOWB (20 Pin) Tube Reel	
**********	************
SECTION 2. ASSIGNMENT OF TI PRO The TI Part Number is to k	DUCTION PART NUMBER
II Part Number:	
SECTION 2B. PACKAGE UNIT SYMBOI This section is to be comp	
The first line of the symb	polization is fixed. Except EIA#/Logo. s are to be filled in by the customer.
Top Side Symbolization (16pin	'N')
	+ LLLL: LOT TRACE CODE
	<pre>??? YMLLLLT</pre>
	<pre><optional 13="" char=""> T: ASSY SITE</optional></pre>
+	<pre><optional 11="" char=""> ???: TI EIA NO. or TI LOGO</optional></pre>
For '16N' packages, the custome first line.	er may choose between 980 or the TI LOGO on the
Top Side Symbolization (20pin	SOWB')
+	+ LLLL: LOT TRACE CODE
	\T/ YMLLLLT YM: DATE CODE
	\T/ YMLLLLT YM: DATE CODE <optional 10="" char=""> T: ASSY SITE <optional 6="" char=""> \T/: TI LOGO</optional></optional>
	<pre><optional 6="" char=""> \1/. 11 LOGO+</optional></pre>

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS This section is to be completed by the customer and sent to TI after after the following data has been met:

- 1) The customer has verified that the TI computer generated data matches the original data.
- 2) The customer approves of the symbolization format in Section 2B. (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization format illustrated in section 2B on all devices.

By:		Title:
(FAX this fo	orm to 214-480-7301. Attn: C	ode Release Team)
SECTION 4. This se	APPROVAL OF PROTOTYPES AND .	**************************************
found to be	1 1	ices have been received and tested and TI to start normal production in
Ву:		Title:
*****	*******	**********
Return to:	Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199	
OR Fax to:	(214)480-7301 Attn: Code Release Team	
Have Questic	ons?: Code Release Team (214)480-4444	
OR E-MAIL:	code-rel@msp.sc.ti.com	

7.5.3 New Product Release Form for TSP50C10A

NEW PRODUCT RELEASE FORM FOR TSP50C10A

the microprocessor code	ompleted by the customer and sent to TI along with and speech data.
Company:	Division:
Management Contact:	Purchase Order #: Phone:()
Technical Contact:	Phone: ()
Customer Part Number:	
D/A Output (check one):	
2 pin push-p	ull (2D)
single pin s	ingle ended (1D) (not recommended)
single pin d	
3 1 1	
Package Type (check one):	
N (16 Pin)	
die	
SOWB (20 Pin)	
Tube	
Reel	
********	************
SECTION 2. ASSIGNMENT OF TI	PRODUCTION PART NUMBER
The TI Part Number is t	o be completed by TI.
TI Part Number:	_
SECTION 2B. PACKAGE UNIT SYM	BOLIZATION
This section is to be o	ompleted by the customer.
The first line of the s	ymbolization is fixed. Except EIA#/Logo.
The second and third li	nes are to be filled in by the customer.
Top Side Symbolization (16pi	n 'N')
+	+ LLLL: LOT TRACE CODE
	??? YMLLLLT YM: DATE CODE
	<pre><optional 13="" char=""></optional></pre>
	<pre><optional 11="" char=""> ???: TI EIA NO. or</optional></pre>
+	+ TI LOGO
For '16N' packages, the cust first line.	omer may choose between 980 or the TI LOGO on the
The Gide Growbell-stirm (00)	· (COLD)
Top Side Symbolization (20pi	
+	
	\T/ YMLLLLT YM: DATE CODE <optional 10="" char=""> T: ASSY SITE</optional>
	<pre><optional 10="" char=""> T: ASSY SITE</optional></pre>
	<pre><optional 6="" char=""> \T/: TI LOGO</optional></pre>

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS This section is to be completed by the customer and sent to TI after after the following data has been met:

- 1) The customer has verified that the TI computer generated data matches the original data.
- 2) The customer approves of the symbolization format in Section 2B. (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization format illustrated in section 2B on all devices.

By:		Title:
(FAX this f	orm to 214-480-7301. Attn: Co	ode Release Team)
SECTION 4. This s	APPROVAL OF PROTOTYPES AND A	**************************************
found to be		ices have been received and tested and TI to start normal production in
		Title:
*****	*******	**********
Return to:	Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199	
OR Fax to:	(214)480-7301 Attn: Code Release Team	
Have Questi	ons?: Code Release Team	

(214)480-4444

7.5.4 New Product Release Form for TSP50C11A

NEW PRODUCT RELEASE FORM FOR TSP50C11A

SECTION 1. OPTION SELECTION	Л	
This section is to be of the microprocessor code	completed by the customer and e and speech data.	d sent to TI along with
Company:	Division:	
	Purchase Order	
Management Contact:	Pho	one:()
Technical Contact :	Pho	one:()
Customer Part Number:		
	oull (2D) single ended (1D) (not recomm double ended (1A)	mended)
Package Type (check one): N (16 Pin) die SOWB (20 Pin) Tube Reel		
SECTION 2. ASSIGNMENT OF TI The TI Part Number is t	to be completed by TI.	***********
The first line of the s	MBOLIZATION completed by the customer. symbolization is fixed. Exceptines are to be filled in by	
Top Side Symbolization (16p:		
-	??? YMLLLLT	LLL: LOT TRACE CODE M: DATE CODE : ASSY SITE ??: TI EIA NO. or TI LOGO
For ' $16N'$ packages, the cust first line.	tomer may choose between 980	or the TI LOGO on the
Top Side Symbolization (20p	in 'SOWB')	
•	\T/ YMLLLT YM YM YM YM YM YM YM Y	LLL: LOT TRACE CODE M: DATE CODE : ASSY SITE F/: TI LOGO

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS This section is to be completed by the customer and sent to TI after after the following data has been met:

- 1) The customer has verified that the TI computer generated data matches the original data.
- 2) The customer approves of the symbolization format in Section 2B. (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization format illustrated in section 2B on all devices.

By:		Title:
(FAX this f	form to 214-480-7301. Attn: Co	ode Release Team)
SECTION 4. This s	APPROVAL OF PROTOTYPES AND A	AUTHORIZATION TO START PRODUCTION the customer after prototype devices
found to be		ices have been received and tested and TI to start normal production in
		Title:
*****	*******	*********
Return to:	Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199	
OR Fax to:	(214)480-7301 Attn: Code Release Team	
Have Questi	ons?: Code Release Team	

(214)480-4444

7.5.5 New Product Release Form for TSP50C12

NEW PRODUCT RELEASE FORM FOR TSP50C12

Project Name:	Company:	Division:
Management Contact: Phone: (Project Name:	Purchase Order #:
Phone:(Management Contact:	Phone:()
D/A Option: 2 pin push-pull (2D) single pin single ended (1D) single pin double ended (1A) CCD Drive: Type A, Fast Type B, Slow Dscillator: RC (Resistor/Capacitor) CR (Ceramic Resonator) Pulse width modulation (check one): PW1 PW2 *********************************	Fechnical Contact :	Phone:()
2 pin push-pull (2D) single pin single ended (1D) single pin double ended (1A)	Customer Part Number:	
	D/A Option:	
single pin double ended (1A) CCD Drive: Type A, Fast Type B, Slow Dscillator: RC (Resistor/Capacitor) CR (Ceramic Resonator) Pulse width modulation (check one): PW1 PW2 ***********************************	2 pin push-pull (2D)	
LCD Drive: Type A, Fast Type B, Slow Dscillator: RC (Resistor/Capacitor) CR (Ceramic Resonator) Pulse width modulation (check one): PW1 PW2 **********************************	single pin single ende	ed (1D)
Type A, FastType B, Slow Descillator:RC (Resistor/Capacitor)CR (Ceramic Resonator) Pulse width modulation (check one):PW1PW2 ***********************************		
Type B, Slow Descillator:	LCD Drive:	
Type B, Slow Descillator:	Type A, Fast	
RC (Resistor/Capacitor) CR (Ceramic Resonator) Pulse width modulation (check one): PW1 PW2 ***********************************		
RC (Resistor/Capacitor) CR (Ceramic Resonator) Pulse width modulation (check one): PW1 PW2 ***********************************	Oscillator:	
CR (Ceramic Resonator) Pulse width modulation (check one): PW1 PW2 **********************************		c)
PW1 PW2 ***********************************		
PW1 PW2 ***********************************	Pulse width modulation (check one):	
PW2 ***********************************		
The TI Part Number is to be completed by TI. FI Part Number: ******************************	·· -	
The TI Part Number is to be completed by TI. TI Part Number: ******************************		
The TI Part Number is to be completed by TI. FI Part Number: *****************************		
FI Part Number: ******************************		
Title: Title: Title: Title:	-	
This section is to be completed by the customer and sent to TI after after the following data has been met: 1) The customer has verified that the TI computer generated data matches the original data. I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:	II Part Number:	
This section is to be completed by the customer and sent to TI after after the following data has been met: 1) The customer has verified that the TI computer generated data matches the original data. I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:	**********	***********
after the following data has been met: 1) The customer has verified that the TI computer generated data matches the original data. I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:		
1) The customer has verified that the TI computer generated data matches the original data. I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:	This section is to be completed h	by the customer and sent to TI after
matches the original data. I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:	after the following data has been	n met:
matches the original data. I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:	1) The customer has verified t	that the TI computer generated data
I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:		chat the 11 compater generated data
Found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. By: Title:	_	l
risk units in accordance with purchase order in section 1. above. By: Title:		
By: Title:	·	
Date:		Title:
	(FAX this form to 214-480-7301. Attn:	Code Peleage Team)

******************** SECTION 4. APPROVAL OF PROTOTYPES AND AUTHORIZATION TO START PRODUCTION This section is to be completed by the customer after prototype devices have been received and tested. I hereby certify that the prototype devices have been received and tested and found to be acceptable, and I authorize TI to start normal production in accordance with purchase order #_____ By: Title:_ Date:_ ******************** Return to: Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199 OR Fax to: (214)480-7301 Attn: Code Release Team Have Questions?: Code Release Team CALL: (214)480-4444

OR E-MAIL: code-rel@msp.sc.ti.com

7.5.6 New Product Release Form for TSP50C13

NEW PRODUCT RELEASE FORM

	FOR TSP50C13D
SECTION 1. OPTION SELECTION This section is to be of the microprocessor code	completed by the customer and sent to TI along with
Project Name: Management Contact:	Division:
D/A Output (check one): 2 pin push-p single pin s	pull (2D) single ended (1D) (not recommended)
	9.1Mhz - 10.1Mhz) 7.18Mhz - 8.18Mhz)
Pulse width modulation (chec —— PW1 —— PW2	zk one)
Package Type (check one): N (16 Pin) die SOWB (20 Pin) Tube Reel	
*******	**************
SECTION 2. ASSIGNMENT OF TI The TI Part Number is t	
TI Part Number:	_
The first line of the s	MBOLIZATION completed by the customer. Symbolization is fixed. Except EIA#/Logo. ines are to be filled in by the customer.
Top Side Symbolization (16pi	
+ -	
	tomer may choose between 980 or the TI LOGO on the
Top Side Symbolization (20pi	in 'SOWB')
- -	\T/ YMLLLLT YM: DATE CODE <optional 10="" char=""> T: ASSY SITE <optional 6="" char=""> \T/: TI LOGO</optional></optional>

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS This section is to be completed by the customer and sent to TI after after the following data has been met:

- 1) The customer has verified that the TI computer generated data matches the original data.
- 2) The customer approves of the symbolization format in Section 2B. (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization format illustrated in section 2B on all devices.

By:		Title:
(FAX this fo	orm to 214-480-7301. Attn: (Code Release Team)
SECTION 4. This se	APPROVAL OF PROTOTYPES AND	AUTHORIZATION TO START PRODUCTION The customer after prototype devices
found to be	1 11	vices have been received and tested and e TI to start normal production in
Ву:		Title:
*****	******	*********
Return to:	Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199	
OR Fax to:	(214)480-7301 Attn: Code Release Team	
Have Questic	ons?: Code Release Team (214)480-4444	
OR E-MAIL:	code-rel@msp.sc.ti.com	

7.5.7 New Product Release Form for TSP50C14

NEW PRODUCT RELEASE FORM

	FOR TSP50C14D	
SECTION 1. OPTION SELECTION This section is to be contained the microprocessor code		and sent to TI along with
Company:	Division:	
Project Name:	Purchase Orde	er #:
Management Contact:		Phone: ()
Technical Contact :		Phone: ()
Customer Part Number:		
D/A Output (check one): 2 pin push-pu single pin si	ull (2D) ingle ended (1D) (not red	commended)
Internal RC Oscillator (check 9.6 Mhz (9. 7.68 Mhz (7. Mhz (+	.1Mhz - 10.1Mhz) .18Mhz - 8.18Mhz)	
Pulse width modulation (check —— PW1 —— PW2	c one)	
Package Type (check one): N (16 Pin) die SOWB (20 Pin) Tube Reel		
*******	* * * * * * * * * * * * * * * * * * * *	******
SECTION 2. ASSIGNMENT OF TI F	PRODUCTION PART NUMBER	
TI Part Number:		
The first line of the sy	ompleted by the customer	xcept EIA#/Logo.
Top Side Symbolization (16pir		
+- -	??? YMLLLLT <optional 13="" char=""> <optional 11="" char=""> </optional></optional>	LLLL: LOT TRACE CODE YM: DATE CODE T: ASSY SITE ???: TI EIA NO. or TI LOGO
For ' $16N'$ packages, the custofirst line.	omer may choose between	980 or the TI LOGO on the
Top Side Symbolization (20pir		
+- 	\T/ YMLLLLT <optional 10="" char=""> <optional 6="" char=""> </optional></optional>	LLLL: LOT TRACE CODE YM: DATE CODE T: ASSY SITE \T/: TI LOGO

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS This section is to be completed by the customer and sent to TI after after the following data has been met:

- 1) The customer has verified that the TI computer generated data matches the original data.
- 2) The customer approves of the symbolization format in Section 2B. (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization format illustrated in section 2B on all devices.

By:	Title:
(FAX this f	orm to 214-480-7301. Attn: Code Release Team)
SECTION 4. This se	**************************************
found to be	rtify that the prototype devices have been received and tested and acceptable, and I authorize TI to start normal production in with purchase order #
Ву:	
*****	*******************
Return to:	Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199
OR Fax to:	(214)480-7301 Attn: Code Release Team
Have Questic	ons?: Code Release Team (214)480-4444
OR E-MAIL:	code-rel@msp.sc.ti.com

7.5.8 New Product Release Form for TSP50C19

NEW PRODUCT RELEASE FORM FOR TSP50C19

	FOR TSP50C19	
SECTION 1. OPTION SELECTION This section is to be the microprocessor contact the microprocessor conta	completed by the custo	omer and sent to TI along with
Company:	Division:	
Project Name: Management Contact:	Purchase	Order #: Phone:() Phone:()
D/A Output (check one): 2 pin push single pin	-pull (2D) single ended (1D) (not	recommended)
7.68 Mhz (Mhz (Pulse width modulation (che	(9.1Mhz - 10.1Mhz) (7.18Mhz - 8.18Mhz) (+5% OR -5%)	
PW1		
PW2 Package Type (check one): N (16 Pin) die SOWB (20 Pir Tube Reel	n)	
******	******	*****
SECTION 2. ASSIGNMENT OF T		IR .
TI Part Number:		
This section is to be The first line of the	YMBOLIZATION completed by the custo symbolization is fixed lines are to be filled	d. Except EIA#/Logo.
Top Side Symbolization (16p	pin 'N')	
	??? YMLLLLT coptional 13 char	:> ???: TI EIA NO. or
	stomer may choose betwe	een 980 or the TI LOGO on the
Top Side Symbolization (201		
	T/ YMLLLLT coptional 10 char coptional 6 char	+ LLLL: LOT TRACE CODE YM: DATE CODE > T: ASSY SITE > \T/: TI LOGO
The first line of the The second and third l Top Side Symbolization (16g For '16N' packages, the cus first line.	completed by the custor symbolization is fixed lines are to be filled pin 'N')	d. Except EIA#/Logo. in by the customer. + LLLL: LOT TRACE CODE YM: DATE CODE Y: ASSY SITE ???: TI EIA NO. or TI LOGO Pen 980 or the TI LOGO on the YM: DATE CODE YM: DATE CODE YM: DATE CODE T: ASSY SITE TI LOGO

SECTION 3. AUTHORIZATION TO GENERATE MASKS, PROTOTYPES, AND RISK UNITS This section is to be completed by the customer and sent to TI after after the following data has been met:

- 1) The customer has verified that the TI computer generated data matches the original data.
- 2) The customer approves of the symbolization format in Section 2B. (Applies to packaged devices only)

I hereby certify that the TI generated verification data has been checked and found to be correct, and I authorize TI to generate masks, prototypes, and risk units in accordance with purchase order in section 1. above. In addition, in the instance that this is a packaged device, I also authorize TI to use the symbolization format illustrated in section 2B on all devices.

By:	Title:
(FAX this f	orm to 214-480-7301. Attn: Code Release Team)
SECTION 4. This se	**************************************
found to be	rtify that the prototype devices have been received and tested and acceptable, and I authorize TI to start normal production in with purchase order #
Ву:	
*****	*******************
Return to:	Texas Instruments, Inc. Attn: Code Release Team P.O. Box 660199, M/S 8718 Dallas, TX 75266-0199
OR Fax to:	(214)480-7301 Attn: Code Release Team
Have Questic	ons?: Code Release Team (214)480-4444
OR E-MAIL:	code-rel@msp.sc.ti.com

Appendix A

Script Preparation and Speech Development Tools

Script preparation and speech development can be done either by the customer or TI. The following are major considerations during the process.

Topic	Page
A.1	Script Generation
A.2	Speech Development Tools

A.1 Script Generation

The first step in designing a system using LPC is the generation of a system specification, including a script. A coding table that yields the best data rate for the voice selected at the level of quality required needs to be selected. The voice that is selected needs to be tested to verify that it synthesizes well. TI can recommend voices, or new voices can be auditioned. Each coding table and voice has its characteristic data rate. This can be used with a word count to determine the amount of memory required to store the speech for the system.

There are three approaches to word use in a speech script: maximal reuse, partial concatenation, and no concatenation. The original synthetic products tended to use maximal reuse because memory was expensive and quality expectations were low. In maximal reuse systems, only one sample of each word is used regardless of the context in which the word occurs. The speech sounds robotic; it is flat with no inflection and there are delays between words. This yields good intelligibility at low data rates but does not provide natural quality. Natural speech has different inflections depending on the position of the word in a sentence and on whether the sentence is a question, statement, or an order. Additionally, all the words are run together; each word is changed by the last sound of the word before it and the first sound of the word after it.

Recording and synthesizing each phrase separately is the easiest way to get natural speech, but memory constraints often force compromises. An expert speech editor can look at a script that lists each word in each context in which it occurs and determine what contexts are similar enough to permit reuse.

Once a system script is defined and the coding table selected, a recording script must be generated. For systems with partial reuse, this script must include a recording of each word in all necessary contexts. The other two approaches are more straightforward with a word list or a phrase list being all that is required.

A.1.1 Speaker Selection

While the scripts are being generated, a speaker should be selected to read the script. If possible, several voices should be recorded and analyzed, as all voices do not analyze equally well.

A.1.2 Speech Collection

Collecting speech for any medium, be it LPC or digital tape, requires significant effort. For high-quality speech, a recording studio and a professional speaker

are required. It is possible to achieve acceptable quality with a professional speaker and a quiet room. Nonprofessional speakers have trouble maintaining uniform levels, speaking properly, and providing the expression and inflection required. Additionally, the strain of speaking for long periods of time in a controlled manner is considerable. Nonprofessional speakers are best used only for prototyping.

During the session, it may be necessary to experiment with inflection and expression to find the best approach. Ideally, the person making the final decision on product content and esthetics should be at the recording session. Leaving this task to others leads to repeat visits to the studio.

There are various techniques that can be used to ensure that the speech analyzes and synthesizes properly. Certain consonants need to be emphasized and spoken more clearly than they are in normal speech. The TI SDS5000 development tool (see Figure A–1) provides immediate feedback for synthetic speech making, making the collecting process much easier for inexperienced users.

The actual collection process is fairly simple. The speech is converted into digital form and then analyzed with a computationally intensive algorithm. The SDS5000 uses a TMS32020 digital signal processing chip to permit very rapid analysis. It consists of two boards that fit into an IBM PC™, software, and a documentation package. One of the boards contains the TMS32020 and related circuitry, and the other contains an analog-to-digital converter, a digital-to-analog converter, digital filters, amplifiers, and speech synthesizers to record and play digitized and synthetic speech. The software supports speech collection, analysis, and editing with extensive use of menus, windows, and other user-friendly interfaces. TI uses an algorithm that provides high quality but that requires low levels of phase distortion. For this reason, audio tape should not be used to collect speech. However, digital audio tape can be used.

A.1.3 LPC Editing

The speech often needs to be edited, both to define the boundaries of the words and to mask imperfections in the model, the analysis, and the speaker. Limited changes can be made to change inflection and emphasis, but the best quality is achieved by having the desired sound and inflection well recorded. Skillful editors can also reduce data rates significantly from those of analyzed speech. Good editing is a difficult skill to learn, requiring a good ear, linguistic knowledge, and a familiarity with computers. TI offers the SDS5000 speech development system, which eases many of these tasks by analyzing the speech immediately to provide quick feedback and to permit rerecording if the synthetic speech does not offer the desired quality.

A.1.4 Pitfalls

All speech interfaces, LPC or not, are human interfaces, so they are hard to design. Building a prototype system is often useful. The SDS5000 supports quick prototyping.

LPC provides very-low-data-rate speech by virtue of its close modeling of the human vocal tract. Other sounds may or may not be modeled accurately by this model. The best way to find out is to try recording and analyzing the sound on the SDS5000.

A.2 Speech Development Tools

The following figures show the various development tools and the lists the features of each.

Figure A-1. SDS5000

SDS5000 Features

	High-speed speech analysis (2× real time)
	Graphical and numerical speech editing
	Microphone and line-level inputs
	Headphone outputs
	Supports TSP5220, TSP50C4X, TSP50C1x devices
	Requires IBM PC/XT, PC/AT, or compatible with CGA, EGA, or VGA card
	Uses TMS32020 digital signal processor
NI.	·

Note:

A hard disk drive and tape backup system are strongly suggested for the SDS5000 development system.

Figure A-2. EVM50C1X

EVM50C1X Features

- In-circuit emulation
 Hardware breakpoints
 Single step
 Examine/modify registers/memory
- Includes assembler
- Requires 1 card slot in IBM PC, PC/XT, PC/AT, and compatibles

Figure A-3. SEB50C1X

SEB50C1X Features

- In-circuit emulation
- ☐ Small size, low power consumption
- Ideal for demonstration and field test
- ☐ Requires industry-standard EPROM (TMS27C256)

Figure A-4. SEB60CXX

SEB60CXX Features

In-circuit emulation of up to four TSP60CXXs
 Small size, low power consumption
 Ideal for debugging, demonstration, and field test
 Requires industry-standard EPROMs (TMS27C256)

Figure A-5. ADP50C12

ADP50C12 Features

- ☐ Emulation of TSP50C12 for development purposes possible when using ADP50C12 and EVM50C1x
- Emulation of TSP50C12 for demonstration and field test purposes possible when using the ADP50C12 with an EPROM

Figure A–6. FAB50C1x

FAB50C1x Features

- ☐ Emulation of TSP50C04/06/13/14/19 DAC output
- ☐ Can be connected to the SDS5000, EVM50C1x, SEB50C1x

Appendix B

TSP50C0x/1x Sample Synthesis Program

This chapter contains the code for a sample synthesis program that runs on the TSP50C0x/1x family of speech synthesizers. It has the TSP50C0x/1x device speak numbers from one to five.

0001 0002	*		OPT	TION	BUNL	IST,DU	JNLIS	Γ,PAGI	EOF	*
0002	* т	CDEUC.	1 v TD(CVN	гигст	ם ס	ים א א סי			*
0003	*	* TSP50C1x LPC SYNTHESIS PROGRAM * *								
0005	* This is a sample speech synthesis program *									
0006	* which runs on the TSP50Clx family of speech *									
0007								-	-	ks the *
0008		umber					10 1	o ± iii.p ±]	, ppcc	*
0009	*	raniberi	5 110	0110	00 11	LVC.				*
0010	* т	his p	rograi	n 115es	s the	D6 Cc	ndina	table	- form	nat *
0011	*	TILD P	Logia	ii abci	o circ	20 00	Zaing	Cabi	S TOTE	*
0012	*									*
0013	* 0	OPYRI	ਤੁਸਾ 10	989 -	1992 7	rt _	DEECI	u DROI	חווכידים	*
0014	*									*
0015	* R	AM MA	Þ							*
0016	*+									*
0017	*	+	+	+		+		+	+	<u> </u>
0018	*	1 00	01	1 02	03	04	05	06	07	
0019	*	+	+	02 +	03 			+	+	<u>-</u>
0020	*	Ī	EN	I к12	K11	K10	К9	к8	к7	
0021	*	İ		1112	1111	1010	100	100	10,	
0022	*	+	ı +	ı ⊦	I ⊦	 		 +	 +	<u>-</u>
0022	*	08	09	0A	0в	0C	0D	0E	0F	
0024	*	+	+		0 <i>5</i> 	00 		+	+	<u>-</u>
0025	*	кб	к5	к4	К3	к2	к1	C1	C2	
0026	*	110			110	112		01	02	
0027	*	+	' +	ı ⊦	ı ⊦	ı ⊦		ı +	+	+
0028	*	10	11	12	13	14	15	16	17	
0029	*	+	, –– +–––-	 +	 	 		, –- +–––-	+	+
0030	*	EN	EN	PH		PH		K1		
0031	*	V2	V1	V2		V1		V2		
0032	*	+	, ·- +	– +	+	. · – ⊦		, ·- +	' ++	+
0033	*	l 18	19	l 1A	1в	1C	1D	1E	1F	
0034	*	+	 	 	 			 +	+	+
0035	*	K1		К2		K2		кз		
0036	*	v1		 V2		 V1		V2		
0037	*	+	+	– +	+	. · – ⊦		– +–––-	+	+
0038	*	20	21	22	23	24	25	26	27	
0039	*	+	' +	++	 	' ⊦		+	+	+
0040	*	кз		К4		K4		K5	K5	
0041	*	V1		V2		V1		V2	V1	
0042	*	+	+	 	·	. · - 		<u>-</u> +	+	+
0043	*	28	29	2A	2B	2C	2D	2E	2F	
0044	*	+	+	+		·		+	+	+
0045	*	кб	K6	K7	K7	K8	К8	К9	К9	
0046	*	V2	V1	V2	V1	V2	V1	V2	V1	
0047	*	+	+	+				+	+	+

0048 * 0049 *	30	31	32	33	34	35	36	37	
0050 *	K10	K10	 к11	K11	K12	K12	TIMR	SCAL	r
0051 *	K10	K10 V1	V2	KII V1	KIZ V2	V1	TIME	 SCAL	
0052 *	+	V± 	V	V± +	VZ 	·	l +−−−-	 +	-
0053 *	38	39	3A	3в	3C	3D	3E	3F	
0054 *	+	35 	321 	3B +	30 		J <u>-</u>	J <u>1</u>	-
0055 *	l FLAG	FLAG	I MODE	Ladr	ADR			I I	
0056 *		1	BUF	MSB	LSB		 		
0057 *	+	- 		+			ı +	 	 -
0058 *	40	41	42	43	44	45	46	47	
0059 *	+	ı ⊦	' +	+	+		+	+	+
0060 *			I						
0061 *	i	! 			i i		! 		
0062 *	+		+	+	+		+	+	+
0063 *	48	49	4A	4B	4C	4D	4E	4F	
0064 *	+		+	+	+		+		F
0065 *			l						
0066 *	i		İ		i i				
0067 *	+	++	+	++	+		+	++	+
0068 *	50	51	52	53	54	55	56	57	
0069 *	+	++	+	+	++		+	++	F
0070 *									
0071 *	ĺ		İ	ĺ	İ				
0072 *	+		+	+	++		+	+	F
0073 *	58	59	5A	5B	5C	5D	5E	5F	
0074 *	+	·	+	+	++		+	+	H
0075 *									
0076 *									
0077 *	+	+	+	+	++		+	+	F
0078 *	60	61	62	63	64	65	66	67	
0079 *	+	·	+	+	++		+	+	H
0080 *									
0081 *									
0082 *	+	+	+	+	++		+	+	F
0083 *	68	69	6A	6B	6C	6D	6E	6F	
0084 *	+	+	+	+	++		+	+	F
0085 *									
0086 *									
0087 *	+	+	+	+	++		+	+	F
* *	70	71	72	73	74	75	76	77	
0089 *	+	+	+	+	++		+	+	F
0090 *									
0091 *									
0092 *	+	·	+	+	++		+	+	F
0093 *	78	79	7A	7в	7C	7D	7E	7F	
0094 *	+	+	+	+	+		+	+	F

0095		*	1	1 1		
0096		*	i	ii	i i i i	
0097		* ++	+	-+	-++	
0098		*				
0099		*				_*
0100		* ADDR	ESS LABE	LS FOR SYN	THESIS ROUTINE	*
0101		*				_*
0102		******	*****	*******	*****	
0103		* SYNT	HESIZER	RAM LOCATI	ONS	
0104		******	*****	******	****	
0105			VER CHAN	GE LOCATIO	NS #01 TO #0F	
0106		*				
0107	0001	EN	EQU	#01	-Energy working value	
0108	0002	K12	EQU	#02	-K12 Working Value	
0109	0003	K11	EQU	#03	-K11 Working Value	
0110	0004	K10	EQU	#04	-K10 Working Value	
0111	0005	K9	EQU	#05	-K9 Working Value	
0112	0006	K8	EQU	#06	-K8 Working Value	
0113	0007	K7	EQU	#07	-K7 Working Value	
0114	0008	K6	EQU	#08	-K6 Working Value	
0115 0116	0009 000A	K5 K4	EQU EQU	#09 #0A	-K5 Working Value -K4 Working Value	
0117	000A	K3	EQU	#0A #0B	-K3 Working Value	
0117	000C	K2	EQU	#0B #0C	-K2 Working Value	
0119	000D	K1	EQU	#0D	-K1 Working Value	
0120	000E	C1	EQU	#0E	-C1 Parameter	
0121	000F	C2	EQU	#0F	-C2 Parameter	
0122	0010	ENV2	EQU	#10	-ENERGY New Value MSB	
0123	0011	ENV1	EQU	#11	-ENERGY Current Value N	MSB
0124	0012	PHV2	EQU	#12	-PITCH New Value MSB	
0125	0014	PHV1	EQU	#14	-PITCH Current Value MS	SB
0126	0016	K1V2	EQU	#16	-K1 New Value MSB	
0127	0018	K1V1	EQU	#18	-K1 Current Value MSB	
0128	001A	K2V2	EQU	#1A	-K2 New Value MSB	
0129	001C	K2V1	EQU	#1C	-K2 Current Value MSB	
0130	001E	K3V2	EQU	#1E	-K3 New Value MSB	
0131	0020	K3V1	EQU	#20	-K3 Current Value MSB	
0132		K4V2	EQU	#22	-K4 New Value MSB	
0133	0024	K4V1	EQU	#24	-K4 Current Value MSB	
0134	0026	K5V2	EQU	#26	-K5 New Value	
0135	0027	K5V1	EQU	#27	-K5 Current Value	
0136	0028	K6V2	EQU	#28	-K6 New Value	
0137	0029	K6V1	EQU	#29	-K6 Current Value	
0138	002A	K7V2	EQU	#2A #2B	-K7 New Value	
0139	002B	K7V1	EQU	#2B #2C	-K7 Current Value -K8 New Value	
0140	002C	K8V2	EQU	#2C		
0141	002D	K8V1	EQU	#2D	-K8 Current Value	

```
0142
         002E K9V2
                           EQU
                                    #2E
                                             -K9 New Value
0143
         002F K9V1
                           EQU
                                    #2F
                                             -K9 Current Value
0144
         0030 K10V2
                           EQU
                                    #30
                                              -K10 New Value
0145
         0031 K10V1
                           EQU
                                    #31
                                             -K10 Current Value
0146
         0032 K11V2
                           EQU
                                    #32
                                             -K11 New Value
         0033 K11V1
0147
                                    #33
                                             -K11 Current Value
                           EQU
0148
         0034 K12V2
                                    #34
                                              -K12 New Value
                           EQU
         0035 K12V1
                                             -K12 Current Value
0149
                           EQU
                                    #35
0150
0151
0152
                   LPC status variable locations
0153
0154
         0036 TIMER
                           EQU
                                    #36
                                             -Stored Timer value for update
                                             -Interpolation factor INTP
0155
         0037 SCALE
                           EQU
                                    #37
0156
         0038 FLAGS
                           EQU
                                    #38
                                             -Flags used in LPC synthesis
0157
         0039 FLAG1
                           EQU
                                    #39
                                             -Flags used in LPC synthesis
0158
         003A MODE_BUF
                           EQU
                                    #3A
                                             -Stored value of Mode register
0159
         003B ADR_MSB
                                    #3B
                                             -MSB of address
                           EQU
0160
         003C ADR_LSB
                                              -LSB of address
                           EQU
                                    #3C
                ****************
0161
0162
                   Constant Definitions
0163
0164
0165
                   Bit Size of Speech parameters
0166
0167
         0004 EBITS
                           EOU
                                    4
                                             -Number of Energy Bits
0168
         0007
               PBITS
                           EQU
                                    7
                                              -Number of Pitch Bits
0169
         0001 RBITS
                           EQU
                                   1
                                             -Number of Repeat Bits
0170
         0006 K1BITS
                           EQU
                                    6
                                             -Number of K1 Bits
         0006 K2BITS
                                             -Number of K2 Bits
0171
                           EQU
                                    6
0172
         0005 K3BITS
                           EQU
                                    5
                                              -Number of K3 Bits
         0005 K4BITS
                                   5
                                             -Number of K4 Bits
0173
                           EOU
0174
         0004 K5BITS
                           EQU
                                             -Number of K5 Bits
0175
         0004 K6BITS
                           EQU
                                    4
                                             -Number of K6 Bits
                                             -Number of K7 Bits
0176
         0004 K7BITS
                           EQU
                                    4
         0003 K8BITS
                                   3
                                             -Number of K8 Bits
0177
                           EQU
0178
         0003 K9BITS
                           EQU
                                    3
                                             -Number of K9 Bits
         0003 K10BITS
                                             -Number of K10 Bits
0179
                           EOU
                                    3
0180
         0000 K11BITS
                           EQU
                                    0
                                              -Number of K11 Bits
0181
         0000 K12BITS
                           EQU
                                    0
                                             -Number of K12 Bits
0182
                   Prescale Values
0183
0184
                   PSvalue = TRUNC(Samples * 2 * 30/256)
0185
0186
0187
                   This comes from the fact that samples come every 30
                   instruction cycles in LPC mode. The factor of 2
0188
```

```
0189
                    accounts for the cycle steal that happens in
0190
                    LPC mode. When not in LPC mode, samples come
0191
                    every 60 instruction cycles, so it comes out the
0192
                    same. The 256 divider is the full scale Timer
0193
                    register value.
0194
0195
0196
         00C8 SAMPLES
                            EQU
                                    200
                                              -Samples per frame
0197
          002E PSVALUE
                            EQU
                                    (SAMPLES*60/256) -Prescale Value
0198
0199
                    Device Constants
0200
0201
          0F61 C1_Value
                            EQU
                                    #F61
                                              -C1 Value
                                              -C2 Value
0202
         0B67 C2_Value
                            EQU
                                    #B67
0203
          007F MAX_RAM
                            EQU
                                    #7F
                                              -Highest RAM location
0204
0205
                    Special Energy Values
0206
0207
          000F ESTOP
                            EQU
                                    15
                                              -Stop code
0208
          0000 ESILENCE
                            EOU
                                              -Silence Code
                                    0
0209
0210
                    Special Pitch Value
0211
0212
         0000 PUnVoiced
                            EQU
                                    0
                                              -UnVoiced Frame Code
0213
0214
0215
                    End of sentence signal
0216
0217
          00FF StopWord
                            EQU
                                    #FF
0218
0219
                    FLAGS bit usage (and Set Masks)
0220
0221
         0001 STOPFLAG
                            EQU
                                    #01
                                              -Stop frame reached = 1
0222
         0002 R_FLAG
                            EQU
                                    #02
                                              -Repeat Frame = 1
0223
         0004 Update_Flg EQU
                                    #04
                                              -Set high on update
0224
         0008 Sil_Flg1
                            EQU
                                    #08
                                              -New frame is silent = 1
0225
         0010 Unv_Flg1
                            EQU
                                    #10
                                              -New frame is unvoiced = 1
0226
         0020 Int_Inh
                            EQU
                                    #20
                                              -Inhibit interpolation = 1
0227
         0040 Sil_Flg2
                            EQU
                                    #40
                                              -Current frame silent = 1
0228
         0080 Unv_Flg2
                            EQU
                                    #80
                                              -Current frame unvoiced = 1
0229
                    FLAG1 bit usage (and Set Masks)
0230
0231
0232
         0001 Int_Off
                            EQU
                                    #01
                                              -Disable INTP routine = 1
0233
0234
                    MODE Register Bit Definitions
0235
```

```
0236
        0001 INT1
                        EQU
                               #01
                                        -Enable Level 1 interrupt
0237
        0002 LPC
                        EQU
                               #02
                                        -Enable LPC synthesis
0238
        0004
             PCM
                        EQU
                               #04
                                        -Enable PCM synthesis
        0008 INT2
                               #08
0239
                        EQU
                                        -Enable Level 2 interrupt
0240
        0010 EXTROM
                        EQU
                               #10
                                        -Set external ROM mode
0241
        0020 RAMROM
                        EQU
                               #20
                                        -Enable GETs from RAM
0242
        0040 MASTER
                        EQU
                               #40
                                        -Master/Slave Toggle
        0080 UNV
                                        -Enable Unvoiced excitation
0243
                        EQU
                               #80
0244
             0245
                 Start of program
              0246
0247 0000
                               #0000
                        AORG
0248 0000
          69
                        TMAD
    0001
          0.0
0249
0250
              *----*
0251
0252 0002
          2F
                        CLA
0253 0003
                        TAMODE
          1D
0254
0255
              *-----*
0256
0257 0004
          20
                        CLX
                                        -Start at bottom of RAM
0258 0005
                                        -Clear RAM, increment pointer
          13
                        TAMIX
             RAM_LOOP
0259 0006
                        XGEC
                               MAX_RAM+1 -Finished all RAM?
    0007
          80
0260 0008
          40
                                           yes, skip vector tables
    0009
          24
0261 000A
          40
                        BR
                               RAM_LOOP
                                           no, loop back
    000B
          05
0262
                 0263
0264
                 Interrupt vectors
0265
0266 0010
                        AORG
                               #0010
0267 0010
                               INT2_01
                                        -Timer Underflow, PCM=0, LPC=1
                        SBR
          A2
0268 0011
          A2
                        SBR
                               INT2_01
                                        -Timer Underflow, PCM=0, LPC=1
0269 0012
                               INT2_00
                                        -Timer Underflow, PCM=0, LPC=0
          A2
                        SBR
0270 0013
                        SBR
                               INT2_00
                                        -Timer Underflow, PCM=0, LPC=0
          A2
0271 0014
          A 2
                        SBR
                               INT2_11
                                        -Timer Underflow, PCM=1, LPC=1
0272 0015
          A2
                        SBR
                               INT2_11
                                        -Timer Underflow, PCM=1, LPC=1
0273 0016
                                        -Timer Underflow, PCM=1, LPC=0
          A 2
                        SBR
                               INT2_10
0274 0017
          A2
                        SBR
                               INT2_10
                                        -Timer Underflow, PCM=1, LPC=0
0275 0018
                                        -PPC < 200 hex interrupt
          A0
                        SBR
                               INT1_01
0276 0019
          A0
                        SBR
                               INT1_01
                                        -PPC < 200 hex interrupt
0277 001A
                               INT1_00
                                        -Pin (B1) goes low interrupt
          A 2.
                        SBR
                                        -Pin (B1) goes low interrupt
0278 001B
          A2
                        SBR
                               INT1_00
```

0279	001C	A2		SBR	INT1_11	-10 kHz Clock interrupt
0280	001D	A2		SBR	INT1_11	-10 kHz Clock interrupt
0281	001E	A2		SBR	INT1_10	-20 kHz Clock interrupt
0282	001F	A2		SBR	INT1_10	-20 kHz Clock interrupt
0283			*			
0284	0020	40	INT1_01	BR	INTP	-PPC < 200 hex interrupt
	0021	В4				
0285			*			
0286		0022	INT2_00			
0287		0022	INT2_01			
0288		0022	INT2_10			
0289		0022	INT2_11			
0290		0022	INT1_00			
0291		0022	INT1_10			
0292	0022	2F	INT1_11	CLA		
0293	0023	3E		RETI		
0294			*****	*****	*****	* * * * * * * * * * * * * * * * * * * *
0295			* Speak p	hrases		
0296			*****	*****	*****	* * * * * * * * * * * * * * * * * * * *
0297	0024	6E	GO	TCA	0	-Speak 1st phrase
	0025	00				
0298	0026	00		CALL	SPEAK	
	0027	31				
0299			*			
0300	0028	6E		TCA	1	-Speak 2nd phrase
	0029	01				
0301	002A	00		CALL	SPEAK	
	002B	31				
0302			*			
0303	002C	6E		TCA	2	-Speak 3rd phrase
	002D	02				
0304	002E	00		CALL	SPEAK	
	002F	31				
0305			*			- 1.
	0030	3F		SETOFF		-Quit program
0307						********
0308			-			number in A register
0309	0001	2.5			* * * * * * * * * *	****
	0031	3B	SPEAK	INTGR		Double index to set offert
	0032	2E		SALA	CENTENCE	-Double index to get offset
U312	0033	75		ACAAC	PENTENCE	-Add base of table
0212		BF 6D		ם גוו ד		got addrogg MCD
	0035	6D		LUAB		-get address MSB
		3A		IAC		Cot address ICD
	0037	6B		LUAA		-Get address LSB
	0038	12		XBA		Combine MCD and ICD
U31/	0039	1B		SALA4		-Combine MSB and LSB

0318	003A	1в		SALA4		
	003B	2C		ABAAC		
	0035	20		TIDITIC		
0320	0029	1 -				G 11
	003C	1A		TAB		-Save address
0322	003D	бΑ		TAMD	ADR_LSB	-Save LSB of address
	003E	3C				
0323						
0324	003F	68		AXCA	1	-Shift address right
	0040	01				
0325	0041	15		SARA		by 8 bits
0326						-
	0042	бА		TAMD	ADR MGB	-Save MSB of address
0327	0043	3B		1111110	TIDIC_NOD	bave hab of address
0220				VD A		
	0044	12		XBA		
0329	0045	40		BR	SPEAK2	
	0046	59				
0330						
0331	0047	69	SPEAK1	TMAD	ADR_LSB	-Fetch and combine
	0048	3C				
0332	0049	1A		TAB		address
	004A	69		TMAD	ADR_MSB	
0333	004B	3B		111111	11010_11010	
0224		1B		C 7 T 7 /		
	004C			SALA4		
	004D	1B		SALA4		
	004E	2C		ABAAC		
0337						
0338	004F	3A		IAC		-Increment address
0339						
0340	0050	1A		TAB		-Save new address
0341	0051	6A		TAMD	ADR_LSB	-Save LSB of address
	0052	3C				
0342						
	0053	68		AXCA	1	-Shift address right
0343				AACA	_	-Sillic address light
0244	0054	01				1 0 1 1
	0055	15		SARA		by 8 bits
0345						
0346	0056	бA		TAMD	ADR_MSB	-Save MSB of address
	0057	3B				
0347	0058	12		XBA		
0348						
0349	0059	6В	SPEAK2	LUAA		-Get word number
	005A	60	_	ANEC	StopWord	-End of phrase?
0000	005B	FF		-11110	SCOPHOLG	LIA OF PHEADC.
0251				DD	CDEVES	no gentinue
0321	005C	40		BR	SPEAK3	no, continue
00=5	005D	5F				
	005E	3D		RETN		yes, exit loop
0353						

0354	005F	2E	SPEAK3	SALA		-Double index to get offset
0355	0060	75		ACAAC	SPEECH	-Add base of table
	0061	D5				
0356	0062	6D		LUAB		-Get address MSB
0357	0063	3A		IAC		
0358	0064	6B		LUAA		-Get address LSB
0359	0065	12		XBA		
	0066	1B		SALA4		-Combine LSB and MSB
0361	0067	1B		SALA4		
	0068	2C		ABAAC		
0363						
	0069	6C		LUAPS		-Load Speech Address Register
0365						
	006A	2F		CLA		-Kill K11 and K12 parameters
0367	006B	бΑ		TAMD	K11	
	006C	03				
0368	006D	бΑ		TAMD	K12	
	006E	02				
0369						
0370	006F	6A		TAMD	FLAGS	-Init flags for speech
	0070	38				
0371						- 2
	0071	2F		CLA		-Load C2 parameter
0373	0072	7B		ACAAC	C2_Value	(a device constant)
0004	0073	67			~0	
0374	0074	6A		TAMD	C2	
0275	0075	0F				
0375		0.Π		CT 7		Tarak C1 wassamakan
	0076	2F		CLA	Q1 T7-1	-Load C1 parameter
03//	0077	7F		ACAAC	CI_value	(a device constant)
0270	0078	61		MAMD	Q1	
03/8	0079	6A		TAMD	C1	
0270	007A	0E	*			
0379 0380				is	odedol molu	o to the Ditab in gage the
0381			* utterance			e to the Pitch in case the
0382			* utterance	Starts	with a sil	ent Irame.
	007B	70		ACAAC	#0C	
0303	007B	0C		ACAAC	#00	
0384	007C	6A		TAMD	PHV1	
0304	007E	14		IAMD	FIIVI	
0385	007E	6A		TAMD	PHV2	
0303	0071	12		IAMD	PIIV Z	
0386	5000	14	*			
0387			* Now we pre	1+ beole	ne first tw	o frames
0388			* MOM ME DIE	cioau li	IC IIISC CW	o manica.
	0081	01		CALL	UPDATE	-Load first frame
0203	0001	OΤ		САПП	OLDWIE	TOUG TITES TIGILE

0390	0082 0083 0084	B5 01 B5		CALL	UPDATE	-Load 2nd frame
0391			*			
0392			* Now we gi	ive some	values to	the Timer and Prescaler so
0393			* that we d	can do a	valid inte	erpolation on the first call to
0394			* INTP. Th	nen we do	the first	call to INTP to preload the
0395			* first val	lid inter	polation.	
0396			*			
0397	0085	6E		TCA	PSVALUE	-Initialize prescale
	0086	2E				
0398	0087	19		TAPSC		
0399	0088	6E		TCA	#7F	-Pretend there was a previous
	0089	7F				
0400	008A	бA		TAMD	TIMER	update
	008B	36				
0401	008C	6E		TCA	#FF	-Set timer to max value to
	008D	FF				
0402	008E	1E		TATM		disable interpolation
0403	008F	00		CALL	INTP	-Do first interpolation
	0090	В4				
0404	0020					
0405			*			
0406			* Now we er	nahle the	gwnthegiz	er for speech
0407			*	idbic ciic	. Byllellebiz	ici foi specen
0408			* We do thi	ia in two	gtadeg go	that we can reset the
0409					_	chout it being immediately
0410					B1(low) in	
0411			*	i by circ	DI(IOW) III	rectrape.
	0091	62		TCX	MODE DITE	-Turn on LPC synthesizer
0412	0091	3A		ICA	MODE_BOF	-Iuin on the synthesizer
0412	0092	64		ODCM	LPC	
0413		02		ORCM	ПРС	
0414	0094			TTM 7		
	0095	11		TMA		
	0096	1D		TAMODE		
0416	0000	2.5		D		
	0097	3E		RETI		-Reset interrupt pending latch
0418						
0419	<u> </u>	64		ORCM	INT1	-Enable interrupt
	0099	01				
	0099 009A	11		TMA		
0421	0099			TMA TAMODE		
0421 0422	0099 009A	11				
0421	0099 009A	11	*			
0421 0422	0099 009A	11		TAMODE	the utter	ance is complete. When the
0421 0422 0423	0099 009A	11	* Now we lo	TAMODE	shed, the	ance is complete. When the routine UPDATE will execute a exit this routine. In the

```
0427
                * meantime, this loop will poll the Timer register and
                * update the frame whenever it underflows.
0428
0429
0430
          009C
                SPEAK_LP
0431 009C
            62
                             TCX
                                     FLAGS
     009D
            38
0432 009E
                            TSTCM
                                     Update_Flg -Is Update already done?
     009F
            04
0433 00A0
            40
                             BR
                                     SPEAK_LP
                                                  yes, loop
     00A1
            9C
0434
0435 00A2
                             TCX
                                               -Get old timer
            62
                                     TIMER
     00A3
0436 00A4
                                                  register value
            11
                             TMA
0437 00A5
                             TAB
                                                  into B register
0438
0439 00A6
            17
                             TTMA
                                               -Get new timer register
0440 00A7
                                                  value and scale it.
                             SARA
            15
0441
0442 00A8
            16
                             TAM
                                               -Store new value
0443 00A9
            12
                            XBA
                                               -Exchange new and old values
0444 00AA
                                               -Subtract new from old
            2D
                             SBAAN
0445 00AB
            41
                             BR
                                     UPDATE
                                               -If underflowed, do an update
     00AC
            B5
0446
0447 00AD
            11
                             TMA
                                               -Get new timer value again.
0448 00AE
            60
                             ANEC
                                               -Is it about to underflow?
     00AF
            00
0449 00B0
            40
                                     SPEAK_LP
                                                  no, loop again
     00B1
            9C
0450 00B2
            41
                             BR
                                     UPDATE
                                                  yes, do update now
     00B3
            В5
0451
0452
                * INTERPOLATION ROUTINE
                * * * * *
0453
0454
                * First we need to get the current value of the timer
                * register and store it away. It will be divided by two
0455
                * with the SARA instruction so that the most significant
0456
0457
                * bit is guaranteed to be zero so that it will always be
0458
                * interpreted as a positive number during the
0459
                * interpolation.
0460
0461 00B4
            3B INTP
                             INTGR
                                               -Ensure we are in integer mode
0462 00B5
            17
                            TTMA
                                               -Get timer register contents
0463 00B6
            15
                             SARA
                                                  shift to make positive
0464 00B7
                             TAMD
                                                  and store it
            бA
                                     SCALE
     00B8
            37
```

```
0465
0466
                * See if this routine is enabled. If it is not, exit
0467
                * the routine.
0468
0469 00B9
            62
                            TCX
                                     FLAG1
                                               -Point to flag
    00BA
            39
0470 00BB
                            TSTCM
                                     Int_Off
                                               -If routine disabled...
    00BC
            01
0471 00BD
            41
                            BR
                                     IRETI
                                                  ...branch to exit point
    00BE
            В3
0472
0473
                * Next we need to see if the frame type has changed between
0474
                * voiced and unvoiced frames. If it has, we do not want to
                * interpolate between them; we just want to use the current
0475
0476
                * frame values until we have two frames of the same type to
0477
                * interpolate between.
0478
0479 00BF
                TTNTP
                                               -Point to status flags
            62
                            TCX
                                    FLAGS
     00C0
            38
0480 00C1
            66
                            TSTCM
                                    Int_Inh
                                               -Is interpolation inhibited?
    00C2
            20
0481 00C3
            40
                                    NOINT
                                                  yes, inhibit interpolation
                            BR
    00C4
            C7
0482 00C5
            40
                                     INTPCH
                                                  no, interpolate
                            BR
    00C6
0483
0484
                * The following code is reached if interpolation is
0485
                * inhibited. It sets the stored timer value to #7F which
0486
                * effectively forces the interpolation to yield the old
                * values for the working values, thus effectively disabling
0487
0488
                * interpolation.
                * * * * *
0489
0490 00C7
            6E
                NOINT
                            TCA
                                     #7F
                                               -Set Scale factor to
    00C8
            7F
0491 00C9
            бΑ
                            TAMD
                                     SCALE
                                                  highest value
    00CA
            37
0492
                * If the new frame has a voicing different from the last
0493
0494
                * frame, we want to zero the energy until the Unvoiced bit
0495
                * in the mode register is changed and the K parameters are
0496
                * all to the correct values. We therefore check in this
                * section of code to see if the frame voicing is different
0497
0498
                * from the setting in the Mode Register. If it is, we zero
0499
                * the energy until after the Mode Register is modified.
0500
0501 00CB
            62
                            TCX
                                    FLAGS
    00CC
            38
```

(0502	00CD	66		TSTCM	Unv_Flg2	-Is current frame unvoiced?
		00CE	80				
	0503	00CF 00D0	40 D9		BR	Uv	yes, go to unvoiced branch
	0504	0000	טט				
		00D1	62		TCX	Mode Buf	-Current frame is voiced
	0303	00D1	3A		ICA	MOGC_Bul	current frame is voiced
	0506	00D2	66		TSTCM	UNV	-Has mode changed to unvoiced?
	0300	00D3	80		IDICM	OIVV	nas mode changed to unvoiced:
	0507	00D4 00D5	40		BR	ClrEN	yes, clear the energy
	0307	00D3	DF		BK	CILEN	yes, crear the energy
	NEN0	00D0	40		BR	INTPCH	no, no action required
	0300	00D7	E4		BK	INTECH	no, no accion required
	0509	0000	E-4				
		00D9	62	TT	TCX	Mada Duf	-New frame is unvoiced
	0310	00D9 00DA	3A	Uv	ICA	Mode_Buf	-New Ifame is unvoiced
	0 E 1 1		66		пспсм	TINTY	Had voiding mode abanged?
	0311	00DB			TSTCM	UNV	-Has voicing mode changed?
	0510	00DC	80		DD	TNIEDOII	
	0512	00DD	40 E4		BR	INTPCH	no, no action required
	0 - 1 2	00DE	L4				
	0513	0.000	0.Π	ClTN	CT 7		Rana Russian denta
		00DF	2F	ClrEN	CLA	TINT	-Zero Energy during update
	0515	00E0	6A		TAMD	EN	
	0E16	00E1	01		חח	TNITTOGII	
	0210	00E2 00E3	40 E4		BR	INTPCH	
	0517	00E3	Ľ4				
	0517			*			
	0518				-o Ditab	and write	the result to the pitch
	0520			* register	LE PICCII	and write	the result to the pitch
	0520			*			
		00E4	62	INTPCH	TCX	PHV2	-Combine new pitch and new
	0322	00E4	12	INTECH	ICA	FIIVZ	comprise new preem and new
	0523	00E5	14		TMAIX		fractional pitch and
		00E7	1B		SALA4		leave in the B register
		00E8	28		AMAAC		reave in one b register
		00E9	21		IXC		
		00EA	1A		TAB		
		00EB	14		TMAIX		-Combine current pitch and
		00EC	1B		SALA4		current fractional pitch
		00ED	28		AMAAC		and leave in A register
	0531						
		OOEE	2D		SBAAN		-(Pcurrent - Pnew)
		00EF	62		TCX	SCALE	, - <u></u> ,
		00F0	37				
	0534	00F1	39		AXMA		-(Pcurrent-Pnew)*Timer
		00F2	2C		ABAAC		-Pnew+(Pcurrent-Pnew)*Timer
		-					. (

0536	00F3	2E		SALA		-Adjust for 2 byte excitation
	00F4	1C		TASYN		-Write to pitch register
0538	0011		*	1110111		Wilee to pitch register
0539			* Interpola	+0 1/1 00	d atomo	the regult in the weaking V1
			=	ite ki an	id Store	the result in the working K1
0540			* register			
0541			*			
0542	00F5	3C		EXTSG		-Allow negative K parameters
0543	00F6	62		TCX	K1V2	-Combine New K1 and New
	00F7	16				
0544	00F8	14		TMAIX		fractional K1 and
0545	00F9	1B		SALA4		leave in the B register
0546	00FA	28		AMAAC		
0547	00FB	21		IXC		
0548	00FC	1A		TAB		
0549						
	00FD	14		TMAIX		-Combine current K1 and
	OOFE	1B		SALA4		current fractional K1 and
	00FF	28		AMAAC		leave in the A register
0553	0011	20		AMAAC		leave in the A legister
	0100	2.0		CDAAN		/ TZ 1
	0100	2D		SBAAN	~~	-(K1current - K1new)
0555	0101	62		TCX	SCALE	
	0102	37				
	0103	39		AXMA		-(K1current - K1new) * Timer
0557	0104	2C		ABAAC		-Klnew+(Klcurrent-Klnew)*Timer
0558	0105	бA		TAMD	K1	-Load interpolated K1 value
	0106	0D				
0559			*			
0560			* Interpola	ite K2 an	d store	the result in the
0561			* working K	2 regist	er	
0562			*			
0563	0107	62		TCX	K2V2	-Combine New K2 and New
	0108	1A				
0564	0109	14		TMAIX		fractional K2 and
	010A	1B		SALA4		leave in the B register
	010A	28		AMAAC		icave in the b register
	010C	21		IXC		
	010D	1A		TAB		
0569						
	010E	14		TMAIX		-Combine current K2 and
0571	010F	1B		SALA4		current fractional K2 and
0572	0110	28		AMAAC		leave in the A register
0573						
0574	0111	2D		SBAAN		-(K2current - K2new)
0575	0112	62		TCX	SCALE	
	0113	37				
0576	0114	39		AXMA		-(K2current - K2new) * Timer
0577	0115	2C		ABAAC		-K2new+(K2current-K2new)*Timer
		-				,

0578	0116 0117	6A 0C		TAMD	K2	-Load interpolated K2 value
0579			*			
0580			* Interpola	ate K3 an	d store t	the result in the working K3
0581			* register			
0582			*			
0583	0118	62		TCX	K3V2	-Combine New K3 and New
	0119	1E				
0584	011A	14		TMAIX		fractional K3 and
0585	011B	1в		SALA4		leave in the B register
0586	011C	28		AMAAC		
0587	011D	21		IXC		
0588	011E	1A		TAB		
0589						
	011F	14		TMAIX		-Combine current K3 and
0591	0120	1в		SALA4		current fractional K3 and
	0121	28		AMAAC		leave in the A register
0593						
	0122	2D		SBAAN		-(K3current - K3new)
	0123	62		TCX	SCALE	(
	0124	37				
0596	0125	39		AXMA		-(K3current - K3new) * Timer
	0126	2C		ABAAC		-K3new+(K3current-K3new)*Timer
	0127	6A		TAMD	К3	-Load interpolated K3 value
0000	0128	0B			110	Iodd Interpolated no value
0599			*			
0600			* Interpola	ate K4 an	d store t	the result in the working K4
0601			* register			
0602			*			
0603	0129	62		TCX	K4V2	-Combine New K4 and New
	012A	22				
0604	012B	14		TMAIX		fractional K4 and
0605	012C	1B		SALA4		leave in the B register
0606	012D	28		AMAAC		
0607	012E	21		IXC		
0608	012F	1A		TAB		
0609						
0610	0130	14		TMAIX		-Combine current K4 and
	0131	1в		SALA4		current fractional K4 and
	0132	28		AMAAC		leave in the A register
0613						
	0133	2D		SBAAN		-(K4current - K4new)
	0134	62		TCX	SCALE	, , , , , , , , , , , , , , , , , , , ,
	0135	37		-	-	
0616	0136	39		AXMA		-(K4current - K4new) * Timer
	0137	2C		ABAAC		-K4new+(K4current-K4new)*Timer
	0138	6A		TAMD	К4	-Load interpolated K4 value

	0139	0A				
0619			*			
0620			* Interpola	te K5 an	d store t	the result in the working K5
0621			* register			_
0622			*			
0623	013A	62		TCX	K5V2	-Put New K5 (adjusted to
0020	013B	26		1011	110 12	1 do 1.e 115 (dajabeta et
0624	013C	14		TMAIX		12 bits) in B register
	013D	1B		SALA4		12 Dies, in Diegister
	013E	1A		TAB		
	013E 013F	14		TMAIX		-Put Current K5 (adjusted to
						_
	0140	1B		SALA4		12 bits) in A register
0629	0141	0.5		CD 1 111		(775
	0141	2D		SBAAN		-(K5current - K5new)
0631	0142	62		TCX	SCALE	
	0143	37				
0632	0144	39		AXMA		-(K5current - K5new) * Timer
0633	0145	2C		ABAAC		-K5new+(K5current-K5new)*Timer
0634	0146	бA		TAMD	K5	-Load interpolated K5 value
	0147	09				
0635			*			
0636			* Interpola	te K6 an	d store t	the result in the working K6
0637			* register			
0638			*			
0639	0148	62		TCX	K6V2	-Put New K6 (adjusted to
	0149	28				-
0640	014A	14		TMAIX		12 bits) in B register
	014B	1B		SALA4		13 111
	014C	1A		TAB		
	014D	14		TMAIX		-Put Current K6 (adjusted to
	014E	1B		SALA4		12 bits) in A register
0645	0146	ID		DALLAT		12 Dies/ in A register
	014F	O.D.		CDAAN		-(K6current - K6new)
		2D		SBAAN	CCATE	-(Rocurrent - Ronew)
0647	0150	62		TCX	SCALE	
0.5.4.0	0151	37				(776
	0152	39		AXMA		-(K6current - K6new) * Timer
	0153	2C		ABAAC	_	-K6new+(K6current-K6new)*Timer
0650	0154	бA		TAMD	К6	-Load interpolated K6 value
	0155	8 0				
0651			*			
0652			* Interpola	te K7 an	d store t	the result in the working K7
0653			* register			
0654			*			
0655	0156	62		TCX	K7V2	-Put New K7 (adjusted to
	0157	2A				
0656	0158	14		TMAIX		12 bits) in B register
0657	0159	1B		SALA4		

0658	015A	1A		TAB		
0659	015B	14		TMAIX		-Put Current K7 (adjusted to
0660	015C	1B		SALA4		12 bits) in A register
0661						
0662	015D	2D		SBAAN		-(K7current - K7new)
0663	015E	62		TCX	SCALE	
	015F	37				
0664	0160	39		AXMA		-(K7current - K7new) * Timer
0665	0161	2C		ABAAC		-K7new+(K7current-K7new)*Timer
0666	0162	бA		TAMD	K7	-Load interpolated K7 value
	0163	07				
0667			*			
0668			* Interpola	te K8 an	d store th	he result in the working K8
0669			* register			
0670			*			
0671	0164	62		TCX	K8V2	-Put New K8 (adjusted to
	0165	2C				
0672	0166	14		TMAIX		12 bits) in B register
0673	0167	1B		SALA4		
0674	0168	1A		TAB		
0675						
0676	0169	14		TMAIX		-Put Current K8 (adjusted to
0677	016A	1B		SALA4		12 bits) in A register
0678						
0679	016B	2D		SBAAN		-(K8current - K8new)
0680	016C	62		TCX	SCALE	
	016D	37				
0681	016E	39		AXMA		-(K8current - K8new) * Timer
0682	016F	2C		ABAAC		-K8new+(K8current-K8new)*Timer
0683	0170	бA		TAMD	K8	-Load interpolated K8 value
	0171	06				
0684			*			
0685			* Interpola	te K9 an	d store th	ne result in the working K9
0686			* register			
0687			*			
0688	0172	62		TCX	K9V2	-Put New K9 (adjusted to
	0173	2E				
0689	0174	14		TMAIX		12 bits) in B register
0690	0175	1B		SALA4		
0691	0176	1A		TAB		
0692						
0693	0177	14		TMAIX		-Put Current K9 (adjusted to
0694	0178	1B		SALA4		12 bits) in A register
0695						
0696	0179	2D		SBAAN		-(K9current - K9new)
0697	017A	62		TCX	SCALE	
	017B	37				

0698	017C	39	AXMA	1	-(K9current - K9new) * Timer
0699	017D	2C	ABAA	'C	-K9new+(K9current-K9new)*Timer
0700	017E	6A	TAMI	к9	-Load interpolated K9 value
	017F	05			-
0701	0171	0.5	*		
				0	
0702				.U and sto	re the result in the working K10
0703			* register		
0704			*		
0705	0180	62	TCX	K10V2	-Put New K10 (adjusted to
	0181	30			
0706	0182	14	TMAI	×	12 bits) in B register
	0183				12 Dies, in B register
		1B	SALA	14	
	0184	1A	TAB		
0709					
0710	0185	14	TMAI	X	-Put Current K10 (adjusted to
0711	0186	1в	SALA	4	12 bits) in A register
0712					,
	0187	2D	SBAA	N	-(K10current - K10new)
					-(Kiocurrent - Kionew)
0714	0188	62	TCX	SCALE	
	0189	37			
0715	018A	39	AXMA	1	-(K10current - K10new) * Timer
0716	018B	2C	ABAA	ıC	-K10new+(K10current-K10new)*Timer
0717	018C	6A	TAME	K10	-Load interpolated K10 value
	018D	04			
0718	0100	0 1			
			E.		
0719			*		
0720			* K11 and K12 ar	e not need	ded for LPC 10, so they have been
0721			* commented out.		
0722			*		
0723			* Interpolate K1	1 and sto	re the result in the working K11
0724			* register		3
0725			*		
				110	
0726			* TCX	K11V2	` 3
0727			* TMAI	X	12 bits) in B register
0728			* SALA	4	
0729			* TAB		
0730					
0731			* TMAI	×	-Put Current K11 (adjusted to
0732			* SALA	14	12 bits) in A register
0733					
0734			* SBAA	N.	-(K11current - K11new)
0735			* TCX	SCALE	
0736			* AXMA	1	-(K11current - K11new) * Timer
0737			* ABAA	.C	-K11new+(K11current-K11new)*Timer
0738) K11	-Load interpolated K11 value
			*	, 1/11	Load Interpotated KII value
0739					
0740			* Interpolate K1	.2 and sto	re the result in the working

0741			* K12 registe	r				
0742			*					
0743			* T	CX K12V	72	-Put New	K12 (adjuste	d to
0744			* T	MAIX		12 bit	s) in B regi	ster
0745			* S.	ALA4				
0746			* T.	'AB				
0747								
0748			* T	MAIX		-Put Curr	rent K12 (adj	usted to
0749			* S.	ALA4		12 bit	s) in A regi	ster
0750								
0751			* S	BAAN		-(K12curr	rent - K12new)
0752			* T	CX SCAL	LΕ			
0753				AMX			- K12new) * '	
0754			* A	BAAC			current-K12ne	
0755				AMD K12	2	-Load interpo	olated K12 va	lue
0756			*					
0757			*					
0758			* Interpolate	Energy	7			
0759			*					
0760			*					-
	018E	3B		NTGR			integer mode	
0762	018F	62	T	CX	ENV2	-Combine	new energy a	nd
	0190	10	_					-
	0191	14		MAIX			ional energy	
	0192	1B		ALA4		Leave	in the B reg	ister
	0193	1A		'AB				_
	0194	14		MAIX			current energ	
	0195	1B		ALA4			nt fractional	energy
	0196	2D		BAAN	~~	-(Ecurrer	nt - Enew)	
0769	0197	62	T	'CX	SCALE			
0.550	0198	37	-			4.7		·
	0199	39		XMA			nt - Enew) * '	
	019A	2C		BAAC			current-Enew)	*Timer
	019B	6A	*	BA		-Save ene	ergy	
0773								
0774			* Set voiced/					
0775			* This is don					
0776			* the MODE_BU					
0777			* operation,				_	
0778			* with a TAMO					
0779			* of the curr	ent sta	icus of	the synthesi	ızer mode at	all time.
0780	0100	60		IOV.	ET 7.00			
0.181	019C	62	STMODE T	CX	FLAGS			
0700	019E	38		NID CIL	TT 3 :			-1
0782	019E	65 ED	A	NDCM	~Updat	e_r'ig -Signal	l that interp	aone
0700	019F	FB	_	CECT C				
0783	01A0	66	T	STCM	UNV_F'I	gz -is curre	ent frame unv	oicea;

```
01A1
            80
0784 01A2
            41
                             BR
                                     SETUV
                                                -yes, set mode to unvoiced
     01A3
            AA
0785 01A4
            62
                             TCX
                                     MODE_BUF
                                                  no, ...
     01A5
            3A
0786 01A6
            65
                                                   ...set mode to voiced
                             ANDCM
                                     ~UNV
     01A7
            7F
0787 01A8
            41
                             BR
                                     WRITEMODE
     01A9
0788
0789 01AA
            62
                SETUV
                             TCX
                                     MODE_BUF
                                               -Current frame is unvoiced, so
     01AB
            3A
0790 01AC
            64
                             ORCM
                                     UNV
                                                -set mode to unvoiced.
            80
    01AD
0791
0792 01B1
            11
                WRITEMODE
                             TMA
                                                -Write mode information
0793 01AF
            1D
                             TAMODE
                                                to mode register
0794
0795 01B0
            12
                             XBA
                                                -Write energy
0796 01B1
                             TAMD
                                                to filter
            бΑ
                                      EN
    01B2
            01
0797
0798 01B3
            3E
                IRETI
                              RETI
                                                 -Return from interrupt
0799 01B4
            3D
                              RETN
                                                 -Return from first call
0800
                * Update the parameters for a new frame
0801
0802
                * First we inhibit the operation of the interpolation
0803
                * routine.
0804
0805 01B5
            62 UPDATE
                                     MODE_BUF
                             TCX
    01B6
            3A
0806 01B7
                                     ~INT1
            65
                             ANDCM
    01B8
            FE
0807 01B9
            11
                             TMA
0808 01BA
            1D
                             TAMODE
0809
                * To prevent double updates, if the stored value of the
0810
0811
                * timer register is zero, then we need to change it to #7F.
0812
                * If we do not do this, then the polling routine will
0813
                * discover an underflow and call Update a second time.
0814
0815 01BB
            62
                             TCX
                                     TIMER
                                               -Get stored value
     01BC
            36
0816 01BD
            11
                                                   of Timer into A
                             TMA
0817
0818 01BE
            60
                             ANEC
                                               -Is it zero?
     01BF
            00
```

```
0819 01C0
                            BR
                                    UPDT00
                                                 no, do nothing
    01C1
           C5
0820 01C2
                            TCA
                                    #7F
                                                 yes, replace value
    01C3
           7F
0821 01C4
           16
                            TAM
0822
0823
                * First we need to test to see if a stop frame was
0824
                * encountered on the last pass through the routine.
0825
                * previous frame was a stop frame, we need to turn off the
0826
                * synthesizer and stop speaking.
0827
0828 01C5
           62 UPDT00
                            TCX
                                    FLAGS
    01C6
           38
0829 01C7
           66
                            TSTCM
                                   STOPFLAG -Was stop frame encountered
    01C8
           01
0830 01C9
           42
                            BR
                                    STOP
                                                 yes, stop speaking
    01CA
            EF
0831
0832
                * Transfer the state of the previous frame to the Unvoiced
0833
                * flag (Current).
0834
0835 01CB
                                    Unv_Flg1 -Was previous frame unvoiced?
            66
                            TSTCM
    01CC
           10
0836 01CD
            41
                            BR
                                    SUNVL
                                                 yes, current frame=unvoiced
    01CE
           D3
0837 01CF
           65
                            ANDCM
                                    ~Unv_Flg2
                                                 no, current frame=voiced
    01D0
            7F
0838 01D1
            41
                            BR
                                    TSIL
                                                 and continue
    01D2
           D5
0839
0840 01D3
            64
                SUNVL
                            ORCM
                                    Unv_Flg2 -Set current frame unvoiced.
    01D4
            80
0841
0842
                * Transfer the state of the previous frame to the
                * Silence flag (Current).
0843
0844
0845 01D5
            66
              TSIL
                            TSTCM
                                    Sil_Flg1 -Was previous frame silent?
    01D6
           08
0846 01D7
            41
                            BR
                                    SSIL
                                                 yes, current frame silent
    01D8
           DD
0847 01D9
           65
                            ANDCM
                                    ~Sil_Flg2
                                                 no, current frame not sil.
    01DA
           BF
0848 01DB
            41
                            BR
                                    ZROFLG
                                                 and continue
    01DC
           DF
0849
0850 01DD
            64 SSIL
                            ORCM
                                    Sil_Flg2 -Set current frame silent
    01DE
            40
```

0851			*				
0852			* Reset the	Repeat	Flag, nev	w Silence Flag,	new Unvoiced
0853						nhibit flag so t	
0854			* values ca	n be loa	aded in th	nis routine.	
0855			*				
0856	01DF	62	ZROFLG	TCX	FLAGS		
	01E0	38					
0857	01E1	65		ANDCM	#C5		
	01E2	C5					
0858			*				
0859			* Transfer	the new	frame pai	rameters into th	e
0860					_	the current fra	
0861			*	00001011	upou 101	0110 0411 0110 114	Parameters.
	01E3	62		TCX	ENV2	-Transfer new	frame energy
0002	01E3	10		1 021	21112	TIGHTEL HEW	rrame chergy
0863	01E5	14		TMAIX		from new f	rame location
	01E5	13		TAMIX			frame location
0865	OIEO	13	*PITCH			to carrent	Traille Tocacton
	01E7	14	F11CII	TMAIX		Transfor now	frama nitah
	01E7 01E8	6A		TAMD	PHV1	-Transfer new	frame location
0807				IAMD	PHVI	to current	ITame Tocacton
0060	01E9	14					
0868	01EA	1 /		TIM 7 T 37			f
		14		TMAIX			fractional pitch
	01EB	21		IXC		to current	frame location
	01EC	13	4 771	TAMIX			
0872	01.00	1.4	*K1			m	51
	01ED	14		TMAIX	***1 ***1		frame K1 param.
08/4	01EE	6A		TAMD	K1V1	to current	frame location
	01EF	18					
	01F0	14		TMAIX			fractional K1
	01F1	21		IXC		to current	frame location
	01F2	13		TAMIX			
0878			*K2				
0879	01F3	14		TMAIX			frame K2 param.
0880	01F4	бΑ		TAMD	K2V1	to current	frame location
	01F5	1C					
	01F6	14		TMAIX			fractional K2
0882	01F7	21		IXC		to current	frame location
0883	01F8	13		TAMIX			
0884			*K3				
0885	01F9	14		TMAIX		-Transfer new	frame K3 param.
0886	01FA	бΑ		TAMD	K3V1	to current	frame location
	01FB	20					
0887	01FC	14		XIAMT		-Transfer new	fractional K3
0888	01FD	21		IXC		to current	frame location
0889	01FE	13		TAMIX			
0890			*K4				

0891	01FF	14	XIAMT		-Transfer new frame K4 param.
0892	0200	6Α	TAMD	K4V1	to current frame location
	0201	24			
0893	0202	14	TMAIX		-Transfer new fractional K4
0894	0203	21	IXC		to current frame location
	0204	13	TAMIX		
0896	0201	13	*K5		
	0205	14	TMAIX		Transfer now frame VE naram
	0205				-Transfer new frame K5 param. to current frame location
		13	TAMIX		to current frame location
0899		1 4	*K6		T
	0207	14	TMAIX		-Transfer new frame K6 param.
	0208	13	TAMIX		to current frame location
0902			*K7		
0903	0209	14	TMAIX		-Transfer new frame K7 param.
0904	020A	13	TAMIX		to current frame location
0905			*K8		
0906	020B	14	TMAIX		-Transfer new frame K8 param.
0907	020C	13	XIMAT		to current frame location
0908			*K9		
0909	020D	14	TMAIX		-Transfer new frame K9 param.
0910	020E	13	TAMIX		to current frame location
0911			*K10		
0912	020F	14	TMAIX		-Transfer new frame K10 param.
	0210	13	TAMIX		to current frame location
0914			*		
0915			* K11 and K12 are	not used in	LPC 10 synthesis. The code
0916			* has been comment		and to synthesis. The code
0917			*	ca ouc.	
0918			*K11		
					The section was from 211 management
0919					-Transfer new frame K11 param.
0920			* TAMIX		to current frame location
0921			*K12		
0922			* TMAIX		-Transfer new frame K12 param.
0923			* TAMIX		to current frame location
0924			*		
0925			*		
0926			* We have now disc	arded the "	current" values by replacing
0927			* them with the "n	ew" values.	We now need to read in
0928			* another frame of	speech dat	a and use them as the
0929			* new "new" values		
0930			* * * * *		
0931			* ENERGY	_	
	0211	2F	CLA		
	0212	62	TCX	FLAGS	
	0213	38	1 011		
0934	0214	33	GET	EBITS	-Get coded energy
	0214	60			-Is it a silent frame?
0733	OZIS	00	ANEC	ESILENCE	-rs in a sitem flame:

	0216	00				
0936	0217	42		BR	UPDT0	No, continue
	0218	1D				
0937	0219	64		ORCM	Sil Fla1+	Int_Inh Yes, set silence flag
0237	0213 021A	28		Orteri	DII_IIgI	ine_iiii leb, bee bileilee liag
0020				DD	T T	
0938	021B	42		BR	ZeroKs	and zero K params
	021C	CD				
0939			*			
0940	021D	60	UPDT0	ANEC	ESTOP	-Is it a stop frame?
	021E	0F				
0941	021F	42		BR	UPDT1	no, continue
	0220	25				
0942	0221	64		ORCM	STOPFLAG+	Sil_Flg1+Int_Inh yes, set flags
0,712	0222	29		011011	5101121101	011_1 191 · 1110_11111
0042	0223	42		BR	7oroVa	and rore Va
0943				DK	ZeroKs	and zero Ks
	0224	CD				
0944			*			
0945	0225	73	UPDT1	ACAAC	TBLEN	-Add table offset to energy
	0226	27				
0946	0227	6B		LUAA		-Get decoded energy
0947	0228	бA		TAMD	ENV2	-Store the Energy in RAM
	0229	10				
0948			*			
0949			* If this is	s a silem	nt frame s	we are done with the update If
0950						nt, the new frame should be
0951			=			
			* spoken IIII	Hedracery	y WILII IIO .	ramp up due to interpolation
0952			*			
0953	022A	62		TCX	FLAGS	
	022B	38				
0954	022C	66		TSTCM	Sil_Flg1	-Is this a silent frame?
	022D	8 0				
0955	022E	43		BR	RTN	yes, exit
	022F	0C				
0956			*			
0957			* A repeat 1	Frame wi	ll use the	K parameter from the previous
0958			_			rame, we need to set a flag.
			* IIame. II	LILIS	a repeat r.	rame, we need to set a rray.
0959	0000	2.0		~		
	0230		UPDT2	GET		-Get the Repeat bit
0961	0231	67		TSTCA	#01	-Is this a repeat frame?
	0232	01				
0962	0233	42		BR	SFLG1	yes, set repeat flag
	0234	37				
0963	0235	42		BR	UPDT3	
	0236	39				
0964						
	0237	64	SFLG1	ORCM	R_FLAG	-Set repeat flag
0,000			DETIGE	01/01*1	I.T. TAG	Dec repeat rray
	0238	02				

1996	0966						
O969 O239	0967			* PITCH	I		
0970	0968						
0971 023B	0969	0239	2F	UPDT3	CLA		
0972 023C	0970	023A	33		GET	4	-Get coded pitch
O23D	0971	023B	32		GET	3	-Get coded pitch
O973	0972	023C	60		ANEC	PUnVoiced	-Is the frame unvoiced?
OP74		023D	00				
O240	0973	023E	C1		SBR	UPDT3A	no, continue
0975	0974	023F	64		ORCM	Unv_Flg1	yes, set unvoiced flag
0976 0241		0240	10				
0977 0242 73	0975						
0243 37 0978 0979 0244 6D LUAB	0976	0241	2E	UPDT3A	SALA		-Double coded pitch and
0978 0244 6D	0977	0242	73		ACAAC	TBLPH	add table offset to point
O979		0243	37				
O980 0245	0978						
Name	0979	0244	6D		LUAB		-Get decoded pitch
0982 0983 0247 62	0980	0245	3A		IAC		
0983 0247 62	0981	0246	6B		LUAA		-Get decoded fractional pitch
0248	0982						
TBM	0983	0247	62		TCX	PHV2	-Store the pitch and
0985 024A 21		0248	12				
0986 024B	0984	0249	2A		TBM		fractional pitch in RAM
0988	0985	024A	21		IXC		
0988	0986	024B	16		TAM		
0989 * need to change the voicing in the mode register. 0990 * 0991 024C 62 TCX FLAGS 024D 38 TSTCM Unv_Flg1 -Is the new frame unvoiced? 094D 024E 66 TSTCM Unv_Flg1 -Is the new frame unvoiced? 0993 025D D3 SBR UPDT3B yes, continue 0994 0251 42 BR VOICE no, go to voiced code 0995 * * The following code is reached if the new frame is 0997 * * unvoiced. We inspect the flags to see if the previous 0998 * frame was either silent or voiced. If either condition 0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * 1002 2253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0987			*			
0990 * 0991 024C 62 TCX FLAGS 024D 38 TSTCM Unv_Flg1 -Is the new frame unvoiced? 024F 10 Unv_Flg1 -Is the new frame unvoiced? 0993 0250 D3 SBR UPDT3B yes, continue 0994 0251 42 BR VOICE no, go to voiced code 0995 * * The following code is reached if the new frame is 0997 * unvoiced. We inspect the flags to see if the previous 0998 * frame was either silent or voiced. If either condition 0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0988			* If the voi	icing has	s changed v	with the new frame, then we
0991 024C 62 TCX FLAGS 024D 38 0992 024E 66 TSTCM Unv_Flg1 -Is the new frame unvoiced? 024F 10 0993 0250 D3 SBR UPDT3B yes, continue 0994 0251 42 BR VOICE no, go to voiced code 0252 5D 0995 * 0996 * The following code is reached if the new frame is 0997 * unvoiced. We inspect the flags to see if the previous 0998 * frame was either silent or voiced. If either condition 0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0989			* need to ch	nange the	e voicing :	in the mode register.
0940 024E 66 TSTCM Unv_Flg1 -Is the new frame unvoiced? 024F 10 0993 0250 D3 SBR UPDT3B yes, continue 0994 0251 42 BR VOICE no, go to voiced code 0252 5D 0995 * The following code is reached if the new frame is 0997 * unvoiced. We inspect the flags to see if the previous 0998 * frame was either silent or voiced. If either condition 0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0990			*			
0992 024E 66 TSTCM Unv_Flg1 -Is the new frame unvoiced?	0991	024C	62		TCX	FLAGS	
094		024D	38				
0993 0250 D3 SBR UPDT3B yes, continue 0994 0251 42 BR VOICE no, go to voiced code 0995 * * 0996 * The following code is reached if the new frame is 0997 * unvoiced. We inspect the flags to see if the previous 0998 * frame was either silent or voiced. If either condition 0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0992	024E	66		TSTCM	Unv_Flg1	-Is the new frame unvoiced?
0994 0251 42 BR VOICE no, go to voiced code 0252 5D 0995 * 0996 * The following code is reached if the new frame is 0997 * unvoiced. We inspect the flags to see if the previous 0998 * frame was either silent or voiced. If either condition 0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation		024F	10				
0252 5D 0995	0993	0250	D3		SBR	UPDT3B	yes, continue
0995	0994	0251	42		BR	VOICE	no, go to voiced code
* The following code is reached if the new frame is 0997		0252	5D				
<pre>* unvoiced. We inspect the flags to see if the previous * frame was either silent or voiced. If either condition * applies, then we branch to code which inhibits * interpolation. * interpolation. * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? * 0254 40 * BR UPDT5 yes, inhibit interpolation</pre>	0995			*			
0998 * frame was either silent or voiced. If either condition 0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0996			* The follow	ving code	e is reache	ed if the new frame is
0999 * applies, then we branch to code which inhibits 1000 * interpolation. 1001 * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0997			* unvoiced.	We inspe	ect the fla	ags to see if the previous
1000	0998			* frame was	either s	silent or v	voiced. If either condition
1001 * 1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	0999			* applies, t	then we b	oranch to	code which inhibits
1002 0253 66 UPDT3B TSTCM Sil_Flg2 -Was the last frame silent? 0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	1000			* interpolat	cion.		
0254 40 1003 0255 42 BR UPDT5 yes, inhibit interpolation	1001			*			
1003 0255 42 BR UPDT5 yes, inhibit interpolation	1002	0253	66	UPDT3B	TSTCM	Sil_Flg2	-Was the last frame silent?
		0254	40				
0256 63	1003	0255	42		BR	UPDT5	yes, inhibit interpolation
		0256	63				

1004							
1004	0257	66		тстсм	IInr Elan	Was the last	from unital and
1005	0257	80		TSTCM	011V_F192	-Was the last	rraille unvoiced
1006	0250	42		BR	TIDD#1	rrog don/+	ahanga anuthing
1006	0259 025A	65		BK	UPDT4	yes, don't	change anything
1007		42		חח	UPDT5	no inhihit	intompolation
1007	025B 025C			BR	01015	no, iniiidit	interpolation
1000	025C	63	*				
1008							
1009				_		ned if the new fi as to see if the	
1010				_	-	it was not, we n	-
1011					icea. II .	it was not, we in	eed to lillipit
1012			* interpola *	ICTOII.			
	025D	66	VOICE	тстсм	IInr Elan	Was the last	from moi godo
1014	025D 025E	80	VOICE	TSTCM	011V_F192	-Was the last	Ifame voiceu:
1015	025E 025F	42		BR	UPDT5	no disable	intompolation
1015	0251			BK	0PD15	no, disable	interpolation
1016	0260	63		DD	IIDDIII 4		
1016	0261	42		BR	UPDT4	yes, contin	ue
1017	0262	65					
	0063	<i>C</i> 1	IIDDEE	ODGM	Took Took	Tubibit into	1
1010	0263 0264	64	UPDT5	ORCM	Int_Inh	-Inhibit inter	polacion
1019	0264	20	*				
1019				at the m	onest flag	g. If the new fr	-mo ia o monost
1020					-		r the K factors,
1021							we can exit the
1022			* routine n		not need t	to be roaded and	we can exit the
1023			*	iow.			
	0265	66	UPDT4	TSTCM	R_FLAG	-Is repeat fla	n get?
1025	0266	02	OFDIT	IDICM	K_FEAG	is repeat tra	g bcc:
1026	0267	43		BR	RTN	yes, exit r	outine
1020	0268	0C		DIC	ICIIV	yes, exic i	oucine
1027	0200	UC	*				
1027				ed to lo	ad the "ne	ew" K factors (K	1 through K10)
1029						re 12 bit values	_
1030						ost significant	
1031				_		significant 4 bi	
1032			_			econd byte. For	
1033							K11 and K12 are
1034				_		s, and the code	
1035					_	or is read into	_
1036						ted to a pointe	
1037			_			uncoded factor.	
1038						consist of two b	
1039							factor and adding
1040			* the resul	t to the	start of	the table. Sin	ce the K5 through
1041							e coded factor is

1042			* added dir	ectly to	the star	t of the table. Once the pointer
1043			* has been	set up,	the uncod	ed factor is fetched and stored
1044			* into RAM.			
1045			*			
1046			*K1			
	0269	2F		CLA		
	026A	33		GET	4	-Get coded K1
					2	
	026B	31		GET	۷	-Get coded K1
	026C	2E		SALA		-Convert it to a
1051	026D	74		ACAAC	TBLK1	pointer to table element
	026E	37				
1052	026F	6D		LUAB		-Fetch MSB of uncoded K1
1053	0270	3A		IAC		
1054	0271	6B		LUAA		-Fetch fractional K1
1055	0272	62		TCX	K1V2	
	0273	16				
1056	0274	2A		TBM		-Store uncoded K1
1057	0275	21		IXC		
	0276	16		TAM		-Store fractional K1
1059			*K2			Socie fractional nr
	0277	2F	102	CLA		
	0278	33		GET	4	-Get coded K2
		31				
	0279	31		GET	2	-Get coded K2
1063	0057	0.77				
	027A	2E		SALA		-Convert it to a
1065	027B	74		ACAAC	TBLK2	pointer to table element
	027C	В7				
1066						
1067	027D	6D		LUAB		-Fetch MSB of uncoded K2
1068	027E	3A		IAC		
1069	027F	6В		LUAA		-Fetch fractional K2
1070	0280	62		TCX	K2V2	
	0281	1A				
1071	0282	2A		TBM		-Store uncoded K2
1072	0283	21		IXC		
	0284	16		TAM		-Store fractional K2
1074			*K3			Socie fractional na
	0285	2F	103	CLA		
					4	Cot Indox into V2 table
	0286	33		GET	4	-Get Index into K3 table
	0287	30		GET	1	-Get Index into K3 table
T0./8	0288	75		ACAAC	TBLK3	and add offset of table
	0289	37				
1079						
1080	028A	6В		LUAA		-Get uncoded K3
1081	028B	6A		TAMD	K3V2	-and store it in RAM
	028C	1E				
1082	028D	2F		CLA		

```
1083 028E
                           TAMD
                                   K3V2+1
           бA
    028F
           1F
1084
                *----K4-----
1085 0290
           2F
                           CLA
1086 0291
           33
                           GET
                                             -Get Index into K4 table
1087 0292
           30
                           GET
                                             -Get Index into K4 table
                                   1
1088 0293
           75
                           ACAAC
                                   TBLK4
                                                and add offset of table
    0294
           57
1089 0295
           6В
                           LUAA
                                             -Get uncoded K4
1090 0296
                                             -and store it in RAM
           бΑ
                           TAMD
                                   K4V2
    0297
           22
1091 0298
           2F
                           CLA
1092 0299
           бΑ
                           TAMD
                                   K4V2+1
    029A
           23
1093
1094
               * If this is an unvoiced frame, we only use four K factors,
1095
               * so we load zeroes to the rest of the K factors. If this
               * is a voiced frame, load the rest of the uncoded factors.
1096
1097
1098 029B
          62
                           TCX
                                   FLAGS
    029C 38
1099 029D
                                  Unv_Flg1 -Is this an unvoiced frame?
          66
                           TSTCM
    029E
           10
1100 029F
           42
                           BR
                                   UNVC
                                               Yes, zero rest of factors
    02A0
           E0
1101
1102
               * The following code is executed if the new frame is
1103
               * voiced. Since we assume that the fractional parameter is
1104
               * zero for the remaining K factors, the table elements are
               * only one byte long. The conversion to
1105
1106
               * a table pointer consists of adding the coded factor to the
1107
               * start of the table.
1108
1109
               *----K5----
1110 02A1
           2F
                           CLA
1111 02A2
           33
                           GET
                                             -Get Index into K5 table
                                   K5BITS
1112 02A3
           75
                           ACAAC
                                   TBLK5
                                               and add offset of table
          77
    02A4
1113
1114 02A5
           6B
                           LUAA
                                             -Get uncoded K5
1115 02A6
                           TAMD
                                   K5V2
                                               and store it in RAM
    02A7
           2.6
                *----Кб-----
1116
1117 02A8
           2F
                           CLA
1118 02A9
           33
                           GET
                                   K6BITS
                                             -Get Index into K6 table
1119 02AA
           75
                           ACAAC
                                   TBLK6
                                                and add offset of table
    02AB
           87
```

1120	02AC	6B		LUAA		-Get uncoded K6
1121	02AD	бA		TAMD	K6V2	and store it in RAM
	02AE	28				
1122			*K7			
1123	02AF	2F		CLA		
1124	02B0	33		GET	K7BITS	-Get Index into K7 table
1125	02B1	75		ACAAC	TBLK7	and add offset of table
	02B2	97				
1126	02B3	6B		LUAA		-Get uncoded K7
1127	02B4	6Α		TAMD	K7V2	and store it in RAM
	02B5	2A				
1128			*K8			
1129	02B6	2F		CLA		
1130	02B7	32		GET	K8BITS	-Get Index into K8 table
1131	02B8	75		ACAAC	TBLK8	and add offset of table
	02B9	Α7				
1132	02BA	6B		LUAA		-Get uncoded K8
1133	02BB	бA		TAMD	K8V2	and store it in RAM
	02BC	2C				
1134			*К9			
	02BD			CLA		
1136	02BE	32		GET	K9BITS	-Get Index into K9 table
1137	02BF	75			TBLK9	and add offset of table
	02C0	AF				
1138	02C1	6B		LUAA		-Get uncoded K9
	02C2	бA			K9V2	and store it in RAM
	02C3	2E				
			*K10			
	02C4	2F		CLA		
	02C5	32			K10BITS	-Get Index into K10 table
	02C6	75			TBLK10	and add offset of table
	02C7	в7				
		6B		LUAA		-Get uncoded K10
	02C9				K10V2	and store it in RAM
	02CA					
1146			*			
1147			* Since K11	and K12	are not 11	sed in LPC 10, the K11 and K12
1148			* code is c			
1149			*	0011000	040.	
1150			*K11			
1151			*	CLA		
1152			*	GET	K11BITS	-Get Index into K11 table
1153			*	ACAAC	TBLK11	and add offset of table
1154			*	LUAA		-Get uncoded K11
1155			*	TAMD	K11V2	and store it in RAM
1156			*K12		1C1 1 V Z	and beore it in ithis
1157			*	CLA		
110/				CHA		

1158			*	GET	K12BITS	-Get	Index into K12 table
1159			*	ACAAC	TBLK12	an	d add offset of table
1160			*	LUAA		-Get	uncoded K12
1161			*	TAMD	K12V2	an	d store it in RAM
1162			*				
1163	02CB	43		BR	RTN		
	02CC	0C					
1164			*				
1165							the K parameters need to
1166			* be zeroed	out. I	f the new	frame	is a stop frame or a
1167						_	arameters and set the
1168			* energy to	zero.	If the new	frame	is an unvoiced frame,
1169				eed to ze	ero out the	e unus	ed upper K parameters.
1170			*				
1171			*				
	02CD	2F	ZeroKs	CLA	_		
1173	02CE	6A		TAMD	ENV2	-Kill	Energy
	02CF	10				1 2 2	
1174	02D0	6A		TAMD	K1V2	-Kill	K1
1175	02D1	16		ma MD	77.1770 . 1		
11/5	02D2	6A		TAMD	K1V2+1		
1176	02D3	17		THA MID	TZ 23.7.2	v:11	W O
11/6	02D4 02D5	6A 1A		TAMD	K2V2	-Kill	7.2
1177	02D5 02D6	6A		TAMD	K2V2+1		
11//	02D0 02D7	1B		IAMD	KZVZŦI		
1178	02D7	6A		TAMD	K3V2	-Kill	K3
1170	02D0	1E		111111	105 V Z	1(111	11.5
1179	02DA	6A		TAMD	K3V2+1		
	02DB	1F					
1180	02DC	бA		TAMD	K4V2	-Kill	K4
	02DD	22					
1181	02DE	бА		TAMD	K4V2+1		
	02DF	23					
1182	02E0	2F	UNVC	CLA			
1183	02E1	6A		TAMD	K5V2	-Kill	K5
	02E2	26					
1184	02E3	бΑ		TAMD	K6V2	-Kill	K6
	02E4	28					
1185	02E5	бΑ		TAMD	K7V2	-Kill	K7
	02E6	2A					
1186	02E7	6Α		TAMD	K8V2	-Kill	K8
	02E8	2C					
1187	02E9	бΑ		TAMD	K9V2	-Kill	К9
	02EA	2E					
1188	02EB	бA		TAMD	K10V2	-Kill	K10
	02EC	30					

1189			*	TAMD	K11V2	-Kill K11
1190			*	TAMD	K12V2	-Kill K12
1191	02ED	43		BR	RTN	
	02EE	0C				
1192			*			
1193			* STOP AND	RETURN		
1194			*			
1195				_		entry points. STOP is reached
1196						et. It turns off
1197						e program. RTN is the general
1198						outine, it sets the Update flag
1199			* and leave	s the ro	utine.	
1200			*			
1201	02EF	62	STOP	TCX	MODE_BUF	
1000	02F0	3A				
1202	02F1	65		ANDCM	~LPC	-Turn off synthesis
1000	02F2	FD				
1203	02F3	65 		ANDCM	~INT1	-Disable interrupt
1004	02F4	FE		3.375.G14		
1204	02F5	65		ANDCM	~UNV	-Back to voiced for next word
1005	02F6	7F		ODGM	D.C.M.	Develol - DOM
1205	02F7	64		ORCM	PCM	-Enable PCM mode
1006	02F8	04		TTIM 70		
	02F9 02FA	11 1D		TMA		Cot made now above gotting
	02FA 02FB	2F		TAMODE		-Set mode per above setting
	02FC	1C		CLA TASYN		-Write a zero to the DAC
	02FC 02FD	6E		TCA	#FA	-Wille a zero to the DAC
1210	02FE	FA		ICA	πгΑ	
1211	02FF	3A	BACK	IAC		-Wait for minimum of 30
	0300	43	Diffic	BR	out	instruction cycles
	0301	04			040	
1213	0302	42		BR	back	
	0303	FF				
1214	0304	62	OUT	TCX	MODE_BUF	-Disable PCM
	0305	3A			_	
1215	0306	65		ANDCM	~PCM	
	0307	FB				
1216	0308	11		TMA		
1217	0309	1D		TAMODE		-Set mode per above setting
1218	030A	40		BR	SPEAK1	-Go back for next word
	030B	47				
1219						
1220	030C	62	RTN	TCX	FLAGS	-Set a flag indicating that
	030D	38				
1221	030E	64		ORCM	Update_Fl	g the parameters are updated
	030F	04				

1222						
1223	0310	62		TCX	MODE_BUF	-Get mode
	0311	3A				
1224	0312	66		TSTCM	LPC	-Are we speaking yet?
	0313	02				
1225	0314	43		BR	RTN1	yes, reenable interrupt
	0315	17				
1226	0316	3D		RETN		no, return for more data
1227						,
	0317	62	RTN1	TCX	FLAG1	-Inhibit any pending
	0318	39		1011	1 21101	rimitate and benearing
1220	0319	64		ORCM	Int_Off	interpolation interrupt
1229	031A	01		ORCM	IIIC_OII	incerpolación incerrupc
1020	USIA	UΙ				
1230	001-					
1231	031B	62		TCX	MODE_BUF	-Reenable the interrupt
	031C	3A				
1232	031D	64		ORCM	INT1	
	031E	01				
1233	031F	11		TMA		
1234	0320	1D		TAMODE		
1235						
1236	0321	62		TCX	FLAG1	-Reenable execution
	0322	39				
1237	0323	65		ANDCM	~Int Off	of the interpolation routine
	0324	FE				
1238	0325	40		BR	SPEAK LP	-Go back to loop
1230	0326	9C		Dit	<u> </u>	do bach to roop
1239	0320	20	*			
1240			* D6 SPEECH	DECODEM	C TADIEC	
			* DO SPEECH	DECODIN	G TABLES.	
1241					- 1- 1 -	
1242			* Energy de	coaing to	able	
1243			*			
	0327	00	TBLEN	BYTE		02,#03,#04,#05,#07,#0B
	032F	11		BYTE	#11,#1A,#	29,#3F,#55,#70,#7F,#00
1246						
1247			*			
1248			* Pitch per	iod deco	ding table	
1249			*			
1250	0337	0C	TBLPH	BYTE	#0C,#00	
1251	0339	10		BYTE	#10,#00	
1252	033B	10		BYTE	#10,#04	
	033D	10		BYTE	#10,#08	
	033F	11		BYTE	#11,#00	
	0341	11		BYTE	#11,#04	
	0343	11		BYTE	#11,#08	
	0345	11		BYTE	#11,#00 #11,#0C	
	0345	12			#12,#04	
T728	034/	12		BYTE	#14,#04	

1259	0349	12	BYTE	#12,#08
1260	034B	12	BYTE	#12,#0C
				•
1261	034D	13	BYTE	#13,#04
1262	034F	13	BYTE	#13,#08
1263	0351	14	BYTE	#14,#00
1264	0353	14	BYTE	#14,#04
1265	0355	14	BYTE	#14,#0C
1266	0357	15	BYTE	#15,#00
1267	0359	15	BYTE	#15,#08
1268	035B	15	BYTE	#15,#0C
1269	035D	16	BYTE	#16,#04
		16		
1270	035F		BYTE	#16,#0C
1271	0361	17	BYTE	#17,#00
1272	0363	17	BYTE	#17,#08
1273	0365	18	BYTE	#18,#00
1274	0367	18	BYTE	#18,#04
1275	0369	18	BYTE	
				#18,#0C
1276	036B	19	BYTE	#19,#04
1277	036D	19	BYTE	#19,#0C
1278	036F	1A	BYTE	#1A,#04
1279	0371	1A	BYTE	#1A,#0C
1280	0373	1B	BYTE	#1B,#04
1281	0375	1B	BYTE	#1B,#0C
1282	0377	1C	BYTE	#1C,#04
1283	0379	1C	BYTE	#1C,#0C
1284	037B	1D	BYTE	#1D,#04
1285	037D	1D	BYTE	#1D,#0C
1286	037F	1E	BYTE	#1E,#04
				•
1287	0381	1F	BYTE	#1F,#00
1288	0383	1F	BYTE	#1F,#08
1289	0385	20	BYTE	#20,#00
1290	0387	20	BYTE	#20,#0C
1291	0389	21	BYTE	#21,#04
1292	038B	21	BYTE	#21,#0C
1293				#22,#08
	038D	22	BYTE	
1294	038F	23	BYTE	#23,#00
1295	0391	23	BYTE	#23,#0C
1296	0393	24	BYTE	#24,#08
1297	0395	25	BYTE	#25,#00
1298	0397	25	BYTE	#25,#0C
1299	0399	26	BYTE	#26,#08
1300	039B	27	BYTE	#27,#04
1301	039D	28	BYTE	#28,#00
1302	039F	28	BYTE	#28,#0C
1303	03A1	29	BYTE	#29,#08
1304	03A3	2A	BYTE	#2A,#04
1305	03A5	2B	BYTE	#2B,#00

1306	03A7	2B	BYTE	#2B,#0C
1307	03A9	2C	BYTE	#2C,#08
1308	03AB	2D	BYTE	#2D,#04
				-
1309	03AD	2E	BYTE	#2E,#04
1310	03AF	2F	BYTE	#2F,#00
1311	03B1	30	BYTE	#30,#00
1312	03B3	30	BYTE	#30,#0C
1313	03B5	31	BYTE	#31,#0C
1314	03B7	32	BYTE	#32,#08
1315	03B9	33	BYTE	#33,#08
			BYTE	#34,#08
1316	03BB	34		•
1317	03BD	35	BYTE	#35,#08
1318	03BF	36	BYTE	#36,#08
1319	03C1	37	BYTE	#37,#08
1320	03C3	38	BYTE	#38,#08
1321	03C5	39	BYTE	#39,#08
1322	03C7	3A	BYTE	#3A,#08
1323	03C9	3B	BYTE	#3B,#0C
1324	03CB	3C	BYTE	#3C,#0C
1325	03CD	3D	BYTE	#3D,#0C
1326	03CF	3F	BYTE	#3F,#00
1327	03D1	40	BYTE	#40,#04
1328	03D3	41	BYTE	#41,#04
1329	03D5	42	BYTE	#42,#08
1330	03D7	43	BYTE	#43,#0C
1331	03D9	45	BYTE	#45,#00
1332	03DB	46	BYTE	#46,#04
1333	03DD	47	BYTE	#47,#08
1334	03DF	49	BYTE	#49,#00
1335	03E1	4A	BYTE	#4A,#04
1336	03E3	4B	BYTE	#4B,#0C
1337	03E5	4D	BYTE	#4D,#00
1338	03E7	4E	BYTE	#4E,#08
1339	03E9	50	BYTE	#50,#00
1340	03EB	51	BYTE	#51,#04
1341	03ED	52	BYTE	#52,#0C
1342	03EF	54	BYTE	#54,#08
	03F1	56	BYTE	#56,#00
	03F3	57	BYTE	#57,#08
	03F5	59	BYTE	#59,#04
1346	03F7	5A	BYTE	#5A,#0C
1347	03F9	5C	BYTE	#5C,#08
1348	03FB	5E	BYTE	#5E,#04
1349	03FD	60	BYTE	#60,#00
1350	03FF	61	BYTE	#61,#0C
1351	0401	63	BYTE	#63,#08
1352	0403	65	BYTE	#65,#04

1353	0405	67				ВҮТ	E	#67,	#04
1354	0407	69				вут	Έ	#69,	#00
1355	0409	6В				ВҮТ	Έ	#6B,	#00
1356	040B	6D				вут	Έ	#6D,	#00
1357	040D	6F				вут	Έ	#6F,	#00
1358	040F	71				вут	Έ	#71,	#00
1359	0411	73				вут	Έ	#73,	#04
1360	0413	75				вут	Έ	#75,	#04
1361	0415	77				вут	Έ	#77,	#08
1362	0417	79				вут	Έ	#79 ,	
1363	0419	7C				вут	Έ	#7C,	#00
1364	041B	7E				вут	Έ	#7E,	#04
1365	041D	80				вут	Έ	#80,	#08
1366	041F	82				вут	Έ	#82,	#0C
1367	0421	85				вут	Έ	#85,	#04
1368	0423	87				вут	Έ	#87,	#0C
1369	0425	8A				вут	Έ	#8A,	#04
1370	0427	8C				вут	Έ	#8C,	#0C
1371	0429	8F				вут	Έ	#8F,	#08
1372	042B	92				вут	Έ	#92,	#00
1373	042D	94				вут	Έ	#94,	#0C
1374	042F	97				вут	Έ	#97,	#08
1375	0431	9A				вут	Έ	#9A,	#04
1376	0433	9D				вут	Έ	#9D,	#00
1377	0435	A0				вут	Έ	#A0,	#00
1378									
1379			*						
1380			*	К1	paramet	er	decod	ling	table
1381			*						
1382	0437	81	TE	3LK1	L	вут	Έ	#81,	#00
1383	0439	82				вут	Έ	#82,	#04
1384	043B	83				вут	Έ	#83,	#04
1385	043D	84				вут	Έ	#84,	#08
1386	043F	85				ВҮТ	Έ	#85,	#0C
1387	0441	87				вут	Έ	#87,	#00
1388	0443	88				вут	Έ	#88,	#04
1389	0445	89				ВҮТ	Έ	#89,	#0C
1390	0447	8B				ВҮТ	Έ	#8B,	#04
1391	0449	8C				ВҮТ	Έ	#8C,	#0C
1392	044B	8E				вут	Έ	#8E,	#04
1393	044D	90				вут	Έ	#90,	#00
1394	044F	91				BYI	Œ	#91,	#0C
1395	0451	93				BYI	Œ	#93,	#08
1396	0453	95				ВҮТ	E	#95,	#08
1397	0455	97				ВҮТ	E	#97,	#04
1398	0457	99				вут	Œ	#99,	#08
1399	0459	9В				BYI	Œ	#9B,	#08

1400	045B	9D	BYTE	#9D,#08
1401	045D	9F	BYTE	#9F,#0C
1402	045F	A2	BYTE	#A2,#00
1403	0461	A4	BYTE	#A4,#04
1404	0463	A6	BYTE	#A6,#0C
1405	0465	A9	BYTE	#A9,#04
1406	0467	AB	BYTE	#AB,#08
1407	0469	AE	BYTE	#AE,#00
1408	046B	В0	BYTE	#B0,#0C
1409	046D	В3	BYTE	#B3,#08
1410	046F	В6	BYTE	#B6,#04
1411	0471	В9	BYTE	#B9,#00
1412	0473	BC	BYTE	#BC,#00
1413	0475	BF	BYTE	#BF,#04
1414	0477	C2	BYTE	#C2,#04
1415	0479	C5	BYTE	#C5,#08
1416	047B	C8	BYTE	#C8,#0C
				•
1417	047D	CC	BYTE	#CC,#04
1418	047F	CF	BYTE	#CF,#0C
1419	0481	D3	BYTE	#D3,#08
1420	0483	D7	BYTE	#D7,#08
1421	0485	DB	BYTE	#DB,#04
1422	0487	DF	BYTE	#DF,#04
1423	0489	E3	BYTE	#E3,#08
1424	048B	E7	BYTE	#E7,#0C
1425	048D	EC	BYTE	#EC,#00
1426	048F	F0	BYTE	#F0,#04
1427	0491	F4	BYTE	#F4,#0C
		_		
1428	0493	F9	BYTE	#F9,#0C
1429	0495	FE	BYTE	#FE,#0C
1430	0497	04	BYTE	#04,#04
1431	0499	09	BYTE	#09,#0C
1432	049B	0F	BYTE	#0F,#04
1433	049D	15	BYTE	#15,#08
1434	049F	1C	BYTE	#1C,#08
1435	04A1	23	BYTE	#23,#08
1436	04A3	2A	BYTE	#2A,#0C
1437	04A5	32	BYTE	#32,#08
	04A7	3A	BYTE	#3A,#08
1439		42	BYTE	#42,#0C
1440		4B	BYTE	#4B,#08
1441		54	BYTE	#54,#00
1442		5C	BYTE	#5C,#04
1443		65	BYTE	#65,#00
1444	04B3	6E	BYTE	#6E,#00
1445	04B5	78	BYTE	#78,#08
1446				

1447			*								
1448			*	К2	ра	arar	net	er	deco	ding	table
1449			*								
1450	04B7	8A	TE	3LK2	2			вұт	Έ	#8A	,#00
1451	04B9	98						вут	Œ	#98	,#00
1452	04BB	A3						вут	Œ	#A3	,#0C
1453	04BD	AD						вут	Œ	#AD	,#0C
1454	04BF	В4						вүт	Έ	#B4	,#08
1455	04C1	BA						вүт	Έ	#BA	,#08
1456	04C3	C0						ВҮТ	Œ	#C0	,#00
1457	04C5	C5						вүт	Œ	#C5	,#00
1458	04C7	C9						BYI	Œ	#C9	,#0C
1459	04C9	CE						BYI	Œ	#CE	,#04
1460	04CB	D2						BYI	Œ	#D2	,#0C
1461	04CD	D6						BYI	Œ	#D6	,#0C
1462	04CF	DA						BYI	Œ	#DA	,#0C
1463	04D1	DE						BYI	Œ	#DE	,#08
1464	04D3	E2						BYI	Œ	#E2	,#00
1465	04D5	E5						ВҮТ	Œ	#E5	,#0C
1466	04D7	E9						ВҮТ	Œ	#E9	,#04
1467	04D9	EC						ВҮТ	Œ	#EC	,#0C
1468	04DB	F0						ВҮТ	Œ	#F0	,#00
1469	04DD	F3						ВҮТ	Œ	#F3	,#04
1470	04DF	Fб						ВҮТ	Œ	#F6	,#08
1471	04E1	F9						BYI	Œ	#F9	,#0C
1472	04E3	FD						BYI	Œ	#FD	,#00
1473	04E5	00						ВҮТ	Œ	#00	,#00
1474	04E7	03						BYI	Œ	#03	,#04
1475	04E9	06						вүт	Œ	#06	,#04
1476	04EB	09						BYI	Œ	#09	,#04
1477	04ED	0C						ВҮТ	Έ	#0C	,#04
1478	04EF	OF						BYI	Œ	#0F	,#04
1479	04F1	12						BYI	Œ	#12	,#08
1480	04F3	15						ВҮТ	Έ	#15	,#08
1481	04F5	18						BYI	Έ	#18	,#08
1482	04F7	1B						ВҮТ	Έ	#1B	,#08
1483	04F9	1E						BYI	Έ	#1E	,#08
1484	04FB	21						BYI	Έ	#21	,#08
1485	04FD	24						ВҮТ	Έ	#24	,#0C
1486	04FF	27						BYI	Έ	#27	,#0C
1487	0501	2A						ВҮТ	Έ	#2A	,#0C
1488	0503	2D						BYI	Έ	#2D	,#0C
1489	0505	30						BYI	Œ	#30	,#0C
1490	0507	34						BYI	Œ	#34	,#00
1491	0509	37						BYI	Έ	#37	,#00
1492	050B	3A						BYI	Œ	#3A	,#04
1493	050D	3D						ВҮТ	Œ	#3D	,#00

```
1494 050F
             40
                                        #40,#00
                               BYTE
1495 0511
             43
                               BYTE
                                        #43,#00
1496 0513
             46
                               BYTE
                                        #46,#00
1497 0515
             49
                                        #49,#00
                               BYTE
1498 0517
             4C
                               BYTE
                                        #4C,#00
1499 0519
                                        #4F,#04
             4F
                               BYTE
1500 051B
             52
                               BYTE
                                        #52,#04
1501 051D
             55
                               BYTE
                                        #55,#04
1502 051F
             58
                               BYTE
                                        #58,#04
1503 0521
                                        #5B,#04
             5B
                               BYTE
1504 0523
             5E
                               BYTE
                                        #5E,#00
1505 0525
                                        #61,#00
             61
                               BYTE
1506 0527
             63
                               BYTE
                                        #63,#0C
1507 0529
             66
                               BYTE
                                        #66,#08
1508 052B
             69
                               BYTE
                                        #69,#04
1509 052D
             6C
                               BYTE
                                        #6C,#00
1510 052F
                               BYTE
                                        #6F,#00
1511 0531
                                        #72,#00
             72
                               BYTE
1512 0533
             76
                               BYTE
                                        #76,#04
1513 0535
             7C
                               BYTE
                                        #7C,#00
1514
1515
1516
                  * K3 parameter decoding table
1517
1518 0537
                 TBLK3
                               BYTE
                                        #8B, #9A, #A2, #A9, #AF, #B5, #BB, #C0
1519 053F
             C5
                               BYTE
                                        #C5, #CA, #CF, #D4, #D9, #DE, #E2, #E7
1520 0547
             EC
                               BYTE
                                        #EC, #F1, #F6, #FB, #01, #07, #0D, #14
1521 054F
             1A
                               BYTE
                                        #1A, #22, #29, #32, #3B, #45, #53, #6D
1522
1523
1524
                  * K4 parameter decoding table
1525
1526 0557
             94
                  TBLK4
                               BYTE
                                        #94, #B0, #C2, #CB, #D3, #D9, #DF, #E5
1527 055F
                               BYTE
                                        #EA, #EF, #F4, #F9, #FE, #03, #07, #0C
             EΑ
1528 0567
             11
                               BYTE
                                        #11, #15, #1A, #1F, #24, #29, #2E, #33
1529 056F
             38
                               BYTE
                                        #38, #3E, #44, #4B, #53, #5A, #64, #74
1530
1531
1532
                  * K5 parameter decoding table
1533
1534 0577
             А3
                  TBLK5
                               BYTE
                                        #A3, #C5, #D4, #E0, #EA, #F3, #FC, #04
1535 057F
             0C
                                        #0C, #15, #1E, #27, #31, #3D, #4C, #66
                               BYTE
1536
1537
1538
                  * K6 parameter decoding table
1539
1540 0587
             AA TBLK6
                               BYTE
                                        #AA, #D7, #E7, #F2, #FC, #05, #0D, #14
```

```
1541 058F 1C
                          BYTE
                                #1C, #24, #2D, #36, #40, #4A, #55, #6A
1542
1543
1544
               * K7 parameter decoding table
1545
1546 0597
           A3 TBLK7
                          BYTE
                                  #A3, #C8, #D7, #E3, #ED, #F5, #FD, #05
1547 059F
          0D
                          BYTE
                                  #0D, #14, #1D, #26, #31, #3C, #4B, #67
1548
1549
               * K8 parameter decoding table
1550
1551
1552 05A7 C5 TBLK8
                         BYTE
                                #C5, #E4, #F6, #05, #14, #27, #3E, #58
1553
1554
1555
               * K9 parameter decoding table
1556
1557 05AF
         B9 TBLK9
                         BYTE #B9, #DC, #EC, #F9, #04, #10, #1F, #45
1558
1559
1560
               * K10 parameter decoding table
1561
1562 05B7 C3 TBLK10
                         BYTE #C3, #E6, #F3, #FD, #06, #11, #1E, #43
1563
1564
1565
1566
1567
                   This is the lookup table giving the starting address *
1568
                   of each concatenation list.
1569
1570
1571 05BF 05C5' SENTENCE
                          DATA
                                  PHRASE0
1572 05C1 05CA'
                         DATA
                                  PHRASE1
1573 05C3 05CF'
                          DATA
                                  PHRASE2
1574
1575
                   This is the concatenation table giving the lists
1576
1577
                  of word numbers that define each phrase. Each
                   list is terminated by an #FF.
1578
1579
1580
               *****************
1581 05C5
          01 PHRASE0
                         BYTE
                                 1,2,3,4,#FF
1582 05CA
          04 PHRASE1
                                 4,3,2,1,#FF
                          BYTE
1583 05CF
           05 PHRASE2
                          BYTE
                                  5,4,3,2,1,#FF
1584
1585
1586
                  This is the lookup table for the speech stored at
1587
                   VOC.
```

1588			*	*
1589			******	***********
1590	05D5	0000′	SPEECH DATA	#0000
1591	05D7	05E3′	DATA	#0000+VOC Word 1 "One"
1592	05D9	0667′	DATA	#0084+VOC Word 2 "Two"
1593	05DB	06D9′	DATA	#00F6+VOC Word 3 "Three"
1594	05DD	075D′	DATA	#017A+VOC Word 4 "Four"
1595	05DF	07C3′	DATA	#01E0+VOC Word 5 "Five"
1596	05E1	086F′	DATA	#028C+VOC Word 6 "Six"
1597			* * * * * * * * * * * * * * * *	**********
1598			*	*
1599			* This is the	DTS speech coded with the D6 coding *
1600			* table	*
1601			*	*
1602			******	************
1603		05E3	VOC	
1604	05E3	68	BYTE	#68,#89,#84,#FB,#1A,#53,#64,#B2
1605	05EB	84	BYTE	#84,#87,#33,#C9,#35,#28,#9B,#A1
1606	05F3	D1	BYTE	#D1,#BA,#22,#3A,#94,#8D,#08,#BD
1607	05FB	BE	BYTE	#BE,#40,#1C,#6D,#BA,#BC,#14,#7E
1608	0603	33	BYTE	#33,#CE,#4E,#75,#8D,#EE,#2F,#03
1609	060B	BB	BYTE	#BB,#96,#4A,#46,#D7,#CF,#4A,#DD
1610	0613	4A	BYTE	#4A,#23,#54,#CE,#26,#B7,#74,#A5
	061B	9В	BYTE	#9B,#49,#7B,#62,#44,#B7,#32,#2D
	0623	95	BYTE	#95,#D9,#C8,#B4,#5B,#9A,#35,#5A
	062B	8D	BYTE	#8D, #C2, #DC, #2C, #CC, #5A, #CC, #0A
	0633	2B	BYTE	#2B, #6E, #EE, #66, #19, #69, #98, #27
	063B	75	BYTE	#75,#33,#CB,#80,#36,#AC,#94,#E6
	0643	A9	BYTE	#A9,#85,#CE,#4B,#1B,#EC,#CD,#D4
	064B	2C	BYTE	#2C,#50,#71,#52,#F5,#76,#AA,#1B
	0653	9B	BYTE	#9B, #38, #98, #58, #33, #56, #B6, #35
	065B	D2	BYTE	#D2, #58, #A3, #99, #C8, #7B, #AE, #D5
	0663	A8	BYTE	#A8, #5E, #FB, #01, #04, #B0, #78, #BA
	066B	2B	BYTE	
	0673	BA	BYTE	
	067B	36	BYTE	
	0683 068B	20 DC	BYTE	#20,#B8,#7F,#29,#AF,#8A,#CA,#10
		DC	BYTE	
	0693 069B	9F 43	BYTE	
		2E	BYTE	
	06A3 06AB	CF	BYTE	#2E, #CE, #6D, #29, #7B, #40, #17, #B1 #CF, #86, #B4, #4E, #64, #04, #47, #77
	06B3	A1	BYTE BYTE	#A1, #4B, #26, #32, #83, #9B, #13, #31
	06BB	AD	BYTE	#AD, #23, #59, #E3, #DA, #5E, #90, #B2
	06C3	85	BYTE	#85, #AC, #68, #65, #0D, #70, #E9, #4D
	06CB	36	BYTE	#36,#44,#38,#13,#87,#74,#12,#BB
	06D3	8D	BYTE	#8D, #52, #59, #90, #E4, #3D, #08, #60
100 I	0000	30	DITE	1.02/1.02/1.00/1.121/1.00/1.00/1.00

1635	06DB	CA	BYTE	#CA, #86, #13, #40, #66, #1A, #46, #00
1636	06E3	В9	BYTE	#B9, #EC, #8B, #00, #14, #59, #B7, #0A
1637	06EB	90	BYTE	#90, #5A, #35, #9A, #EC, #1E, #D9, #86
1638	06F3	A4	BYTE	#A4, #EA, #5C, #41, #69, #85, #B2, #A6
1639	06FB	EE	BYTE	#EE, #21, #AF, #CC, #24, #46, #63, #F7
1640		94	BYTE	#94,#53,#26,#E1,#65,#B1,#7B,#C9
1641		3B	BYTE	
				#3B, #A5, #77, #B8, #92, #3E, #E5, #9B
1642		B4	BYTE	#B4, #7B, #18, #EE, #9F, #0A, #5B, #52
1643		02	BYTE	#02,#B4,#EE,#4F,#8D,#23,#CF,#06
1644		2A	BYTE	#2A, #B7, #A7, #FE, #96, #04, #0A, #DD
1645		DF	BYTE	#DF, #D2, #70, #B6, #24, #C6, #9D, #25
1646	0733	61	BYTE	#61,#3C,#F0,#1C,#F3,#ED,#A4,#30
1647	073B	59	BYTE	#59, #74, #8E, #70, #E7, #96, #9B, #4C
1648	0743	0A	BYTE	#0A, #47, #74, #3B, #D1, #CC, #07, #95
1649	074B	21	BYTE	#21, #BE, #19, #65, #A6, #B3, #27, #20
1650	0753	CE	BYTE	#CE, #4C, #62, #93, #58, #41, #B4, #77
1651	075B	0A	BYTE	#0A, #3E, #80, #00, #A6, #6A, #03, #01
1652	0763	54	BYTE	#54, #A6, #4F, #0C, #10, #C6, #D1, #0B
1653		80	BYTE	#80,#97,#D4,#E0,#12,#2A,#D7,#37
1654		87	BYTE	#87,#58,#09,#E9,#18,#B7,#3F,#0D
1655		BD	BYTE	#BD, #87, #74, #8A, #99, #9F, #86, #DE
1656		43		
			BYTE	#43, #D9, #26, #EA, #37, #C5, #EC, #A1
1657		A9	BYTE	#A9,#B0,#F3,#91,#71,#FE,#30,#60
1658		83	BYTE	#83,#B3,#B1,#C4,#7F,#1A,#B3,#ED
1659		8E	BYTE	#8E, #D4, #A2, #3F, #CC, #84, #AD, #4A
1660	07A3	1B	BYTE	#1B, #E8, #1F, #D6, #EA, #38, #A4, #1C
1661	07AB	E6	BYTE	#E6,#0F,#5B,#63,#49,#D4,#0F,#F3
1662	07B3	В9	BYTE	#B9,#83,#B1,#7B,#E2,#87,#7B,#DD
1663	07BB	D5	BYTE	#D5, #BA, #A8, #E8, #C5, #5D, #0F, #00
1664	07C3	08	BYTE	#08,#90,#FB,#51,#23,#80,#AB,#19
1665	07CB	4A	BYTE	#4A,#00,#B9,#97,#0D,#01,#34,#59
1666	07D3	49	BYTE	#49,#0C,#D0,#A5,#29,#11,#80,#E5
1667	07DB	86	BYTE	#86, #58, #EA, #BE, #32, #36, #27, #F5
1668	07E3	69	BYTE	#69, #B5, #4C, #18, #CB, #9B, #DA, #B5
1669	07EB	7A	BYTE	#7A, #AA, #EC, #61, #45, #6B, #4B, #33
1670	07F3	F0	BYTE	#F0,#6F,#D1,#94,#25,#A5,#ED,#15
1671		37	BYTE	#37,#68,#EA,#9C,#D4,#75,#BA,#ED
1672		34	BYTE	#34,#6D,#4E,#19,#7B,#CD,#76,#9A
1673		_	BYTE	#7A, #BB, #CC, #A2, #F2, #18, #4D, #B9
		7A		
1674		59	BYTE	#59,#96,#59,#71,#B4,#A4,#3C,#2A
1675		CB	BYTE	#CB, #BC, #5A, #5C, #52, #67, #A6, #4D
1676		36	BYTE	#36,#36,#AA,#61,#17,#D3,#2E,#6F
1677		22	BYTE	#22,#93,#F4,#05,#61,#1F,#56,#52
1678	0833	69	BYTE	#69, #E7, #41, #B3, #0F, #32, #E1, #AC
1679	083B	E2	BYTE	#E2, #B0, #D9, #EB, #95, #34, #5C, #7E
1680	0843	52	BYTE	#52, #EC, #E5, #44, #1B, #4A, #79, #C1
1681	084B	F6	BYTE	#F6,#3A,#6D,#1C,#9A,#76,#66,#BB

```
1682 0853
                                           #51, #32, #16, #89, #94, #99, #DD, #96
                                 BYTE
1683 085B
              8F
                                 BYTE
                                           #8F, #69, #C9, #6A, #D5, #6E, #F2, #52
1684 0863
              21
                                 BYTE
                                           #21, #62, #6A, #62, #37, #24, #2D, #22
                                           #11, #97, #07, #00, #04, #F0, #2A, #08
1685 086B
              11
                                 BYTE
1686 0873
                                           #13, #C0, #BF, #F9, #44, #00, #FF, #EE
                                 BYTE
                                           #95, #00, #7C, #A5, #D3, #02, #F0, #B5
1687 087B
              95
                                 BYTE
1688 0883
                                           #DA, #94, #62, #C6, #17, #8D, #D9, #B7
              DA
                                 BYTE
1689 088B
              4B
                                 BYTE
                                           #4B, #BE, #97, #8B, #25, #CB, #D7, #A5
1690 0893
              5A
                                 BYTE
                                           #5A, #AA, #4D, #72, #F7, #DB, #D4, #2F
                                           #BD, #4C, #75, #EA, #6B, #5A, #84, #15
1691 089B
              BD
                                 BYTE
1692 08A3
                                 BYTE
                                           #D1, #DD, #BD, #11, #00, #80, #01, #1C
1693 08AB
                                           #6F, #6B, #01, #78, #AC, #BE, #05, #E0
                                 BYTE
              6F
1694 08B3
                                           #5F, #75, #62, #80, #7F, #D0, #9D, #01
                                 BYTE
1695 08BB
              BE
                                 BYTE
                                           #BE, #8F, #7B, #02, #78, #3B, #5D, #1E
1696 08C3
              0.8
                                 BYTE
                                           #08, #F0, #15, #3E, #13, #C0, #57, #F3
1697 08CB
              4C
                                           #4C, #00, #7F, #CF, #38, #01, #FC, #81
                                 BYTE
1698 08D3
                                 BYTE
                                           #32, #0C, #F0, #5F, #C2, #85, #62, #C5
1699 08DB
                                           #0D, #85, #59, #9B, #5A, #25, #D5, #87
              0D
                                 BYTE
1700 08E3
                                           #A4, #AA, #67, #A5, #5A, #04, #5B, #62
              A4
                                 BYTE
1701 08EB
              D7
                                 BYTE
                                           #D7, #DC, #52, #4B, #9A, #C9, #A9, #F2
1702 08F3
              49
                                 BYTE
                                           #49, #E9, #46, #6D, #37, #94, #FE, #C4
                                           #8C, #75, #B3, #58, #52, #CB, #64, #A6
1703 08FB
              8C
                                 BYTE
1704 0903
                                 BYTE
                                           #2C, #53, #23, #47, #A6, #35, #6B, #DE
              2C
1705 090B
                                           #C8, #9A, #23, #6B, #A5, #55, #E0, #36
              C8
                                 BYTE
1706 0913
                                 BYTE
                                           #C9, #1A, #B7, #D2, #3E, #0E, #26, #67
              C9
1707 091B
              8D
                                 BYTE
                                           #8D, #4B, #66, #AF, #26, #99, #BB, #D5
1708 0923
              40
                                 BYTE
                                           #40, #B5, #97, #2D, #36, #95, #3A, #E6
1709 092B
                                 BYTE
                                           #03, #00, #A6, #2A, #5A, #BE, #D6, #45
              03
1710 0933
                                 BYTE
                                           #E8, #50, #C9, #5C, #A9, #EC, #7A, #76
1711 093B
                                           #A9, #8C, #91, #65, #B8, #FD, #B6, #54
              A9
                                 BYTE
1712 0943
                                 BYTE
                                           #D6, #3C, #52, #AC, #D9, #5A, #8A, #9B
              D6
                                           #E9, #11, #6D, #3F, #2D, #E5, #29, #96
1713 094B
              E9
                                 BYTE
1714 0953
              50
                                 BYTE
                                           #50, #AE, #E7, #A6, #FE, #92, #2B, #28
1715 095B
              75
                                           #75, #AB, #DD, #A6, #8F, #29, #D4, #D9
                                 BYTE
1716 0963
              59
                                 BYTE
                                           #59, #00, #0C, #B0, #08, #D4, #0A, #C0
1717 096B
                                           #13, #E6, #AE, #00, #6B, #7D, #9B, #02
              13
                                 BYTE
1718 0973
              8C
                                 BYTE
                                           #8C, #E5, #32, #0F, #A4, #25, #53, #73
1719 097B
              57
                                 BYTE
                                           #57, #50, #53, #D1, #93, #C5, #3C, #5B
1720 0983
                                           #65, #99, #18, #CA, #7C, #99, #65, #BC
              65
                                 BYTE
1721 098B
                                 BYTE
                                           #CE, #8D, #65, #4A, #0F, #4D, #9D, #53
              CE
1722 0993
                                 BYTE
                                           #C6, #9E, #D3, #1C, #65, #4E, #2C, #23
1723 099B
                                           #3F, #3B, #52, #D2, #4F, #95, #9E, #9F
              3F
                                 BYTE
1724 09A3
                                 BYTE
                                           #1D, #29, #E9, #A7, #4A, #37, #B7, #4F
              1D
1725 09AB
              Α5
                                 BYTE
                                           #A5, #B2, #35, #A5, #9B, #DB, #A7, #52
1726 09B3
                                           #D9, #9A, #D2, #C9, #93, #93, #A8, #74
                                 BYTE
                                           #4D, #E9, #96, #D9, #F2, #54, #B2, #BA
1727 09BB
              4D
                                 BYTE
1728 09C3
              8C
                                 BYTE
                                           #8C, #F2, #BA, #09, #69, #9D, #59, #46
```

```
1729 09CB
                                           #65, #1E, #99, #96, #56, #4C, #A3, #38
                                 BYTE
1730 09D3
              54
                                 BYTE
                                           #54, #CC, #5B, #0B, #B9, #91, #AD, #1B
1731 09DB
              9E
                                 BYTE
                                           #9E, #C5, #45, #D9, #18, #73, #C2, #0C
1732
1733
                   *EXCITATION FUNCTION
1734
1735 4000
                                           #4000
                                 AORG
1736 4000
              0.0
                                 BYTE
                                           #00, #A2, #00, #AF, #00, #BA, #00, #C2
1737 4008
                                 BYTE
                                           #00, #C7, #00, #C9, #00, #CA, #00, #C6
                                           #00, #C2, #00, #BC, #00, #B5, #00, #AD
1738 4010
              0.0
                                 BYTE
1739 4018
                                 BYTE
                                           #00, #A5, #00, #9E, #00, #9A, #00, #95
1740 4020
                                           #00, #95, #00, #98, #00, #9F, #00, #A8
              00
                                 BYTE
1741 4028
                                           #00, #B8, #00, #CA, #00, #E3, #00, #FE
                                 BYTE
1742 4030
              01
                                 BYTE
                                           #01, #1F, #01, #41, #01, #69, #01, #91
1743 4038
                                 BYTE
                                           #01, #BD, #01, #E8, #02, #16, #02, #40
1744 4040
              02
                                 BYTE
                                           #02,#6C,#02,#92,#02,#B9,#02,#D9
1745 4048
                                 BYTE
                                           #02, #F8, #03, #0F, #03, #25, #03, #32
1746 4050
                                           #03, #3F, #03, #43, #03, #47, #03, #45
              03
                                 BYTE
1747 4058
                                           #03, #45, #03, #3F, #03, #3D, #03, #3A
                                 BYTE
1748 4060
              03
                                 BYTE
                                           #03, #3D, #03, #41, #03, #4E, #03, #5F
1749 4068
                                 BYTE
                                           #03, #7B, #03, #A0, #03, #D2, #04, #0D
1750 4070
                                           #04, #57, #04, #AD, #05, #11, #05, #82
              04
                                 BYTE
1751 4078
                                 BYTE
                                           #06,#00,#06,#8A,#07,#1F,#07,#BD
              06
1752 4080
                                           #08, #64, #09, #11, #09, #C1, #0A, #74
              0.8
                                 BYTE
1753 4088
                                 BYTE
                                           #0B, #26, #0B, #D5, #0C, #7F, #0D, #20
                                           #0D, #B7, #0E, #40, #0E, #BB, #0F, #24
1754 4090
              0D
                                 BYTE
1755 4098
                                 BYTE
                                           #OF, #7A, #OF, #BC, #OF, #E9, #OF, #FF
1756 40A0
              ΟF
                                 BYTE
                                           #0F, #FF, #0F, #E9, #0F, #BC, #0F, #7A
1757 40A8
                                 BYTE
                                           #0F, #24, #0E, #BB, #0E, #40, #0D, #B7
                                           #0D, #20, #0C, #7F, #0B, #D5, #0B, #26
1758 40B0
              UD
                                 BYTE
1759 40B8
                                 BYTE
                                           #0A, #74, #09, #C1, #09, #11, #08, #64
                                           #07, #BD, #07, #1F, #06, #8A, #06, #00
1760 40C0
              07
                                 BYTE
1761 40C8
                                 BYTE
                                           #05, #82, #05, #11, #04, #AD, #04, #57
1762 40D0
              0.4
                                 BYTE
                                           #04,#0D,#03,#D2,#03,#A0,#03,#7B
1763 40D8
                                 BYTE
                                           #03, #5F, #03, #4E, #03, #41, #03, #3D
                                           #03, #3A, #03, #3D, #03, #3F, #03, #45
1764 40E0
              03
                                 BYTE
1765 40E8
                                 BYTE
                                           #03,#45,#03,#47,#03,#43,#03,#3F
                                           #03, #32, #03, #25, #03, #0F, #02, #F8
1766 40F0
              0.3
                                 BYTE
1767 40F8
                                 BYTE
                                           #02, #D9, #02, #B9, #02, #92, #02, #6C
1768 4100
              02
                                 BYTE
                                           #02,#40,#02,#16,#01,#E8,#01,#BD
1769 4108
                                 BYTE
                                           #01, #91, #01, #69, #01, #41, #01, #1F
                                           #00, #FE, #00, #E3, #00, #CA, #00, #B8
1770 4110
              00
                                 BYTE
1771 4118
              00
                                 BYTE
                                           #00, #A8, #00, #9F, #00, #98, #00, #95
                                           #00, #95, #00, #9A, #00, #9E, #00, #A5
1772 4120
              0.0
                                 BYTE
1773 4128
                                           #00, #AD, #00, #B5, #00, #BC, #00, #C2
                                 BYTE
1774 4130
                                          #00, #C6, #00, #CA, #00, #C9, #00, #C7
              00
                                 BYTE
1775 4138
              00
                                 BYTE
                                           #00, #C2, #00, #BA, #00, #AF, #00, #A2
```

1776	4140	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
1777	4148	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
1778	4150	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
1779	4158	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
1780	4160	3A	BYTE	#3A,#80,#3A,#80,#3A,#80,#3A,#80
1781	4168	3A	BYTE	#3A, #80, #3A, #80, #3A, #80, #3A, #80
1782	4170	3A	BYTE	#3A, #80, #3A, #80, #3A, #80, #3A, #80
1783	4178	3A	BYTE	#3A,#80,#3A,#80,#3A,#80,#3A,#80
1784	4180	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1785	4188	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1786	4190	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1787	4198	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1788	41A0	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1789	41A8	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1790	41B0	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1791	41B8	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1792	41C0	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
1793	41C8	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF

Appendix C

External ROM Initialization

This chapter contains the code for a sample program that initializes the TSP60C18 speech ROM.

```
0002
               * This is the TSP50C10/11 assembler source for the
0003
               * initialization routine for the TSP60C18 speech ROM.
               * It assumes that the desired starting byte address
0005
               * is located at an arbitrary point in RAM. For
               * purposes of checkout, this routine uses the memory
0006
               * location #10 for the most significant byte of the
0007
0008
               * address and the memory location #11 for the least
0009
               * significant byte of the address.
0010
0011
               * In actual use, the values given for Addr_MSB and
0012
               * Addr_LSB in the equate block should be replaced so
               * as to point to the actual location in RAM used in
0013
0014
               * the program.
0015
               \mbox{\scriptsize \star} The following interconnections are assumed by the
0016
               * routine:
0017
0018
0019
                   TSP50C10/11
                                     TSP60C18
0020
                     B(0) ----- STR
0021
                     B(1) ----- R/W
0022
                     A(0) ----- C(0)
0023
                           ----- C(1)
0024
                     A(1)
                           ----- C(2)
0025
                     A(2)
                           ----- C(3)
0026
                     A(3)
                           ---- SCLK
0027
                     A(7)
0028
0029
                  A0 and CEB on the TSP60C18 should be tied low.
0030
                  HCLB on the TSP60C18 should be tied high.
0031
               * After calling this program, use the standard
0032
0033
               * synthesis routine.
0034
0035
               * To use internal speech afterwards, clear the
0036
               * EXTROM bit of the mode register.
0037
               * The strategy used in this routine is as follows:
0038
0039
                     Put the TSP50C10/11 in external ROM mode.
0040
0041
                     Do a dummy write.
                     Load the 16-bit starting ROM address four
0042
0043
                        bits at a time. For each nibble of the
0044
                        address, present the nibble to the
0045
                        TSP60C18 by outputting it on the TSP50C10/11
0046
                        ports A(0) to A(3) and then pulsing B(0)
0047
                        low.
0048
                    Do a dummy read to ensure that the internal
0049
                        pointers in the TSP60C18 are OK.
0050
                     Burn eight instruction cycles.
0051
                     Perform two GET 2 instructions.
0052
                     If the 16-bit address is odd, then do a GET 8.
0053
```

```
0054
0055
               * Although the TSP60C18 is internally organized on
              * word (16-bit) boundaries, the address that this
0056
              * subroutine uses is expressed in byte (8-bit)
0058
              * boundaries. The address located at Addr_MSB and
0059
              * Addr_LSB is therefore right-shifted one bit before
0060
              * being loaded to the TSP60C18. If the original
              * address contains a one in the least significant bit
0061
0062
              * position, a GET8 instruction is executed at the
              * end of the program to move one byte further
0063
              * (halfway between word boundaries) in memory.
0064
0065
              \mbox{\ensuremath{^{\star}}} When this routine is used to address an external
0066
0067
              * ROM, both pins of Port B and A(0,1,2,3,7) are
              * dedicated for use in addressing the ROM. The Port
0068
              * B pins and A(7) need to be maintained as outputs
0069
              \star in their initialized state when not in this routine
0070
0071
              * or the address loaded in the ROM may be lost.
0072
              * This routine is reached by a
0073
0074
              * CALL INIT
0075
0076
0077
               * instruction.
0078
0079
               ************
0800
0081
0082
                  EQUATE BLOCK
0083
               0084
0085
0086
                  Data Address
0087
            0010 Addr_MSB EQU
0011 Addr_LSB EQU
                                    #10 Most significant byte of addr
0088
                                    #11 Least significant byte of addr
0089
0090
0091
              * Mode Buffer - Because the contents of the mode
0092
               * register cannot be read and because other bits in
0093
               * the mode register need to be maintained when a bit
0094
               * is set or cleared, a copy of the mode register
0095
               * is maintained in RAM. The copy is first changed
0096
               * and then the copy is written to the mode register.
0097
0098
            0012 Mode buf EQU
                                    #12
                                         Address of copy of mode register
0099
0100
               * Temp - A scratch working register to
0101
              * use for massaging the address.
0102
            0013 Temp
0103
                           EQU
                                    #13
                                          Temporary working register
0104
               * The following data is used to set or clear the
0105
              * EXTROM bit in the MODE Register.
0106
```

```
0107
0108
            0010
                                    #10
                                          Logically OR mode with this
                 ExtRom
                           EOU
0109
                                          Logically AND mode with this
            00EF
                 IntRom
                           EOU
                                    #EF
0110
0111
               * Output port definitions
0112
0113
            0800
                 Input_A EQU
                                    #80
                                          Read here for Port A input
0114
           0081 Special_A EQU
                                   #81
                                          Set to 1 for open drain
0115
           0082
                 IO_A
                                   #82
                                          Set to 0 for input, 1 for output
                          EQU
0116
           0083
                 Output_A EQU
                                   #83
                                          Write here for Port A output
                 Input_B EQU
                                          Read here for Port B input
0117
           0084
                                   #84
0118
           0085
                 Special_B EQU
                                    #85
                                          Set to 1 for open drain
0119
           0086 IO B
                         EQU
                                    #86
                                          Set to 0 for input, 1 for output
0120
           0087 Output_B EQU
                                          Write here for Port B output
                                    #87
               ***************
0121
0122
               * Start Routine
0123
0124
               ************
0125
0126
               * In general, when A(0,1,2,3,7) are used as outputs,
0127
0128
              * the other Port A pins should not be disturbed, so
0129
              * the required bits are masked. An OR is performed
0130
               * in the required high states.
0131
0132
0133
     0000 62 INIT
                       TCX
                                 IO_A
                                          Set up Port A7 to output
      0001
           82
0134
     0002
           65
                       ANDCM
                                 #7F
      0003
           7F
0135
     0004
           64
                       ORCM
                                 #80
      0005
           80
0136
     0006
           62
                       TCX
                                Output_A Set Port A7 to 1
      0007
           83
     0008
0137
           65
                       ANDCM
                                 #7F
      0009
           7F
     000A
0138
           64
                       ORCM
                                 #80
      000B
           80
0139
0140
0141
               * The B port is simpler because all Port B pins
0142
               * are changed.
0143
0144
     000C
                       TCA
                                 #03
                                          Set Port B output data
           бE
      000D
           03
0145
     000E
                        TAMD
                                 Output_B bits high
           бΑ
      000F
           87
0146
     0010
           бΑ
                        TAMD
                                 IO_B
                                          Set Port B to output state
      0011
           86
0147
0148
               * Set external ROM mode by ORing the correct bit in
0149
               * the RAM location that is used to maintain a copy of
0150
               * the current state of the mode register. Then
```

```
0151
                * write the result to the mode register.
0152
0153
      0012
                          TCX
                                    Mode_buf Point to local copy
            62
      0013
            12
0154
      0014
            64
                          ORCM
                                    ExtRom
                                              Set bit to local copy
      0015
            10
0155
      0016
                          TMA
                                               Copy local copy
            11
0156
      0017
                          TAMODE
                                               to mode register
0157
                 * Do a dummy write
0158
      0018
             62
                          TCX
                                    Output_B
                                                     В1
                                                                  вO
      0019
             87
      001A
0159
             65
                          ANDCM
                                     #FD
                                                  R/W_{-} = 0
                                                               STRB = 1
      001B
            FD
0160
      001C
            65
                          ANDCM
                                                  R/W = 0
                                                               STRB = 0
                                     #FE
      001D
            FE
0161
      001E
            64
                          ORCM
                                     #01
                                                  R/W_{-} = 0
                                                               STRB = 1
      001F
             01
0162
      0020
                                                  R/W_{-} = 1
            64
                          ORCM
                                     #03
                                                               STRB = 1
      0021
            03
0163
0164
                  Intialize the internal registers of the TSP50C10/11
0165
                  for new input by performing a LUAPS.
0166
0167
      0022
            6C
                          LUAPS
0168
0169
                * Set up A0-A3, A7 as output.
0170
0171
      0023
                          TCX
            62
                                    IO_A
      0024
            82
0172
      0025
             64
                          ORCM
                                     #8F
      0026
             8F
0173
0174
0175
                  Present lower nibble of LSB of address to ROM.
0176
0177
      0027
                          TMAD
                                    Addr_LSB Get LSB
             69
      0028
             11
0178
      0029
                          SARA
                                              Divide address by 2
             15
0179
      002A
             62
                          TCX
                                    TEMP
      002B
             13
0180
      002C
                          TAM
                                              Move to working register
             16
0181
      002D
             65
                          ANDCM
                                     #0F
                                              Mask off upper nibble
      002E
             0F
0182
      002F
             64
                          ORCM
                                     #80
                                              Ensure A(7) high
      0030
             80
0183
      0031
             11
                          TMA
                                              Move nibble through A reg
0184
      0032
             бΑ
                          TAMD
                                    Output A to output
      0033
             83
0185
                 * Latch first nibble of address to ROM.
0186
0187
                          TCA
0188
      0034
             бE
                                    #00
                                               Str Low
      0035
             00
```

0189	0036 0037	6A 87		TAMD	Output_B	
0190			*			
0191	0038 0039	6E 01		TCA	#01	Str High
0192	003A 003B	6A 87		TAMD	Output_B	
0193	0035	0 /	*			
0194			* Drecent	unner ni	hhle of I.	SB of address to ROM.
0195			*	apper iii	DDIC OI L	ob of address to hom.
0196	003C	69		TMAD	Addr_LSB	Cat I.CR
0170	003C	11		INAD	AddI_LDD	CCC LIST
0197	003E	15		SARA		Position 2nd
0198	003E	15		SARA		nibble
0199	0040	15		SARA		IIIDDIE
	0040	15		SARA		
	0041	15		SARA		
	0042	16				Move to working register
	0043			TAM	# O E2	2 2
0203		65		ANDCM	#0F	Mask off high bits
0004	0045	0F		ODGM	400	D 7/7\ bi-bi-bi5
0204	0046	64		ORCM	#88	Ensure A(7), high bit of
0005	0047	88	*			nibble set high
0205				124	Map ! - 1	
0206						w, then transfer
0207			* that to	upper bi	t or upper	r LSB nibble.
0208	0040	<i>c</i> 0	^	max.	7 11 MOD	Table of MCD of addisons
0209	0048	62		TCX	Adar_MSB	Look at MSB of address
0010	0049	10		ECECA.	11.0.1	T
0210	004A	66		TSTCM	#01	Is lower bit high?
0011	004B	01			1	7
0211	004C	40		BR	INIT_1	yes, do nothing
0010	004D	52		max.	man.	1-1-1
0212	004E	62		TCX	TEMP	no, reset bit in working
0010	004F	13		7.17D C1.6		
0213	0050	65		ANDCM	#F7	register to same state
0014	0051	F7	*			
0214	0050	<i>-</i> 0				
0215	0052	69	INIT_1	TMAD	TEMP	Move nibble through A reg
0016	0053	13				
0216	0054	6A		TAMD	Output_A	to output
	0055	83				
0217			*			_
0218				second nib	ble of add	dress to ROM.
0219			*			
0220	0056	6E		TCA	#00	Str Low
	0057	00				
0221	0058	6A		TAMD	Output_B	
	0059	87				
0222		_	*			
0223	005A	6E		TCA	#01	Str High
	005B	01				
0224	005C	6A		TAMD	Output_B	
	005D	87				

```
0225
0226
                * Present lower nibble of MSB of address to ROM.
0227
0228
      005E
            69
                          TMAD
                                    Addr_MSB
                                                  Get MSB
      005F
             10
0229
      0060
                          TCX
                                    Temp
            62
      0061
            13
0230
      0062
            15
                          SARA
                                              Divide address by 2
0231
      0063
            16
                          TAM
                                              Move to working register
0232
      0064
            65
                          ANDCM
                                     #0F
                                              Mask off upper nibble
      0065
            0F
0233
      0066
            64
                          ORCM
                                    #80
                                              Ensure A(7) high
      0067
            80
0234
      0068
            11
                                              Move nibble through A reg
                          TMA
0235
      0069
            бΑ
                          TAMD
                                    Output_A to output
      006A
            83
0236
0237
                  Latch third nibble of address to ROM.
0238
0239
      006B
                          TCA
                                    #00
                                              Str Low
             бE
      006C
             0.0
0240
      006D
                          TAMD
                                    Output_B
            бA
      006E
            87
0241
0242
      006F
                                    #01
                                              Str High
             бΕ
                          TCA
      0070
            0.1
0243
      0071
             бΑ
                          TAMD
                                    Output_B
      0072
            87
0244
0245
                  Present upper nibble of MSB of address to ROM.
0246
0247
      0073
             69
                          TMAD
                                    Addr MSB Get MSB
      0074
             10
0248
      0075
             15
                          SARA
                                              Position most significant
0249
      0076
                                              nibble for
             15
                          SARA
                                              output
0250
      0077
                          SARA
             15
0251
      0078
             15
                          SARA
0252
      0079
             15
                          SARA
0253
      007A
             16
                          MAT
                                              Move to working register
0254
      007B
                          ANDCM
                                    #0F
                                              Mask off upper nibble
             65
      007C
             0F
0255
      007D
             64
                          ORCM
                                     #80
                                              Ensure A(7) high
      007E
0256
      007F
             11
                          TMA
                                              Move nibble through A reg
0257
      0800
             бΑ
                          TAMD
                                    Output A to output
      0081
             83
0258
                  Latch fourth nibble of address to ROM.
0259
0260
0261
      0082
             бE
                          TCA
                                    #00
                                              Str Low
      0083
             00
0262
      0084
             бΑ
                          TAMD
                                    Output_B
      0085
             87
```

```
0263
0264
                           TCA
                                     #01
                                               Str High
      0086
             бE
      0087
             01
0265
      0088
                           TAMD
                                     Output_B
             бΑ
      0089
             87
0266
0267
                  Place Port A0-A3 in the high-impedance state.
0268
0269
      008A
             62
                          TCX
                                     IO_A
      008B
             82
0270
      008C
             65
                           ANDCM
                                     #F0
      008D
             F0
0271
0272
                  Set R/W_{\perp} to 1.
0273
0274
      008E
             62
                          TCX
                                     Output_B
      008F
             87
0275
      0090
             64
                           ORCM
                                     #03
      0091
             03
0276
0277
                 * Burn 8 instruction cycles.
0278
0279
      0092
             2F
                          CLA
0280
      0093
             2F
                          CLA
0281
      0094
             2F
                           CLA
0282
      0095
             2F
                           CLA
0283
      0096
             2F
                           CLA
0284
      0097
             2F
                           CLA
0285
      0098
             2F
                           CLA
                          CLA
0286
                  Do 2 GET2s.
0287
0288
0289
      0099
             31
                          GET
                                     2
0290
      009A
             31
                          GET
0291
                 * As the above address was loaded, it was divided
0292
                 * to change it from the byte address that
0293
0294
                 * was loaded in RAM into the word address that
                 * the ROM expects. If the original address
0295
0296
                 * was odd, get 8 bits from the ROM to
0297
                 * move one byte further into the ROM to get to the
0298
                 * correct byte boundary.
0299
0300
      009B
             62
                          TCX
                                     Addr LSB Look at MSB of address
      009C
             11
0301
      009D
             66
                          TSTCM
                                     #01
                                               Is address odd?
      009E
             01
0302
      009F
             40
                          BR
                                     INIT_2
                                               yes, get another byte
      00A0
             A2
0303
      00A1
             3D
                          RETN
                                               no, do nothing
                                     2
0304
      00A2
             31 INIT_2
                           GET
                                               Get a byte in 3 stages
0305
      00A3
             31
                          GET
                                     2
```

0306	00A4	33	GET	4
0307	00A5	3D	RETN	
0308			* * * * * * * * * * * * * * * * * * *	*********

Appendix D

DTMF Program

This chapter contains the code for a sample program that generates a dual-tone multifrequency (DTMF) tone.

DTMF	.asm	Т	SP50C10 Asse	mbler V	ersion 1.0	8
0001				OPTION	BUNLIST, D	UNLIST, PAGEOF
0002			*****			*******
0003			*			*
0004			* DTMF GEN	- This	is a sampl	e program which generates *
0005			*		_	this sample, tones are *
0006			*			quence, triggered by *
0007			*	bit 0	of port A	going high, and stopped *
0008			*	by th	at bit goi	ng low. *
0009			*			*
0010			******	*****	* * * * * * * * * *	*******
0011	0000			AORG	#0000	
0012	0000	69	GO	TMAD	0	
	0001	00				
0013						
0014	0002	2F		CLA		-Initialize mode register
0015	0003	1D		TAMODE		
0016						
0017	0004	20		CLX		
	0005	13	RAM_LOOP	TAMIX		-Initialize All RAM to zeros
0019	0006	61		XGEC	MAX_RAM+1	
	0007	80				
0020	0008	40		BR	GOGO	
0001	0009	8C				
0021	A000	40		BR	RAM_LOOP	
0022	000B	05	********	******	******	********
0022				pt vecto		
0023				_		*******
	0010			AORG	#0010	
0026						
0027	0010	A2		SBR	INT2_01	-Timer Underflow, PCM=0, LPC=1
0028	0011	A2		SBR	INT2_01	-Timer Underflow, PCM=0, LPC=1
0029						
0030	0012	A2		SBR	INT2_00	-Timer Underflow, PCM=0, LPC=0
0031	0013	A2		SBR	INT2_00	-Timer Underflow, PCM=0, LPC=0
0032						
	0014	A2		SBR	INT2_11	-Timer Underflow, PCM=1, LPC=1
	0015	A2		SBR	INT2_11	-Timer Underflow, PCM=1, LPC=1
0035						
	0016	A2		SBR	INT2_10	-Timer Underflow, PCM=1, LPC=0
	0017	A2		SBR	INT2_10	-Timer Underflow, PCM=1, LPC=0
0038	0018	7. 0		CDD	TNTT1 01	DDG 4 16 gamples intermed
	0018	A2 A2		SBR SBR	INT1_01 INT1 01	-PPC < 16 samples interrupt -PPC < 16 samples interrupt
0040	0013	AZ		תםמ	TN1T_01	-rrc / 10 samples interrupt
	001A	A2		SBR	INT1_00	-Pin (B1) goes low interrupt
0042	OULA	A4		אנעט	TIAT T _ 0 0	I III (DI) GOCO IOW IIICEII UPC

0043	001B	A2		SBR	INT1_00	-Pin (B1) goes low interrupt
0044						
0045	001C	A2		SBR	INT1_11	-10 kHz Clock interrupt
0046	001D	A2		SBR	INT1_11	-10 kHz Clock interrupt
0047						-
0048	001E	A0		SBR	INT1_10	-20 kHz Clock interrupt
	001F	A0		SBR		-20 kHz Clock interrupt
0050			*	~		
	0020	40	INT1_10	BR	INTPCM	-PCM service routine
0001	0021	E6		211	21,11 011	1011 2011100 10401110
0052		20	*			
0053		0022	INT1_01			
0054		0022	INT2_00			
0055		0022	INT2_01			
		0022	INT2_10			
0056						
0057		0022	INT2_11			
0058		0022	INT1_00	GT 3		
	0022		INT1_11	CLA		
	0023	3E		RETI		
0061			*			
0062				egister v	rariables	
0063			*			
0064		0000	PERIOD1	EQU	#00	-Period of 1st Wave
0065		0001	TIME1	EQU	#01	-Cumulative angle of 1st wave
0066		0002	PERIOD2	EQU	#02	-Period of 2nd Wave
0067		0003	TIME2	EQU	#03	-Cumulative angle of 2nd wave
0068		0004	PCMBUF	EQU	#04	-Intermediate data buffer
0069			*			
0070			*			
0071			* LPC st	atus var	iable loca	ations
0072			*			
0073		0010	MODE_BUF	EQU	#10	;Mode register buffer
0074			*			
0075			* Device	Constant	s	
0076			*			
0077		007F	MAX_RAM	EQU	#7F	-Highest RAM location
0078			*			
0079			* MODE Re	gister B	it Definit	cions
0800			*			
0081		0001	ENA1	EQU	#01	-Enable Level 1 interrupt
0082		0002	LPC	EQU	#02	-Enable LPC synthesis
0083		0004	PCM	EQU	#04	-Enable PCM synthesis
0084		0008	ENA2	EQU	#08	-Enable Level 2 interrupt
0085		0010	EXTROM	EQU	#10	-Set external ROM mode
0086		0020	RAMROM	EQU	#20	-Enable GETs from RAM
0087		0040	MASTER	EQU	#40	-Master/Slave Toggle
0088		0080	UNV	EQU	#80	-Enable Unvoiced excitation
			•	~ -		

```
0089
0090
                       DTMF tone definition table
0091
0092
                       Program assumes a 10kHz sampling frequency and
0093
                       has a spacing of 11.25 degrees between entries in
0094
                       the sine wave table, so value for a frequency is
0095
                                 (freq * 360 degrees)
0096
                                ----- * 128
0097
                       value =
0098
                                 (10kHz * 11.25 degrees)
0099
0100
                        The bottom 8 bits are fractional
0101
                                                         -zero = 941 Hz + 1336 Hz
0102 0024
            80
                DTMF
                             RBYTE
                                      #01, #81, #02, #23
0103 0028
            80
                             RBYTE
                                      #01,#1D,#01,#EF
                                                         -One = 697 \text{ Hz} + 1209 \text{ Hz}
                                                         -two = 697 Hz + 1336 Hz
0104 002C
            80
                             RBYTE
                                      #01,#1D,#02,#23
0105 0030
                             RBYTE
                                      #01,#1D,#02,#5D
                                                         -three= 697 Hz+1477 Hz
0106 0034
                                                         -four = 770 Hz + 1209 Hz
                                      #01,#3B,#01,#EF
            80
                             RBYTE
0107 0038
                             RBYTE
                                      #01, #3B, #02, #23
                                                         -five = 770 \text{ Hz} + 1336 \text{ Hz}
                                                         -six = 770 \text{ Hz} + 1477 \text{ Hz}
0108 003C
            80
                             RBYTE
                                      #01, #3B, #02, #5D
0109 0040
                             RBYTE
                                      #01, #5D, #01, #EF
                                                         -seven= 852 Hz+1209 Hz
0110 0044
                                      #01, #5D, #02, #23
                                                         -eight= 852 Hz+1336 Hz
            80
                             RBYTE
0111 0048
            80
                             RBYTE
                                      #01,#5D,#02,#5D
                                                         -nine = 852 Hz + 1477 Hz
0112
0113
                       Digitized sine wave table
0114
0115 004C
            0.0
                SINEW
                             BYTE
                                      #00, #19 0 degrees --> 11.25 degrees
0116 004E
            31
                             BYTE
                                      #31,#18 11.25 degrees-->22.5 degrees
0117 0050
            31
                             BYTE
                                      #31,#16 22.5 degrees-->33.75 degrees
0118 0052
                                      #5A,#13 33.75 degrees-->45
                             BYTE
                                                                       degrees
            5A
0119 0054
                             BYTE
                                      #5A, #10 45.0 degrees-->56.25 degrees
            5A
0120 0056
            75
                                      #75,#0B 56.25 degrees-->67.5 degrees
                             BYTE
0121 0058
            75
                             BYTE
                                      #75,#08 67.5 degrees-->78.75 degrees
0122 005A
            7F
                             BYTE
                                      #7F, #02 78.75 degrees-->90
                                                                       degrees
0123 005C
            7F
                             BYTE
                                      #7F, #FE 90.0 degrees-->101.25 degrees
0124 005E
            75
                                      #75, #F8 101.25 degrees-->112.5 degrees
                             BYTE
0125 0060
            75
                             BYTE
                                      #75, #F5 112.5 degrees-->123.75 degrees
0126 0062
                                      #5A, #F0 123.75 degrees-->135.0 degrees
            5A
                             BYTE
0127 0064
                             BYTE
                                      #5A, #ED 135.0 degrees --> 146.25 degrees
0128 0066
            31
                             BYTE
                                      #31, #EA 146.25 degrees --> 157.5 degrees
0129 0068
            31
                             BYTE
                                      #31, #E8 157.5 degrees --> 168.75 degrees
0130 006A
                                      #00,#E7 168.75 degrees-->180.0 degrees
            0.0
                             BYTE
0131 006C
            00
                             BYTE
                                      #00, #E7 180.0 degrees-->191.25 degrees
0132 006E
                                      #CF, #E8 191.25 degrees --> 202.5 degrees
            CF
                             BYTE
0133 0070
                             BYTE
                                      #CF, #EA 202.5 degrees --> 213.75 degrees
            CF
0134 0072
                                      #A6, #ED 213.75 degrees --> 225.0 degrees
            A6
                             BYTE
0135 0074
                             BYTE
                                      #A6, #F0 225.0 degrees --> 236.25 degrees
            А6
```

0136	0076	8B		BYTE	#8B,#F5	236.25	degrees>247.5	degrees
0137	0078	8B		BYTE	#8B,#F8	247.5	degrees>258.75	degrees
0138	007A	81		BYTE	#81,#FE	258.75	degrees>270.0	degrees
0139	007C	81		BYTE	#81,#02		degrees>281.25	degrees
0140	007E	8B		BYTE	#8B,#08		degrees>292.5	degrees
0141		8B		BYTE	#8B,#0B		degrees>303.75	_
0142		A6		BYTE	#A6,#10		degrees>315.0	_
	0084	A6		BYTE	#A6,#13		degrees>326.25	_
0144		CF		BYTE	#CF,#16		degrees>337.5	_
0145		CF		BYTE	#CF,#10		degrees>348.75	_
	0000 A800	00		BYTE	#00,#19			degrees
	UUOA	00	*******				*********	_
0147								
0148			nam 200	dy of pro	_		*****	
0149	0000	6.5						
0150	008C	6E	GOGO	TCA	0	-Tone	'Zero'	
	008D	00						
0151		00		CALL	DO_PCM			
	008F	В5						
0152			*					
0153	0090	бE		TCA	1	-Tone	'One'	
	0091	01						
0154	0092	00		CALL	DO_PCM			
	0093	В5						
0155			*					
0156	0094	6E		TCA	2	-Tone	'Two'	
	0095	02						
0157	0096	00		CALL	DO_PCM			
	0097	В5						
0158			*					
0159	0098	6E		TCA	3	-Tone	'Three'	
	0099	03						
0160	009A	00		CALL	DO_PCM			
	009B	В5						
0161			*					
0162	009C	6E		TCA	4	-Tone	'Four'	
	009D	04						
0163	009E	00		CALL	DO_PCM			
	009F	B5						
0164		23	*					
	0A00	бE		TCA	5	-Tone	'Five'	
0103	00A0	05		ICA	5	10110	FIVC	
0166	00A1	00		CATT	DO DOM			
0100	00A2	B5		CALL	DO_PCM			
0167		БЭ	*					
0167		6 TP	==	TOA	6	Тот	/Civ/	
υπρα	00A4	6E		TCA	6	-Tone	SIX	
01.00	00A5	06		CATT				
0169	00A6	00		CALL	DO_PCM			

	00A7	В5				
0170	0 0117	20	*			
0171	8A00	6E		TCA	7	-Tone 'Seven'
	00A9	07				
0172	00AA	00		CALL	DO_PCM	
	00AB	В5			_	
0173			*			
0174	00AC	6E		TCA	8	-Tone 'Eight'
	00AD	08				5
0175	00AE	00		CALL	DO_PCM	
	00AF	В5			_	
0176			*			
0177	00B0	6E		TCA	9	-Tone 'Nine'
	00B1	09				
0178	00B2	00		CALL	DO_PCM	
	00B3	В5				
0179			*			
0180	00B4	3F		SETOFF		
0181			*			
0182			*****	*****	*****	*********
0183			*			
0184			* DO_PCM			
0185			*			
0186			* This is	the rou	tine that	sets up the DTMF tone.
0186 0187			11110 10			sets up the DTMF tone. go high, then plays
			* It wait	s for po	rt PAO to	_
0187			* It wait: * the DTM	s for po F tone s	rt PAO to	go high, then plays by the contents of the
0187 0188			* It wait: * the DTM	s for po F tone s	rt PAO to pecified b	go high, then plays by the contents of the
0187 0188 0189			* It wait: * the DTM: * A regis:	s for po F tone s ter unti	rt PAO to pecified b l PAO goes	go high, then plays by the contents of the
0187 0188 0189 0190 0191	00B5	62	* It wait: * the DTM: * A regis:	s for po F tone s ter unti	rt PAO to pecified b l PAO goes	go high, then plays by the contents of the slow.
0187 0188 0189 0190 0191	00B5 00B6	62 80	* It wait: * the DTM: * A regis *	s for po F tone s ter unti	rt PAO to pecified b l PAO goes	go high, then plays by the contents of the slow.
0187 0188 0189 0190 0191 0192			* It wait: * the DTM: * A regis *	s for po F tone s ter unti	rt PAO to pecified b l PAO goes	go high, then plays by the contents of the slow.
0187 0188 0189 0190 0191 0192	00B6	80	* It wait: * the DTM: * A regis *	s for po F tone s ter unti ****** TCX	rt PA0 to pecified b 1 PA0 goes *********** #80	go high, then plays by the contents of the s low.
0187 0188 0189 0190 0191 0192	00B6 00B7	80 66	* It wait: * the DTM: * A regis *	s for po F tone s ter unti ****** TCX	rt PA0 to pecified b 1 PA0 goes *********** #80	go high, then plays by the contents of the s low.
0187 0188 0189 0190 0191 0192	00B6 00B7 00B8	80 66 01	* It wait: * the DTM: * A regis *	s for po F tone s ter unti ****** TCX TSTCM	rt PAO to pecified b 1 PAO goes ******* #80 #01	go high, then plays by the contents of the s low. *************** -Point to port A -Loop until A(0)
0187 0188 0189 0190 0191 0192 0193	00B6 00B7 00B8 00B9	80 66 01 40	* It wait: * the DTM: * A regis *	s for po F tone s ter unti ****** TCX TSTCM	rt PAO to pecified b 1 PAO goes ******* #80 #01	go high, then plays by the contents of the s low. *************** -Point to port A -Loop until A(0)
0187 0188 0189 0190 0191 0192 0193 0194	00B6 00B7 00B8 00B9 00BA 00BB	80 66 01 40 BD	* It wait: * the DTM: * A regis *	s for po F tone s ter unti ****** TCX TSTCM BR	rt PAO to pecified b 1 PAO goes ******** #80 #01 GO_PCM	go high, then plays by the contents of the s low. *************** -Point to port A -Loop until A(0)
0187 0188 0189 0190 0191 0192 0193	00B6 00B7 00B8 00B9 00BA 00BB	80 66 01 40 BD 40	* It wait: * the DTM: * A regis *	s for po F tone s ter unti ****** TCX TSTCM BR	rt PAO to pecified b 1 PAO goes ******** #80 #01 GO_PCM	go high, then plays by the contents of the s low. ***********************************
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197	00B6 00B7 00B8 00B9 00BA 00BB 00BC	80 66 01 40 BD 40 B5	* It wait: * the DTM: * A regis *	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA	rt PAO to pecified b 1 PAO goes ******** #80 #01 GO_PCM	go high, then plays by the contents of the s low. *************** -Point to port A -Loop until A(0) goes high -Adjust value to
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198	00B6 00B7 00B8 00B9 00BA 00BB 00BC	80 66 01 40 BD 40 B5	* It wait: * the DTM: * A regis: * *********** DO_PCM	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA SALA	rt PAO to pecified b 1 PAO goes ******* #80 #01 GO_PCM DO_PCM	go high, then plays by the contents of the solow. ***********************************
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198	00B6 00B7 00B8 00B9 00BA 00BB 00BC	80 66 01 40 BD 40 B5 2E 2E 70	* It wait: * the DTM: * A regis: * *********** DO_PCM	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA	rt PAO to pecified b 1 PAO goes ******** #80 #01 GO_PCM	go high, then plays by the contents of the s low. *************** -Point to port A -Loop until A(0) goes high -Adjust value to
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199	00B6 00B7 00B8 00B9 00BA 00BB 00BC	80 66 01 40 BD 40 B5 2E 2E 70 24	* It wait: * the DTM: * A regis: * *********** DO_PCM	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA SALA ACAAC	rt PAO to pecified b 1 PAO goes ******* #80 #01 GO_PCM DO_PCM	go high, then plays by the contents of the s low. ***********************************
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199	00B6 00B7 00B8 00B9 00BA 00BB 00BC	80 66 01 40 BD 40 B5 2E 2E 70	* It wait: * the DTM: * A regis: * *********** DO_PCM	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA SALA	rt PAO to pecified b 1 PAO goes ******* #80 #01 GO_PCM DO_PCM	go high, then plays by the contents of the solow. ***********************************
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199	00B6 00B7 00B8 00B9 00BA 00BB 00BC	80 66 01 40 BD 40 B5 2E 2E 70 24 6C	* It wait: * the DTM: * A regis: * *********** DO_PCM	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA ACAAC LUAPS	rt PAO to pecified b 1 PAO goes ******* #80 #01 GO_PCM DO_PCM DTMF	go high, then plays by the contents of the s low. ***********************************
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199	00B6 00B7 00B8 00B9 00BA 00BB 00BC 00BD 00BE 00BF 00C0 00C1	80 66 01 40 BD 40 B5 2E 2E 70 24 6C	* It wait: * the DTM: * A regis: * *********** DO_PCM	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA ACAAC LUAPS GET	rt PAO to pecified b 1 PAO goes ******* #80 #01 GO_PCM DO_PCM DTMF	go high, then plays by the contents of the s low. ***********************************
0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203	00B6 00B7 00B8 00B9 00BA 00BB 00BC	80 66 01 40 BD 40 B5 2E 2E 70 24 6C	* It wait: * the DTM: * A regis: * *********** DO_PCM	s for po F tone s ter unti ****** TCX TSTCM BR BR SALA ACAAC LUAPS	rt PAO to pecified b 1 PAO goes ******* #80 #01 GO_PCM DO_PCM DTMF	go high, then plays by the contents of the s low. ***********************************

	00C5	00				
0205						
0206	00C6	37		GET	8	-Get second frequency
0207	00C7	37		GET	8	period
0208	00C8	6A		TAMD	PERIOD2	-Store it away
	00C9	02				
0209						
	00CA	2F		CLA		-Clear cumulative data
	00CB	бA		TAMD	TIME1	
	00CC	01				
0212	00CD	6A		TAMD	TIME2	
0212	00CE	03				
0213	0001	0.5				
	00CF	62		TCX	MODE BIIE	-Turn on PCM and INT1
0211	00D0	10		1021	MODE_BOI	rain on ren and min
0215	00D0	64		ORCM	PCM	
0213	00D1 00D2	04		ORCM	PCM	
0216				ODCM	TINTA 1	
0216	00D3	64		ORCM	ENA1	
0017	00D4	01		TTIN (7)		
	00D5	11		TMA		
	00D6	1D		TAMODE		
0219	0.050	60	T 1	marr		7
0220	00D7	62	L1	TCX	#80	-Loop until A(0)
	00D8	80				-
0221	00D9	66		TSTCM	#01	goes low
	00DA	01				
0222	00DB	40		BR	L1	
	00DC	D7				
0223						
0224	00DD	62		TCX	MODE_BUF	-Turn off PCM and INT1
	00DE	10				
0225	00DF	65		ANDCM	~PCM	
	00E0	FB				
0226	00E1	65		ANDCM	~ENA1	
	00E2	FE				
0227	00E3	11		TMA		
0228	00E4	1D		TAMODE		
0229	00E5	3D		RETN		
0230						
0231			*****	*****	*****	*******
0232			* PCM int	errupt s	ervice rou	tine
0233			*****	*****	******	*******
0234	00E6	3B	INTPCM	INTGR		
0235	00E7	20		CLX		
0236						
0237	00E8	14		TMAIX		-Add delta angle to
0238	00E9	28		AMAAC		cumulative angle

0239					
0240	00EA	16	TAM		-Save cumulative angle
	00EB	11	TMA		-Discard high bits of cum
0242	ООПО		11.12.1		Discara might bits of cam
	0000	60	33703	0.1	odobe objek 7 bis
0243	00EC	68	AXCA	01	-right shift 7 bits
	00ED	01			
0244	OOEE	2E	SALA		-Left 1 bit
0245	00EF	70	ACAAC	SINEW	-Add table offset
	00F0	4C			
0246					
0247	00F1	3C	EXTSG		
0248	00F2	6D	LUAB		-get data point
	00F3	3A	IAC		See gasa kerne
	00F4	6B			got glone between neinta
			LUAA		-get slope between points
	00F5	39	AXMA		-interpolate slope
0252	00F6	2C	ABAAC		-add interpolated slope
0253	00F7	1B	SALA4		and scale for DAC
0254	00F8	68	AXCA	#78	-Scale value for twist
	00F9	78			
0255					
0256	00FA	6A	TAMD	PCMBUF	-Save intermediate data
	00FB	04			
0257	0011	01			
	0.050	2.0	TAMICO		
	00FC	3B	INTGR		
	00FD	21	IXC		
	00FE	14	TMAIX		-Add delta angle to
0261	00FF	28	AMAAC		cumulative angle
0262					
0263	0100	16	TAM		-Save cumulative angle
0264	0101	11	TMA		-Discard high bits of angle
0265					
0266	0102	68	AXCA	01	-right shift 7 bits
	0103	01			3
0267	0103	2E	SALA		-Left 1 bit
	0105	70		SINEW	-Add table offset
0200			ACAAC	SINEM	-Add table offset
	0106	4C			
0269					
0270	0107	3C	EXTSG		
0271	0108	6D	LUAB		-get data point
0272	0109	3A	IAC		
0273	010A	6B	LUAA		-get slope between points
0274	010B	39	AXMA		-interpolate slope
0275					
	010C	2C	ABAAC		-add interpolated slope
	010C	1B	SALA4		and scale
	סדטד	10	PALIA		and scare
0278	0105	1 7	ma D		Object On A data
0279	010E	1A	TAB		-Store 2nd data point

0280			
0281 010F	21	IXC	-Retrieve 1st data point
0282 0110	11	TMA	
0283			
0004 0111	0.0		~
0284 0111	2C	ABAAC	-Sum two waves together
0284 0111	15	ABAAC SARA	-Sum two waves together and normalize
			9

Appendix E

Sample Music Program

This chapter contains the code for a sample program that produces Mozart's Minuet in G.

```
0001
                           OPTION BUNLIST, DUNLIST, PAGEOF
0002
0003
0004
                   MINUET.ASM
0005
0006
                   LPC can also be used to generate music. In this
0007
                   program, the LPC filter is set to a narrow bandwidth
0008
                   filter that will only pass a single frequency.
0009
                   by appropriately varying the parameters, we play
0010
                   Minuet in G by Mozart.
0011
0012
0013
                   RAM USAGE
0014
0015
         0001 EN
                           EQU
                                   #01
                                             -EN working value
0016
         000C K2
                           EQU
                                   #0C
                                             -K2 Working Value
0017
         000D K1
                           EQU
                                   #0D
                                             -K1 Working Value
                           EQU
0018
         000E C1
                                   #0E
                                             -C1 Parameter
0019
         000F C2
                           EQU
                                   #0F
                                             -C2 Parameter
0020
0021
         0010 TIME
                           EQU
                                   #10
                                             -Note Duration
0022
         0011 ENERGY
                           EQU
                                             -Temp storage for energy
                                   #11
0023
         0012 MODE_BUF
                           EQU
                                   #12
                                             -Mode register Buffer
0024
         0013 EndSong
                                   #13
                                             -End of song flag
                           EQU
0025
0026
                   Device Constants
0027
0028
         0F61 C1_Value
                           EQU
                                   #F61
                                             -C1 Value
0029
         0B67 C2_Value
                           EQU
                                   #B67
                                             -C2 Value
         007F MAX_RAM
                                             -Highest RAM location
0030
                           EQU
                                   #7F
0031
0032
                   MODE Register Bit Definitions
0033
0034
         0001 ENA1
                           EQU
                                   #01
                                             -Enable Level 1 interrupt
0035
         0002 LPC
                           EQU
                                   #02
                                             -Enable LPC systhesis
0036
         0004 PCM
                                   #04
                                             -Enable PCM synthesis
                           EQU
0037
         0008 ENA2
                           EQU
                                   #08
                                             -Enable Level 2 interrupt
         0010 EXTROM
                                             -Set external ROM mode
0038
                           EQU
                                   #10
0039
         0020 RAMROM
                           EQU
                                   #20
                                             -Enable GETs from RAM
0040
         0040 MASTER
                           EQU
                                   #40
                                             -Master/Slave Toggle
         0080 UNV
0041
                           EQU
                                   #80
                                             -Enable Unvoiced excitation
0042
               * BEGINNING OF PROGRAM
0043
               0044
0045 0000
                           AORG
                                   #0000
0046 0000
                           TMAD
           69
    0001
           00
```

```
0047
0048 0002
            2F
                            CLA
                                              -Initialize mode register
0049 0003
            1D
                           TAMODE
0050
0051 0004
            20
                           CLX
                                              -Initialize All RAM to zeros
0052 0005
           13
               RAM_LOOP
                           TAMIX
0053 0006
                           XGEC
                                   MAX_RAM+1
           61
0054 0008
           40
                            BR
                                   GOGO
    0009
            21
0055 000A
            40
                                   RAM_LOOP
                            BR
    000B
            05
0056
                ******************
0057
                    Interrupt vectors
0058
0059 0010
                           AORG
                                    #0010
0060 0010
           AΩ
                           SBR
                                    INT2_01
                                              -Timer Underflow, PCM=0, LPC=1
0061 0011
                           SBR
                                   INT2_01
                                              -Timer Underflow, PCM=0, LPC=1
0062 0012
                                   INT2_00
                                              -Timer Underflow, PCM=0, LPC=0
           A0
                           SBR
0063 0013
                           SBR
                                    INT2_00
                                              -Timer Underflow, PCM=0, LPC=0
           A0
0064 0014
                                              -Timer Underflow, PCM=1, LPC=1
           A0
                           SBR
                                   INT2_11
0065 0015
           A0
                           SBR
                                   INT2_11
                                              -Timer Underflow, PCM=1, LPC=1
0066 0016
                                    INT2_10
                                              -Timer Underflow, PCM=1, LPC=0
           A0
                           SBR
                                              -Timer Underflow, PCM=1, LPC=0
0067 0017
           A0
                           SBR
                                    INT2_10
0068 0018
                                              -PPC < 16 Samples interrupt
                           SBR
                                   INT1_01
           A0
0069 0019
           A0
                           SBR
                                   INT1_01
                                              -PPC < 16 Samples interrupt
                                             -Pin (B1) goes low interrupt
0070 001A
                                   INT1_00
           A0
                           SBR
0071 001B
           A0
                           SBR
                                    INT1_00
                                              -Pin (B1) goes low interrupt
0072 001C
           AΩ
                           SBR
                                   INT1_11
                                             -10 kHz Clock interrupt
0073 001D
           A0
                            SBR
                                    INT1_11
                                             -10 kHz Clock interrupt
0074 001E
                                    INT1_10
                                             -20 kHz Clock interrupt
           A0
                            SBR
0075 001F
           A0
                            SBR
                                    INT1_10
                                             -20 kHz Clock interrupt
0076
         0020
               INT1_01
0077
0078
         0020
               INT2_00
0079
         0020
               INT2_01
         0020
               INT2_10
0800
0081
         0020
               INT2_11
         0020
               INT1_00
0082
0083
         0020
               INT1_10
0084 0020
           3E
               INT1_11
                           RETI
0085
0086
0087
                   MAIN BODY OF PROGRAM
                ****************
0088
0089 0021
            2F
                            CLA
                                              -Point to start of song
0090 0022
           70
                           ACAAC
                                   NOTES
    0023
           84
```

	0024	6C		LUAPS		
0092		0.7		GT 3		
	0025			CLA		-Load C1 Value
0094	0026			ACAAC	C1_VALUE	
	0027					
0095	0028			TAMD	C1	
	0029	0E				
0096						
	002A			CLA		-Load C2 Value
0098	002B			ACAAC	C2_VALUE	
	002C	67				
0099	002D	бΑ		TAMD	C2	
	002E	0F				
0100						
0101	002F	33		GET	4	-Get song tempo
0102	0030	33		GET	4	
0103	0031	19		TAPSC		
0104						
0105	0032	00		CALL	LoadNote	-Load the first note data
	0033	56				
0106						
0107	0034	62		TCX	Mode_Buf	-Turn on LPC Mode
	0035	12				
0108	0036	64		ORCM	LPC	
	0037	02				
0109	0038	11		TMA		
0110	0039	1D		TAMODE		
0111						
0112	003A	6E		TCA	#ff	-Start countdown timer
	003B	FF				
0113	003C	1E		TATM		
0114						
0115	003D	69	Loop	TMAD	EndSong	-Test end of song flag
	003E		-			
0116	003F	63		AGEC	1	-Is song over?
	0040					
0117	0041	40		BR	StopSong	yes, turn off LPC
	0042	4F			1 3	- 1
0118						
	0043	17		TTMA		-Get timer value
	0044	60		ANEC	0	-Time to decrement TIME?
	0045	00			-	
0121	0046	40		BR	Loop	no, loop back
V-21	0047	3D				iio, ioop baon
0122		ענ				
	0048	62		TCX	TIME	-Point to note duration
0123	0048	10		1 021	T T1.111	TOTHE CO HOLE GUIACION
	0010	± 0				

0124	004A	27		DECMN		-Is it time to get new note?
0125	004B	00		CALL	LoadNote	
	004C	56				1 , 3
0126		40		BR	Loop	no, wait some more
0120	004E			DIC	поор	no, ware some more
0100		3D				
0127						
0128	004F	62	StopSong	TCX	Mode_Buf	-Turn off LPC Mode
	0050	12				
0129	0051	65		ANDCM	~LPC	
	0052	FD				
0130	0053	11		TMA		
0131	0054	1D		TAMODE		
0132						
	0055	3F		SETOFF		-Turn off device
0134	0033	31		DEIOII		Turn orr device
0135			******	*****	*****	*******
0136						data for the next note
0137					*****	
	0056	2F	LoadNote	CLA		-Zero energy while we change
0139	0057	бA		TAMD	EN	the filter parameters
	0058	01				
0140						
0141	0059	33		GET	4	-Get the note duration
0142	005A	33		GET	4	
	005B	6A		TAMD	TIME	
0110	005C	10			1111	
0144		10				
		60		ANTEC	0	End of gong?
0145	005D	60		ANEC	U	-End of song?
	005E	00				
0146	005F	40		BR	Continue	no, continue
	0060	67				
0147						
0148	0061	6E		TCA	1	-Signal
	0062	01				
0149	0063	бA		TAMD	EndSong	end of song
	0064	13				
0150	0065	40		BR	RelaxK2	and allow sound to die
0100	0066	7E			1101011111	and arrow sound to are
0151		,				
	0067	27	Continuo	CET	0	Cot Note Energy
		37	Continue	GET	8	-Get Note Energy
0153	0068	6A		TAMD	ENERGY	
	0069	11				
0154						
0155	006A	37		GET	8	-Get pitch value
0156	006B	37		GET	8	
0157	006C	1C		TASYN		
0158						

0159	006D	37		GET	8	-Get first fil	ter parameter
0160	006E	37		GET	8		
0161	006F	6А		TAMD	K1		
	0070	0D					
0162							
0163	0071	2F		CLA		-Get bandwidth	
0164	0072	77		ACAAC	#7f8		
	0073	F8					
0165	0074	бA		TAMD	К2		
	0075	0C					
0166							
	0076	69		TMAD	ENERGY	-Load energy to	n filter
0107	0077	11		111111111111111111111111111111111111111	HIVERCOT	noda chergy ex	0 111001
0168	0078	6A		TAMD	EN		
0100	0079	01		1711-112	ши		
0169	0075	Οı					
	007A	60		ANEC	0	-Is note a res	+ o
0170	007A	00		ANEC	O	-is note a res	.
0171				DD	ToodNotoV	no orrit m	outino
01/1	007C	40		BR	LoadNoteX	no, exit ro	outine
0170	007D	83					
0172	0000	0.77	D 3 770	GT 3		27 1	
	007E	2F	RelaxK2	CLA		-Note is a rest	•
0174	007F	77		ACAAC	#780	relax filte	er bandwidth
	0800	80				_	
01/5	0081	бΑ		TAMD	К2	so sound ca	an die down
	0081	6A 0C		'I'AMD	K2	so sound ca	an die down
0176	0082			'I'AMD	K2	so sound ca	an die down
0176			LoadNoteX	TAMD	K2	so sound ca	an die down
0176	0082	0C	LoadNoteX		K2	so sound ca	an die down
0176 0177	0082	0C	LoadNoteX		K2	so sound ca	an die down
0176 0177 0178 0179	0082	0C	LoadNoteX		#13	so sound ca	an die down Tempo
0176 0177 0178 0179 0180	0082	0C 3D		RETN	#13	so sound ca	
0176 0177 0178 0179 0180 0181	0082	0C 3D C8		RETN RBYTE	#13 #40,#06,#		Tempo note = 17, fre note = 10, fre
0176 0177 0178 0179 0180 0181	0082 0083 0084 0085	0C 3D C8 02		RETN RBYTE RBYTE	#13 #40,#06,# #20,#06,#	01,#B4,#08,#D6	Tempo note = 17, fre
0176 0177 0178 0179 0180 0181 0182 0183	0082 0083 0084 0085 008B	0C 3D C8 02 04		RETN RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,#	01,#B4,#08,#D6 02,#8E,#08,#60	Tempo note = 17, fre note = 10, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184	0082 0083 0084 0085 008B 0091	0C 3D C8 02 04 04		RETN RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,#	01,#B4,#08,#D6 02,#8E,#08,#60 02,#46,#08,#79	Tempo note = 17, fre note = 10, fre note = 12, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184	0082 0083 0084 0085 008B 0091 0097	0C 3D C8 02 04 04		RETN RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,#	01,#B4,#08,#D6 02,#8E,#08,#60 02,#46,#08,#79 02,#06,#08,#99	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186	0082 0083 0084 0085 008B 0091 0097	0C 3D C8 02 04 04		RETN RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,#	01,#B4,#08,#D6 02,#8E,#08,#60 02,#46,#08,#79 02,#06,#08,#99	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187	0082 0083 0084 0085 008B 0091 0097 009D	OC 3D C8 02 04 04 04		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,#	01,#B4,#08,#D6 02,#8E,#08,#60 02,#46,#08,#79 02,#06,#08,#99 01,#EA,#08,#AA	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187	0082 0083 0084 0085 008B 0091 0097 009D	OC 3D C8 02 04 04 04 04		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,# #38,#06,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188	0082 0083 0084 0085 008B 0091 0097 009D	0C 3D C8 02 04 04 04 04 1C		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,# #38,#06,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6 02, #8E, #08, #60	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190	0082 0083 0084 0085 008B 0091 0097 009D 00A3 00A9 00AF	0C 3D C8 02 04 04 04 02 1C		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,# #38,#06,# #08,#00,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6 02, #8E, #08, #60 02, #8E, #08, #60	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre REST
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190	0082 0083 0084 0085 008B 0091 0097 009D 00A3 00A9 00AF 00B5	0C 3D C8 02 04 04 04 1C 1C		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,# #38,#06,# #08,#00,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre REST note = 10, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191	0082 0083 0084 0085 008B 0091 0097 009D 00A3 00A9 00AF 00B5	0C 3D C8 02 04 04 04 1C 1C		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,# #38,#06,# #08,#00,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre REST note = 10, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0190 0191 0192 0193	0082 0083 0084 0085 008B 0091 0097 009D 00A3 00A9 00AF 00B5 00BB	OC 3D C8 02 04 04 04 10 11 11 11 11 11 11 11 11 11 11 11 11		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #20,#06,# #38,#06,# #08,#00,# #08,#00,# #08,#00,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre REST note = 10, fre REST
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0190 0191 0192 0193 0194	0082 0083 0084 0085 008B 0091 0097 009D 00A3 00A9 00AF 00B5 00BB	OC 3D C8 02 04 04 04 1C 10 1C		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,# #38,#00,# #38,#00,# #08,#00,# #40,#06,# #08,#00,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre REST note = 10, fre REST note = 19, fre
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0190 0191 0192 0193 0194 0195	0082 0083 0084 0085 008B 0091 0097 009D 00A3 00A9 00AF 00B5 00BB	0C 3D C8 02 04 04 04 1C 10 1C 10 02 04		RETN RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#13 #40,#06,# #20,#06,# #20,#06,# #20,#06,# #40,#06,# #38,#00,# #38,#00,# #38,#06,# #08,#00,# #08,#00,# #40,#06,# #20,#06,#	01, #B4, #08, #D6 02, #8E, #08, #60 02, #46, #08, #79 02, #06, #08, #99 01, #EA, #08, #AA 01, #B4, #08, #D6 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60 02, #8E, #08, #60 01, #84, #09, #0D 01, #EA, #08, #AA	Tempo note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre REST note = 10, fre REST note = 10, fre note = 15, fre

	00D9	04	RBYTE	#20,#06,#01,#5A,#09,#51	note = 21, fre
0198					
	00DF	02	RBYTE	#40,#06,#01,#46,#09,#7A	note = 22, fre
	00E5	1C	RBYTE	#38,#06,#02,#8E,#08,#60	note = 10, fre
	00EB	10	RBYTE	#08,#00,#02,#8E,#08,#60	REST
	00F1	1C	RBYTE	#38,#06,#02,#8E,#08,#60	note = 10, fre
	00F7	10	RBYTE	#08,#00,#02,#8E,#08,#60	REST
0204					
0205	00FD	02	RBYTE	#40,#06,#01,#EA,#08,#AA	note = 15, fre
0206	0103	04	RBYTE	#20,#06,#01,#B4,#08,#D6	note = 17, fre
0207	0109	04	RBYTE	#20,#06,#01,#EA,#08,#AA	note = 15, fre
0208	010F	04	RBYTE	#20,#06,#02,#06,#08,#99	note = 14, fre
0209	0115	04	RBYTE	#20,#06,#02,#46,#08,#79	note = 12, fre
0210					
0211	011B	02	RBYTE	#40,#06,#02,#06,#08,#99	note = 14 , fre
0212	0121	04	RBYTE	#20,#06,#01,#EA,#08,#AA	note = 15, fre
0213	0127	04	RBYTE	#20,#06,#02,#06,#08,#99	note = 14, fre
0214	012D	04	RBYTE	#20,#06,#02,#46,#08,#79	note = 12, fre
0215	0133	04	RBYTE	#20,#06,#02,#8E,#08,#60	note = 10, fre
0216					
0217	0139	02	RBYTE	#40,#06,#02,#B4,#08,#56	note = 9, freq
0218	013F	04	RBYTE	#20,#06,#02,#8E,#08,#60	note = 10, fre
0219	0145	04	RBYTE	#20,#06,#02,#46,#08,#79	note = 12, fre
0220	014B	04	RBYTE	#20,#06,#02,#06,#08,#99	note = 14, fre
	014B 0151	04 04	RBYTE RBYTE	#20,#06,#02,#06,#08,#99 #20,#06,#02,#8E,#08,#60	<pre>note = 14, fre note = 10, fre</pre>
0221					
0221 0222		04			
0221 0222 0223 0224		04			
0221 0222 0223 0224 0225	0151	04	RBYTE	#20,#06,#02,#8E,#08,#60	note = 10, fre
0221 0222 0223 0224 0225 0226	0151	04 ***	RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99	<pre>note = 10, fre note = 14, fre</pre>
0221 0222 0223 0224 0225 0226 0227	0151 0157 015D	04 *** 02 1C	RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79	<pre>note = 10, fre note = 14, fre note = 12, fre REST</pre>
0221 0222 0223 0224 0225 0226 0227	0151 0157 015D 0163	04 *** 02 1C 10	RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79	note = 10, fre note = 14, fre note = 12, fre
0221 0222 0223 0224 0225 0226 0227	0151 0157 015D 0163 0169	04 *** 02 1C 10 1C	RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230	0151 0157 015D 0163 0169	04 *** 02 1C 10 1C	RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79	<pre>note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST</pre>
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231	0151 0157 015D 0163 0169 016F	04 *** 02 1C 10 1C	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79	<pre>note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre</pre>
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232	0151 0157 015D 0163 0169 016F	04 *** 02 1C 10 1C 10	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79	<pre>note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre</pre>
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233	0151 0157 015D 0163 0169 016F 0175 017B 0181	04 *** 02 1C 10 1C 10 02 04 04	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#8E,#08,#60 #20,#06,#02,#46,#08,#79	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187	04 *** 02 1C 10 1C 10 02 04 04	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#8E,#08,#60 #20,#06,#02,#46,#08,#79 #20,#06,#02,#46,#08,#79	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre note = 14, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235	0151 0157 015D 0163 0169 016F 0175 017B 0181	04 *** 02 1C 10 1C 10 02 04 04	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#8E,#08,#60 #20,#06,#02,#46,#08,#79	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187 018D	04 *** 02 1C 10 1C 10 02 04 04 04 04	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#8E,#08,#60 #20,#06,#02,#46,#08,#79 #20,#06,#02,#06,#08,#99 #20,#06,#01,#EA,#08,#AA	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 14, fre note = 15, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187 018D	04 *** 02 1C 10 1C 10 02 04 04 04 04 04 02	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#46,#08,#79 #20,#06,#02,#06,#08,#99 #20,#06,#01,#EA,#08,#AA	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187 018D	04 *** 02 1C 10 1C 10 02 04 04 04 04 04 01	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#46,#08,#79 #20,#06,#02,#46,#08,#79 #20,#06,#01,#EA,#08,#AA #40,#06,#01,#B4,#08,#D6 #38,#06,#01,#B4,#08,#D6	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre note = 14, fre note = 15, fre note = 17, fre note = 17, fre note = 10, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187 018D 0193 0199 019F	04 *** 02 1C 10 1C 10 02 04 04 04 04 04 101 02 11 11 11 11 11 11 11 11 11 11 11 11 11	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#46,#08,#79 #20,#06,#02,#46,#08,#79 #20,#06,#01,#B4,#08,#D6 #20,#06,#01,#B4,#08,#D6 #38,#06,#02,#8E,#08,#AA	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 14, fre note = 15, fre note = 17, fre note = 17, fre note = 10, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0235 0236 0237 0238 0239 0240	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187 018D 0193 0199 019F 01A5	04 *** 02 1C 10 1C 10 02 04 04 04 04 01 02 1C 10 1C	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#46,#08,#79 #20,#06,#02,#46,#08,#79 #20,#06,#01,#EA,#08,#AA #40,#06,#01,#EA,#08,#D6 #38,#06,#02,#8E,#08,#60 #08,#00,#02,#8E,#08,#60 #38,#06,#02,#8E,#08,#60	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre note = 15, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre note = 10, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0235 0236 0237 0238 0239 0240 0241	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187 018D 0193 0199 019F	04 *** 02 1C 10 1C 10 02 04 04 04 04 04 101 02 11 11 11 11 11 11 11 11 11 11 11 11 11	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#46,#08,#79 #20,#06,#02,#46,#08,#79 #20,#06,#01,#B4,#08,#D6 #20,#06,#01,#B4,#08,#D6 #38,#06,#02,#8E,#08,#AA	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 14, fre note = 15, fre note = 17, fre note = 17, fre note = 10, fre
0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242	0151 0157 015D 0163 0169 016F 0175 017B 0181 0187 018D 0193 0199 019F 01A5	04 *** 02 1C 10 1C 10 02 04 04 04 04 01 02 1C 10 1C	RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE RBYTE	#20,#06,#02,#8E,#08,#60 #40,#06,#02,#06,#08,#99 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #38,#06,#02,#46,#08,#79 #08,#00,#02,#46,#08,#79 #40,#06,#01,#B4,#08,#D6 #20,#06,#02,#46,#08,#79 #20,#06,#02,#46,#08,#79 #20,#06,#01,#EA,#08,#AA #40,#06,#01,#EA,#08,#D6 #38,#06,#02,#8E,#08,#60 #08,#00,#02,#8E,#08,#60 #38,#06,#02,#8E,#08,#60	note = 10, fre note = 14, fre note = 12, fre REST note = 12, fre REST note = 17, fre note = 10, fre note = 12, fre note = 15, fre note = 14, fre note = 15, fre note = 17, fre note = 10, fre note = 10, fre

0244	01B7	04	RBYTE	#20,#06,#01,#EA,#08,#AA	note = 15, fre
0245	01BD	04	RBYTE	#20,#06,#01,#B4,#08,#D6	note = 17, fre
0246	01C3	04	RBYTE	#20,#06,#01,#84,#09,#0D	note = 19, fre
0247	01C9	04	RBYTE	#20,#06,#01,#5A,#09,#51	note = 21, fre
0248					
0249	01CF	02	RBYTE	#40,#06,#01,#46,#09,#7A	note = 22, fre
0250	01D5	1C	RBYTE	#38,#06,#02,#8E,#08,#60	note = 10, fre
0251	01DB	10	RBYTE	#08,#00,#02,#8E,#08,#60	REST
0252	01E1	1C	RBYTE	#38,#06,#02,#8E,#08,#60	note = 10, fre
0253	01E7	10	RBYTE	#08,#00,#02,#8E,#08,#60	REST
0254					
0255	01ED	02	RBYTE	#40,#06,#01,#EA,#08,#AA	note = 15, fre
0256	01F3	04	RBYTE	#20,#06,#01,#B4,#08,#D6	note = 17, fre
0257	01F9	04	RBYTE	#20,#06,#01,#EA,#08,#AA	note = 15, fre
0258	01FF	04	RBYTE	#20,#06,#02,#06,#08,#99	note = 14, fre
0259	0205	04	RBYTE	#20,#06,#02,#46,#08,#79	note = 12, fre
0260					
0261	020B	02	RBYTE	#40,#06,#02,#06,#08,#99	note = 14, fre
0262	0211	04	RBYTE	#20,#06,#01,#EA,#08,#AA	note = 15, fre
0263	0217	04	RBYTE	#20,#06,#02,#06,#08,#99	note = 14, fre
0264	021D	04	RBYTE	#20,#06,#02,#46,#08,#79	note = 12, fre
0265	0223	04	RBYTE	#20,#06,#02,#8E,#08,#60	note = 10, fre
0266					
0267	0229	02	RBYTE	#40,#06,#02,#46,#08,#79	note = 12, fre
0268	022F	04	RBYTE	#20,#06,#02,#06,#08,#99	note = 14, fre
0269	0235	04	RBYTE	#20,#06,#02,#46,#08,#79	note = 12, fre
0270	023B	04	RBYTE	#20,#06,#02,#8E,#08,#60	note = 10, fre
0271	0241	04	RBYTE	#20,#06,#02,#B4,#08,#56	note = 9, freq
0272					
0273	0247	03	RBYTE	#C0,#06,#02,#8E,#08,#60	note = 10, fre
0274					
0275		*			
0276					
	024D	02	RBYTE	#40,#06,#01,#04,#0A,#47	note = 26, fre
	0253	04	RBYTE	#20,#06,#01,#46,#09,#7A	note = 22, fre
	0259	04	RBYTE	#20,#06,#01,#22,#09,#D9	note = 24, fre
	025F	04	RBYTE	#20,#06,#01,#04,#0A,#47	note = 26, fre
	0265	04	RBYTE	#20,#06,#01,#46,#09,#7A	note = 22, fre
0282	006-	2.2		W40 W05 W04 W00 W00 W70	. 04 5
	026B	02	RBYTE	#40,#06,#01,#22,#09,#D9	note = 24, fre
	0271	04	RBYTE	#20,#06,#01,#B4,#08,#D6	note = 17, fre
	0277	04	RBYTE	#20,#06,#01,#84,#09,#0D	note = 19, fre
	027D	04	RBYTE	#20,#06,#01,#5A,#09,#51	note = 21, fre
	0283	04	RBYTE	#20,#06,#01,#B4,#08,#D6	note = 17, fre
0288	0200	0.2	DDVmn	#40 #06 #01 #46 #00 #57	noto - 00 fr
	0289	02	RBYTE	#40,#06,#01,#46,#09,#7A	note = 22, fre
0290	028F	04	RBYTE	#20,#06,#01,#84,#09,#0D	note = 19, fre

0291	0295	04	RBYTE	#20,#06,#01,#5A,#09,#51 note = 21, fre
0292	029B	04	RBYTE	#20, #06, #01, #46, #09, #7A note = 22, fre
	02A1	04	RBYTE	#20,#06,#01,#B4,#08,#D6 note = 17, fre
0294				
0295	02A7	02	RBYTE	#40,#06,#01,#CE,#08,#BF note = 16, fre
0296	02AD	04	RBYTE	#20,#06,#02,#06,#08,#99 note = 14, fre
0297	02B3	04	RBYTE	#20,#06,#01,#CE,#08,#BF note = 16, fre
	02B9	1C	RBYTE	#38,#06,#02,#46,#08,#79 note = 12, fre
0299	02BF	10	RBYTE	#08,#00,#02,#46,#08,#79 REST
0300				
0301	02C5	04	RBYTE	#20,#06,#02,#46,#08,#79 note = 12, fre
0302	02CB	04	RBYTE	#20,#06,#02,#06,#08,#99 note = 14, fre
	02D1	04	RBYTE	#20,#06,#01,#CE,#08,#BF note = 16, fre
0304	02D7	04	RBYTE	#20,#06,#01,#B4,#08,#D6 note = 17, fre
0305	02DD	04	RBYTE	#20,#06,#01,#84,#09,#0D note = 19, fre
0306	02E3	04	RBYTE	#20,#06,#01,#5A,#09,#51 note = 21, fre
0307				
	02E9	5C	RBYTE	#3A,#06,#01,#46,#09,#7A note = 22, fre
	02EF	20	RBYTE	#04,#00,#01,#46,#09,#7A note = 22, fre
0310	02F5	5C	RBYTE	#3A, #06, #01, #5A, #09, #51 note = 21, fre
0311	02FB	20	RBYTE	#04,#00,#01,#5A,#09,#51 note = 21, fre
0312	0301	5C	RBYTE	#3A,#06,#01,#84,#09,#0D note = 19, fre
0313	0307	20	RBYTE	#04,#00,#01,#84,#09,#0D note = 19, fre
0314				,,,,,,,,,
	0300	0.0	DDVIII	#40 #06 #01 #F7 #00 #F1
	030D	02	RBYTE	#40,#06,#01,#5A,#09,#51 note = 21, fre
0316	0313	02	RBYTE	#40,#06,#02,#46,#08,#79 note = 12, fre
0317	0319	02	RBYTE	#40,#06,#01,#CE,#08,#BF note = 16, fre
0318				
0319	031F	0D	RBYTE	#B0,#06,#01,#B4,#08,#D6 note = 17, fre
	0325	08	RBYTE	#10,#00,#01,#B4,#08,#D6 REST
	0323	00	RDIII	#10,#00,#01,#B1,#00,#B0 KEB1
0321	000-	2.2		W40 W05 W04 W04 W00 W05
0322	032B	02	RBYTE	#40,#06,#01,#B4,#08,#D6 note = 17, fre
0323	0331	04	RBYTE	#20,#06,#02,#8E,#08,#60 note = 10, fre
0324	0337	04	RBYTE	#20,#06,#02,#B4,#08,#56 note = 9, freq
0325	033D	02	RBYTE	#40,#06,#02,#8E,#08,#60 note = 10, fre
0326				,
	0343	02	RBYTE	#40,#06,#01,#84,#09,#0D note = 19, fre
	0349	04	RBYTE	#20,#06,#02,#8E,#08,#60 note = 10, fre
	034F	04	RBYTE	#20,#06,#02,#B4,#08,#56 note = 9, freq
0330	0355	02	RBYTE	#40,#06,#02,#8E,#08,#60 note = 10, fre
0331				
	035B	1C	RBYTE	#38,#06,#01,#B4,#08,#D6 note = 17, fre
	0361	10	RBYTE	#08,#00,#01,#B4,#08,#D6 note = 17, fre
	0367	1C	RBYTE	#38,#06,#01,#EA,#08,#AA note = 15, fre
0335	036D	10	RBYTE	#08,#00,#01,#EA,#08,#AA note = 15, fre
0336	0373	1C	RBYTE	#38,#06,#02,#06,#08,#99 note = 14, fre
0337	0379	10	RBYTE	#08,#00,#02,#06,#08,#99 note = 14, fre

```
0338
0339
0340 037F
             04
                             RBYTE
                                      #20, #06, #02, #46, #08, #79
                                                                  note = 12, fre
0341 0385
            04
                                      #20,#06,#02,#8E,#08,#60
                                                                  note = 10, fre
                             RBYTE
0342 038B
                                      #20,#06,#02,#B4,#08,#56
                                                                  note = 9, freq
                             RBYTE
0343 0391
                                      #20,#06,#02,#8E,#08,#60
                                                                  note = 10, fre
            04
                             RBYTE
0344 0397
                                      #40, #06, #02, #46, #08, #79
                                                                  note = 12, fre
                             RBYTE
0345
0346 039D
                             RBYTE
                                      #20, #06, #03, #68, #08, #37
                                                                  note = 5, freq
0347 03A3
                                                                  note = 7, freq
                                      #20, #06, #03, #08, #08, #45
            04
                             RBYTE
0348 03A9
                             RBYTE
                                      #20,#06,#02,#B4,#08,#56
                                                                  note = 9, freq
0349 03AF
                                      #20,#06,#02,#8E,#08,#60
                                                                  note = 10, fre
            04
                             RBYTE
0350 03B5
                                      #20, #06, #02, #46, #08, #79
                                                                  note = 12, fre
            04
                             RBYTE
0351 03BB
            04
                             RBYTE
                                      #20,#06,#02,#06,#08,#99
                                                                  note = 14, fre
0352
0353 03C1
            1C
                             RBYTE
                                      #38,#06,#01,#EA,#08,#AA
                                                                  note = 15, fre
0354 03C7
                             RBYTE
                                      #08,#00,#01,#EA,#08,#AA
                                                                  note = 15, fre
0355 03CD
                                      #38,#06,#02,#06,#08,#99
                                                                  note = 14, fre
            1C
                             RBYTE
0356 03D3
                             RBYTE
                                      #08, #00, #02, #06, #08, #99
                                                                  note = 14, fre
            10
0357 03D9
            1C
                             RBYTE
                                      #38,#06,#02,#46,#08,#79
                                                                  note = 12, fre
0358 03DF
                             RBYTE
                                      #08, #00, #02, #46, #08, #79
                                                                  note = 12, fre
0359
0360 03E5
             04
                             RBYTE
                                      #20, #06, #02, #06, #08, #99
                                                                  note = 14, fre
0361 03EB
            04
                             RBYTE
                                      #20,#06,#01,#B4,#08,#D6
                                                                  note = 17, fre
0362 03F1
                             RBYTE
                                      #38,#06,#02,#8E,#08,#60
                                                                  note = 10, fre
            1C
                                                                  note = 10, fre
0363 03F7
            10
                             RBYTE
                                      #08, #00, #02, #8E, #08, #60
0364 03FD
            1C
                             RBYTE
                                      #38,#06,#02,#B4,#08,#56
                                                                  note = 9, freq
0365 0403
            10
                             RBYTE
                                      #08,#00,#02,#B4,#08,#56
                                                                  note = 9, freq
0366
0367 0409
            03
                                      #C0, #06, #02, #8E, #08, #60
                                                                  note = 10, fre
                             RBYTE
0368 040F
            08
                             RBYTE
                                      #10,#00,#02,#8E,#08,#60
                                                                  note = 10, fre
                                      #00,#00,#00,#00,#00,#00
0369 0415
            0.0
                             RBYTE
                                                                  End of song
0370
0371
0372
                     For your reference, here is the data for a three
0373
                     octave musical scale. On each line the data for
0374
                     a single LPC note is given as follows:
0375
0376
                                 Note Duration. Adjust this number to give
                     Byte 1:
0377
                                 longer or shorter notes.
0378
                     Byte 2:
                                 Note volume. Different frequency notes
                                 may need a different value for a given
0379
0380
                                 volume. Adjust to taste. There will
                                 a maximum value at which the filter will
0381
0382
                                 clip.
                     Bytes 3,4: Pitch.
0383
0384
                     Bytes 5,6: K1
```

```
0385
0386
                    K2 is the bandwidth. It should be 7FF hex or below.
0387
                     the closer to 7FF it is, the tighter the bandwidth
                    and the higher the 'Q' of the filter. The tradeoff
0388
                    is that at some point the bandwidth is so tight that
0389
                    the inaccuracies of the Pitch and K1 values become
0390
                    apparent. This program uses 7F8 for K2 except when
0391
0392
                    a rest is encountered and a note needs to die down,
0393
                     when I use 780.
0394
                0395
                                      #20,#06,#04,#8C,#08,#1F
0396 041B
                NoteList
                             RBYTE
                                                                 note = 0, freq
            04
                                      #20, #06, #04, #4A, #08, #23
                                                                 note = 1, freq
0397 0421
                             RBYTE
0398 0427
            04
                             RBYTE
                                      #20,#06,#04,#0C,#08,#27
                                                                 note = 2, freq
0399 042D
            04
                             RBYTE
                                      #20, #06, #03, #D2, #08, #2C
                                                                 note = 3, freq
0400 0433
            04
                             RBYTE
                                      #20,#06,#03,#9C,#08,#31
                                                                 note = 4, freq
0401 0439
                             RBYTE
                                      #20,#06,#03,#68,#08,#37
                                                                 note = 5, freq
0402 043F
                                      #20, #06, #03, #36, #08, #3D
                                                                 note = 6, freq
            04
                             RBYTE
0403 0445
                                      #20, #06, #03, #08, #08, #45
                                                                 note = 7, freq
            04
                             RBYTE
0404 044B
            04
                             RBYTE
                                      #20, #06, #02, #DE, #08, #4D
                                                                 note = 8, freq
0405 0451
            04
                             RBYTE
                                      #20,#06,#02,#B4,#08,#56
                                                                 note = 9, freq
                                                                 note = 10, fre
0406 0457
                                      #20,#06,#02,#8E,#08,#60
            04
                             RBYTE
0407 045D
                             RBYTE
                                      #20, #06, #02, #68, #08, #6D
                                                                 note = 11, fre
            04
0408 0463
                                      #20, #06, #02, #46, #08, #79
                                                                 note = 12, fre
            04
                             RBYTE
0409 0469
                             RBYTE
                                      #20, #06, #02, #26, #08, #88
                                                                 note = 13, fre
            04
                                                                 note = 14, fre
0410 046F
            04
                             RBYTE
                                      #20, #06, #02, #06, #08, #99
0411 0475
            04
                             RBYTE
                                      #20, #06, #01, #EA, #08, #AA
                                                                 note = 15, fre
0412 047B
            04
                                      #20,#06,#01,#CE,#08,#BF
                                                                 note = 16, fre
                             RBYTE
0413 0481
                             RBYTE
                                      #20,#06,#01,#B4,#08,#D6
                                                                 note = 17, fre
            04
                                                                 note = 18, fre
0414 0487
                                      #20, #06, #01, #9C, #08, #EF
            04
                             RBYTE
0415 048D
                             RBYTE
                                      #20, #06, #01, #84, #09, #0D
                                                                 note = 19, fre
            04
0416 0493
            04
                             RBYTE
                                      #20,#06,#01,#6E,#09,#2E
                                                                 note = 20, fre
0417 0499
            04
                             RBYTE
                                      #20, #06, #01, #5A, #09, #51
                                                                 note = 21, fre
0418 049F
            04
                                      #20,#06,#01,#46,#09,#7A
                                                                 note = 22, fre
                             RBYTE
0419 04A5
                             RBYTE
                                      #20,#06,#01,#34,#09,#A5
                                                                 note = 23, fre
            04
                                                                 note = 24, fre
0420 04AB
            04
                                      #20,#06,#01,#22,#09,#D9
                             RBYTE
0421 04B1
            04
                             RBYTE
                                      #20,#06,#01,#12,#0A,#0F
                                                                 note = 25, fre
0422 04B7
            04
                             RBYTE
                                      #20,#06,#01,#04,#0A,#47
                                                                 note = 26, fre
0423 04BD
                                      #20, #06, #00, #F4, #0A, #91
                                                                 note = 27, fre
            04
                             RBYTE
0424 04C3
            04
                             RBYTE
                                      #20,#06,#00,#E6,#0A,#DE
                                                                 note = 28, fre
0425 04C9
                             RBYTE
                                      #20,#06,#00,#DA,#0B,#2B
                                                                 note = 29, fre
            04
                                                                 note = 30, fre
0426 04CF
                                      #20, #06, #00, #CE, #0B, #85
            04
                             RBYTE
0427 04D5
                             RBYTE
                                      #20,#06,#00,#C2,#0B,#ED
                                                                 note = 31, fre
            04
                                                                 note = 32, fre
0428 04DB
            04
                             RBYTE
                                      #20,#06,#00,#B8,#0C,#52
0429 04E1
                                      #20, #06, #00, #AC, #0C, #DF
                                                                 note = 33, fre
            04
                             RBYTE
                                                                 note = 34, fre
0430 04E7
            04
                             RBYTE
                                      #20,#06,#00,#A4,#0D,#4C
0431 04ED
            04
                             RBYTE
                                      #20, #06, #00, #9A, #0D, #E7
                                                                 note = 35, fre
```

```
0432 04F3
                                          #20, #06, #00, #92, #0E, #76
                                                                         note = 36, fre
                                 RBYTE
0433 04F9
              04
                                 RBYTE
                                          #20, #06, #00, #8A, #0F, #17
                                                                         note = 37, fre
0434 04FF
                                 RBYTE
                                          #00,#00,#00,#00,#00,#00
0435
0436
0437
                   *EXCITATION FUNCTION
0438
0439 4000
                                 AORG
                                          #4000
0440 4000
                                 BYTE
                                          #00, #A2, #00, #AF, #00, #BA, #00, #C2
0441 4008
                                          #00, #C7, #00, #C9, #00, #CA, #00, #C6
              0.0
                                 BYTE
0442 4010
                                 BYTE
                                          #00, #C2, #00, #BC, #00, #B5, #00, #AD
              00
0443 4018
                                          #00, #A5, #00, #9E, #00, #9A, #00, #95
              00
                                 BYTE
0444 4020
                                          #00, #95, #00, #98, #00, #9F, #00, #A8
                                 BYTE
0445 4028
              00
                                 BYTE
                                          #00, #B8, #00, #CA, #00, #E3, #00, #FE
0446 4030
                                 BYTE
                                          #01, #1F, #01, #41, #01, #69, #01, #91
0447 4038
              01
                                 BYTE
                                          #01, #BD, #01, #E8, #02, #16, #02, #40
0448 4040
                                 BYTE
                                          #02,#6C,#02,#92,#02,#B9,#02,#D9
0449 4048
                                          #02, #F8, #03, #0F, #03, #25, #03, #32
              02
                                 BYTE
0450 4050
                                          #03, #3F, #03, #43, #03, #47, #03, #45
                                 BYTE
0451 4058
              0.3
                                 BYTE
                                          #03, #45, #03, #3F, #03, #3D, #03, #3A
0452 4060
                                 BYTE
                                          #03, #3D, #03, #41, #03, #4E, #03, #5F
0453 4068
                                          #03, #7B, #03, #A0, #03, #D2, #04, #0D
              0.3
                                 BYTE
0454 4070
                                 BYTE
                                          #04, #57, #04, #AD, #05, #11, #05, #82
              04
0455 4078
                                          #06,#00,#06,#8A,#07,#1F,#07,#BD
              06
                                 BYTE
0456 4080
                                 BYTE
                                          #08, #64, #09, #11, #09, #C1, #0A, #74
                                          #0B, #26, #0B, #D5, #0C, #7F, #0D, #20
0457 4088
              0B
                                 BYTE
0458 4090
                                 BYTE
                                          #0D, #B7, #0E, #40, #0E, #BB, #0F, #24
0459 4098
              ΟF
                                 BYTE
                                          #OF, #7A, #OF, #BC, #OF, #E9, #OF, #FF
0460 40A0
                                 BYTE
                                          #0F, #FF, #0F, #E9, #0F, #BC, #0F, #7A
0461 40A8
                                          #0F, #24, #0E, #BB, #0E, #40, #0D, #B7
              OF
                                 BYTE
0462 40B0
                                 BYTE
                                          #0D, #20, #0C, #7F, #0B, #D5, #0B, #26
0463 40B8
              0A
                                 BYTE
                                          #0A, #74, #09, #C1, #09, #11, #08, #64
0464 40C0
                                 BYTE
                                          #07, #BD, #07, #1F, #06, #8A, #06, #00
0465 40C8
              05
                                 BYTE
                                          #05, #82, #05, #11, #04, #AD, #04, #57
0466 40D0
                                 BYTE
                                          #04,#0D,#03,#D2,#03,#A0,#03,#7B
                                          #03, #5F, #03, #4E, #03, #41, #03, #3D
0467 40D8
                                 BYTE
              03
0468 40E0
              03
                                 BYTE
                                          #03, #3A, #03, #3D, #03, #3F, #03, #45
                                          #03, #45, #03, #47, #03, #43, #03, #3F
0469 40E8
              0.3
                                 BYTE
0470 40F0
                                 BYTE
                                          #03, #32, #03, #25, #03, #0F, #02, #F8
0471 40F8
              02
                                 BYTE
                                          #02, #D9, #02, #B9, #02, #92, #02, #6C
0472 4100
              02
                                 BYTE
                                          #02,#40,#02,#16,#01,#E8,#01,#BD
0473 4108
                                          #01, #91, #01, #69, #01, #41, #01, #1F
              01
                                 BYTE
0474 4110
              00
                                 BYTE
                                          #00, #FE, #00, #E3, #00, #CA, #00, #B8
                                          #00, #A8, #00, #9F, #00, #98, #00, #95
0475 4118
              00
                                 BYTE
0476 4120
                                          #00, #95, #00, #9A, #00, #9E, #00, #A5
                                 BYTE
0477 4128
                                          #00, #AD, #00, #B5, #00, #BC, #00, #C2
              00
                                 BYTE
0478 4130
              00
                                 BYTE
                                          #00, #C6, #00, #CA, #00, #C9, #00, #C7
```

0479	4138	00	BYTE	#00,#C2,#00,#BA,#00,#AF,#00,#A2
0480	4140	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
0481	4148	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
0482	4150	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
0483	4158	05	BYTE	#05,#80,#05,#80,#05,#80,#05,#80
0484	4160	3A	BYTE	#3A, #80, #3A, #80, #3A, #80, #3A, #80
0485	4168	3A	BYTE	#3A, #80, #3A, #80, #3A, #80, #3A, #80
0486	4170	3A	BYTE	#3A, #80, #3A, #80, #3A, #80, #3A, #80
0487	4178	3A	BYTE	#3A,#80,#3A,#80,#3A,#80,#3A,#80
0488	4180	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
0489	4188	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
0490	4190	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
0491	4198	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
0492	41A0	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF
0493	41A8	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
0494	41B0	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF
0495	41B8	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF
0496	41C0	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF
0497	41C8	FF	BYTE	#FF, #FF, #FF, #FF, #FF, #FF, #FF, #FF

Appendix F

TSP50P11 (OTP Version)

This appendix describes the added functions of the TSP50P11 one-time-programmable (OTP) version of the TSP50C11.

Topic Page

F.1	Introduction F-2
F.2	Programming Modes
F.3	Special Functions Testing F-5
F.4	Absolute Maximums Over Operating Free-Air Temperature Range F-6
F.5	Recommended Operation Conditions F-7
F.7	Protection Bit F-9
F.8	Programming Interface Timing F-11
F.9	Differences Between The TSP50P11 and The TSP50C11 F-13

Note: Advance Information

Advance information concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice.

At the time of this writing, the TSP50P11 is still being characterized. Certain current and voltage specifications may be altered from the specified TSP50C11 values.

ADVANCE INFORMATION

F.1 Introduction

The TSP50P11 is functionally equivalent to the TSP50C11. The TSP50P11 differs in that it is manufactured with a one-time programmable EPROM instead of a ROM for program and data storage. To facilitate the programming of the EPROM device without altering the package size or pinout, the existing device pins have taken on different functions while in programming mode (see Figure F–1 and Table F–1).

Figure F-1. TSP50P11 Pin Assignments

Table F-1.TSP50P11 Terminal Functions

TERMINAL	_	1/0	DESCRIPTION			
NAME	NO.	1/0	NORMAL OPERATION MODE	PROGRAMMING MODE		
DA1	11	0	D/A output	_		
DA2	10†	0	D/A output	_		
ĪNIT	6	I	Initialize input	Initialize input		
OSC1	7	ı	Clock input	_		
OSC2	8	_	Clock return	_		
PA0/MODESEL	4	I/O	8-bit bidirectional I/O port	Mode select (program or test)		
PA1/ADD-INC	3	I/O	1	Address increment		
PA2/DATA-CLK	2	I/O	1	Data clock		
PA3/DATA-IN	1	I/O]	Serial data input		
PA4/DATA-OUT	16	I/O	1	Serial data output		
PA5/ST1	15	I/O]	Special test function decode		
PA6/GBAR	14	I/O]	Vpp		
PA7/ST2	13	I/O	1	Special test function decode		
PB0/EBAR	9	I/O	2-bit bidirectional I/O port	Chip enable		
PB1	10†	I/O	1	_		
V_{DD}	12	_	5-V supply voltage	5-V supply voltage		
V _{SS}	5	_	Ground terminal	Ground terminal		

[†] The operation of this pin depends on the D/A option selected.

F.2 Programming Mode

To initiate the programming mode requires the use of two terminals. A logic level of 0 V is applied to PA0 and is maintained while a high-voltage level (12.5 V) is applied to $\overline{\text{INIT}}$. The voltage on $\overline{\text{INIT}}$ is then pulsed to a high logic level and back to a high voltage level. This action sets an internal latch that places the TSP50P11 in the programming mode and redefines all the terminal functionality (see Table F–1).

Once the programing mode has been established, the basic programing sequence is as follows (see Figure F–2):

- For shifting data out:
 - The first data byte, starting with the MSB, is serially clocked into an internal shift register (PA2/DATA-CLK and PA3/DATA-IN).
 - The PA6/GBAR terminal is used to multiplex the data clock between data elements while they are shifting out.
- ☐ For shifting data in:
 - The PA6/GBAR is at a high voltage level (12.5 V). The PB0/EBAR terminal is held high to prevent accidental programming.
 - After the data has been shifted in and the necessary set-up and hold times have elapsed and with PA6/GBAR at a high voltage level, the PB0/EBAR terminal is strobed low for 100 μs. This is the actual programming or burn pulse that writes the data into the EPROM (see Figure F-2).
 - After PB0/EBAR has been reset high, PA6/GBAR is taken to a logic low (0 V) and the read-back mode is established.
 - PB0/EBAR is once again strobed low, PA2/DATA-CLK is strobed high, and PB0/EBAR returns to a logic high (5 V) to load the output shift register with the data from the EPROM location just programmed (see Figure F-2)
 - This data is then serially shifted out on rising edge of the data clock on the serial data out terminal (PA4/DATA-OUT).
 - The address increment terminal (PA1/ADD-INC) can be strobed to go to the next location in the program or the same location can be programmed again. Data that is to be outputed is stored in the input-shift register and remains there until over written.

Figure F-2. Simplified Timing Waveforms

NOTE A: PB0/EBAR programming pulse NOTE B: PB0/EBAR load pulse (read mode)

F.3 Special Functions Testing

In order to provide some reliability testing and statistical quality control, some special test functions were incorporated into the TSP50P11 from the standard EPROM design flow. Table F–2 shows the operation of these special testing functions.

Table F-2. Special Testing Functions

PA6/GBAR	PB0/EBAR	PA5/ST1	PA7/ST2	INPUT DATA	FUNCTION/TEST
V	L	Н	L	All 1s	Wordline stress
V	L	Н	Н	All 1s	Bitline stress
L	L	Н	Н	All 0s	Inverse erase

 $[\]dagger$ V = high voltage, H = logic high, L = logic low.

F.4 Absolute Maximum Ratings Over Operating Free-Air Temperature Range†

Supply voltage range, V _{DD} (see Note 1)	$\ldots~$ –0.3 V to 8 V
Input voltage range, V _I (see Note 1)	$3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Output voltage range, V _O (see Note 1)	$3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Operating free-air temperature range, T _A	\dots .0°C to 70°C
Storage temperature range	0°C to 125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to analog ground (VSS) unless otherwise noted.

F.5 Recommended Operating Conditions

Table F–3 lists the recommended operating conditions for the TSP50P11.

Table F-3. Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V_{DD}	Supply voltage (see Note 1)		4		6.5	V
I(standby)	Standby current, INIT = 0				15	μΑ
I Cumply summent (see Note 2)	Digital D/A (see Note 3)	10				
^I DD	Supply current (see Note 2)	Analog D/A (see Note 3)		10		mA

- NOTES: 1. Voltage is with respect to V_{SS} .

 2. Supply current assumes all inputs are tied to either V_{SS} or V_{DD} and that no input currents due to programming pullup resistor exist.
 - 3. D/A output is floating.

F.6 TSP50P11 Electrical Characteristics

The following table gives specifications and the following figure gives the gives the input leakage current that applies to the TSP50P11.

Table F–4. TSP50P11 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Free-Air Temperature (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT
V _{T+}	Positive-going threshold voltage (INIT)	$V_{DD} = 4.5 \text{ V}$ $V_{DD} = 6 \text{ V}$			2.7 3.65		V
	,	$V_{DD} = 6 \text{ V}$ $V_{DD} = 4.5 \text{ V}$			2.3		
V_{T-}	Negative-going threshold voltage (INIT)	$V_{DD} = 4.3 \text{ V}$ $V_{DD} = 6 \text{ V}$			3.15		V
V _{hys}	Hysteresis (V _{T+} – V _{T-}) (INIT)	V _{DD} = 4.5 V			0.4		V
		V _{DD} = 6 V			0.5		
l _{lkg}	Input leakage current (except for OSC1, INIT see Figure 3–5)					1	μА
I _{standby}	Standby current (INIT low)					15	μΑ
I _{DD} †	Supply current	D/A option 1, 2	, or 3		10		mA
		$V_{DD} = 4 V$,	V _{OH} = 3.5 V	-4	-6		
		$V_{DD} = 5 V$,	V _{OH} = 4.5 V	-5	-7.5		mA
	High-level output current (PAx, PBx, D/A options 1, 2)	$V_{DD} = 6 V$,	V _{OH} = 5.5 V	-6	-9.2		
ЮН		$V_{DD} = 4 V$,	V _{OH} = 2.67 V	-8	-13		mA
		$V_{DD} = 5 V$,	V _{OH} = 3.33 V	-14	-20		
		$V_{DD} = 6 V$,	V _{OH} = 4 V	-20	-29		
		$V_{DD} = 4 V$,	V _{OL} = 0.5 V	8	14		
^l OL		$V_{DD} = 5 V$,	V _{OL} = 0.5 V	10	16		mA
	Low-level output current (PAx, PBx, D/A options 1, 2)	$V_{DD} = 6 V$,	$V_{OL} = 0.5 V$	12	20		
		$V_{DD} = 4 V$,	V _{OL} = 1.33 V	18	26		mA
		$V_{DD} = 5 V$,	V _{OL} = 1.67 V	27	42		
		$V_{DD} = 6 V$,	V _{OL} = 2 V	40	57		
	Pullup resistance		ted with software and veen pin and VDD	15	30	60	kΩ

[†] Operating current assumes all inputs are tied to either V_{SS} or V_{DD} with no input currents due to programmed pullup resistors. The DAC output and other outputs are open circuited.

F.7 Protection Bit

The TSP50P11 is equipped with a protection bit that disables the read-back feature during the program mode. This allows for complete security to be provided for a programmer's code. The protection bit is one-time programmable and may be programmed at any address of the EPROM. The method for programming is simple. During the normal programming sequence, the data input stream must be returned to zero before the burn pulse begins. This prevents the EPROM from protecting itself. If the data stream input line is held high (5 V) during the burn pulse, the device protects itself and no further reads can be performed. The protection bit does not interfere with the writing of subsequent locations and can be programmed retroactively by sending in an FF and a protection bit. In this way a previously burned EPROM may be protected with no alteration of the data within it. This allows an EPROM to be verified in the system before it is protected. Figure F–3 and Figure F–4 show the timing waveforms for the protection bit states.

Figure F-3. Normal Programming Timing Waveforms

NOTE A: PB0/EBAR programming pulse NOTE B: PB0/EBAR load pulse (read mode)

Note:

If PA3/DATA-IN is set low during a burn, the EPROM does not have read protection.

Figure F-4. Programming with Protection Set Timing Waveforms

NOTE A: PB0/EBAR programming pulse NOTE B: PB0/EBAR load pulse (read mode)

Note:

If PA3/DATA-IN is set high during a burn, the EPROM does have read protection.

F.8 Programming Interface Timing

Figure F–5 shows the timing waveforms for the TSP50P11 during the initialization and write sequences. Table F–6 gives the specification for the timing elements listed in Figure F–5. and Figure F–6.

Table F-5. Timing Characteristics for Initialization and Write Sequences

	PARAMETER	MIN	MAX	UNIT
t _{w1}	Pulse duration time, INIT active at 12 V	1		μs
t _{w2}	Pulse duration time, INIT active at 5 V	1		μs
t _{su1}	Setup time, PA6/GBAR active to PA2/DATA-CLK high	2		μs
t _{w3}	Pulse duration time, PA2/DATA-CLK high	1		μs
t _{h1}	Hold time, PA2/DATA-CLK low to PB0/EBAR low (program mode)	1		μs
t _{su2}	Setup time, PA3/DATA-IN high until PA2/DATA-CLK high	1		μs
t _{su3}	Setup time, PA6/GBAR active until PA3/DATA-IN high	2		μs
t _C	Cycle time, PA2/DATA-CLK	2		μs
t _{su4}	Setup time, PA6/GBAR high until PB0/EBAR high	1		μs
t _{h2}	Hold time, PA3/DATA-IN low until PB0/EBAR low	1		μs

Figure F-5. Initialization and Write Sequence Timing Waveforms

NOTE A: PB0/EBAR programming pulse

Figure F–6 shows the timing waveforms for the TSP50P11 during the initialization and write sequences. Table F–6 gives the specification for the timing elements listed in Figure F–6.

Table F-6. Timing Characteristics for Initialization and Write Sequences

	PARAMETER	MIN	MAX	UNIT
^t d1	Delay time, PB0/EBAR high to PA6/GBAR inactive (program dependent)	10	10	ns
t _{su5}	Setup time, PA1/ADD-INC low to PA6/GBAR active	10	10	ns
t _{su6}	Setup time, PA2/DATA-CLK rise to PA4/DATA-OUT valid	0.5	0.5	ns
t _{su7}	Setup time, PB0/EBAR low to PA2/DATA-CLK rise	1	1	ns
t _{h3}	Hold time, PA6/GBAR inactive to PB0/EBAR low	2	2	ns
t _{w3}	Pulse duration time, PB0/EBAR low (read)	6	6	ns
t _{w4}	Pulse duration time, PA1/ADD-INC active high	6	6	ns
t _{su8}	Setup time, PA2/DATA-CLK low to PA1/ADD-INC high	1	1	ns

Figure F-6. Programming and Read Sequence Timing Waveforms

NOTE A: PB0/EBAR load pulse (read mode)

F.9 Differences Between the TSP50P11 and the TSP50C11

The TSP50P11 is functionally equivalent to the TSP50C11. The TSP50P11 differs in at least three major ways.

- ☐ The TSP50P11 uses a one-time programmable EPROM instead of ROM for program and data storage.
- ☐ The TSP50P11 requires a slightly different excitation function from the standard excitation function used in the TSP50C11.
- Low-level output current (I_{OL}) for PA6/GBAR (terminal 14) is higher for the TSP50P11 than for PA6 (terminal 14) of the TSP50C11.
- ☐ Supply current (I_{DD}) is higher on the TSP50P11 than on the TSP50C11.
- ☐ Standby current (I_{standby}) is somewhat higher on the TSP50P11 than on the TSP50C11.

At the time of this writing, the TSP50P11 is still being characterized. Certain current and voltage specifications may be altered from the specified TSP50C11 values.

Excitation Function Differences

Table F–7 shows the differences between the TSP50P11 excitation function and the TSP50C11 excitation function.

Table F–7. TSP50P11 Excitation Function Differences

ROM Address	TSP50P11	TSP50C11		
4140h – 414Fh	FF, FF, FF, FF, FF	05, 80, 05, 80, 05, 80		
4150h – 415Fh	FF, FF, FF, FF, FF, FF	05, 80, 05, 80, 05, 80		
4160h – 416Fh	05, 80, 05, 80, 05, 80	3A, 80, 3A, 80 3A, 80		
4170h – 417Fh	3A, 80, 3A, 80 3A, 80	3A, 80, 3A, 80 3A, 80		

Appendix G

Glossary

A

- A (accumulator) register: The primary 14-bit register used for arithmetic and logical operations.
- **ADP50C12:** The development tool for emulating the TSP50C12 for development purposes when using the EVM50C1x and for demonstration and field test purposes when using an EPROM. See also *EVM50C1x*.
- **ASM50C1x assembler:** The assembler used for all members of the TSP50C0x/1x speech synthesizer family.
- assembly binary object file: Contains binary object code and is produced by the assembler after processing the assembler source file. See also assembler source file.
- **assembly listing file:** Contains the source instructions, assembled code, and a cross-reference table and is produced by the assembler after processing.
- **assembly source file:** Contains the source code for the assembler.
- **assembly tagged object file:** File produced by the assembler in tagged object format instead of binary format.

В

- **B register:** A 14-bit register used for temporary storage. This register can be used to store a RAM address, exchanged with the X register using the XBX instruction, and exchanged with the A register using the XBA instruction. The contents of the B register are saved during level-1 interrupts and can be restored using the RETI instruction. See also *A register*, *B register*, and *level-1 interrupt*, *X register*.
- **block addressing:** The switching in or paging of 8K-byte block of RAM for use by the TSP50C19.

D/A option 1: See two-pin push pull (option 1).

D/A option 2: See single-pin single ended (option 2).

D/A option 3: See single-pin double ended (option 3).

D/A register: Holds the D/A output. While in PCM mode, the output data is written directly to the D/A register. See also *PCM mode*.

DAC (digital-to-analog converter): The DAC is pulse-width-modulated with either 9 bits or 10 bits of resolution and a 16-kHz or 20-kHz sampling rate. The DAC produces samples at twice the rate that data is received from the LPC filter and is available in three pulse-width-modulated forms for the TSP50C10/11 and two pulse-width-modulated forms for the TSP50C04/06/12/13/14/19. See also *LPC*.

direct-addressing mode: Part of the TSP60C18/81. This mode presumes the 16-bit address loaded points directly to the desired data. See also *TSP60C18*, *TSP60C81*.

DTMF (dual-tone multifrequency): A method of coding signals used in telephone applications in which two nonharmonically related frequencies are added together to represent the information.

ENA1 bit: Bit 0 in the mode register. It enables/disables the level-1 interrupt function. See also *level-1 interrupt*, *mode register*.

ENA2 bit: Bit 3 in the mode register. It enables/disables the level-2 interrupt function. See also *level-2 interrupt*, *mode register*.

energy parameter: A gain used to scale the excitation function before it is loaded to the LPC filter. See also *excitation function*, *LPC*.

EVM: See EVM50C1x.

EVM50C19: Development module for the TSP50C19.

EVM50C1x: Development module for the TSP50C1x family of speech synthesizers.

excitation function: A digitized pulse periodically used to excite the LPC filter. See also *LPC*.

extended-sign mode: An arithmetic mode in which the processor presumes all numbers to be values ranging positive or negative from zero, with negative number represented in twos-complement notation.

external interrupt: An interrupt signal generated on the PB1 pin.

external ROM mode: In this mode the TSP50X0x/1x can address an external speech ROM (e.g., TSP60C18 or TSP60C81). See also TSP60C18, TSP60C81.

EXTROM bit: Bit 4 in the mode register. It enables/disables the external ROM hardware interface.

F

FAB50C1x: A development tool that emulates the TSP50C04/06/13/14/19 DAC output and can be connected to the SDS5000, EVM50C1x, and the SEB50C1x. See also *DAC*, *EVM50C1x*, *SDS5000*, *SEB50C1x*.

frames: Segments of speech that are from 10 ms to 25 ms long.

indirect-addressing mode: Part of the TSP60C18/81. When in this mode, it presumes the 16-bit or 8-bit address loaded points to a location in ROM that contains an address that points to the location of the desired data. See also TSP60C18, TSP60C81.

integer mode: An arithmetic mode in which the processor presumes all numbers to be integers ranging positive from zero.

interrupt: A condition in which the processor suspends the linear flow of the program in order to perform some asynchronous task. The TSP50C0x/1x device supports two levels of interrupts. See also level-1 interrupt, level-2 interrupt.

K

K parameters: Parameters (usually 10 or 12 in number) used to determine the resonance of a digital filter that emulates the resonance of the human vocal tract.

- **level-1 interrupt:** The higher priority of the two levels of interrupts. The level-1 interrupt is a synthesis interrupt and is enabled or disabled by the ENA1 bit in the mode register. A level-1 interrupt is caused by one of four conditions depending on the state of the LPC and PCM bits of the mode register. See also *ENA1 bit*, *LPC*, *mode register*, *PCM*, *level-2 interrupt*.
- **level-2 interrupt:** Interrupt enabled or disabled by the ENA2 bit in the mode register. A level-2 interrupt is caused by a timer overflow condition. See also *ENA2 bit, level-1 interrupt, mode register.*
- **LPC (linear predictive coding):** Uses a mathematical model of the human vocal tract to enable efficient digital storage and recreation of realistic speech.
- **LPC bit:** Bit 1 in the mode register. It enables/disables the LPC processor. See also *LPC*, *mode register*.
- **LPC data compression:** A form of data compression that takes advantage of a model of the human vocal tract.
- **LPC mode:** Normal operating (speaking) mode of the TSP50C0x/1x devices.
- **LPC model:** Incorporates elements analogous to each of the elements of the vocal tract. It has an excitation function generator that models both types of restrictions: a gain-multiplication stage to model the possible levels of pressure from the lungs, and a digital filter to model the resonance in the oral and nasal cavities.

- **MASTER bit:** Bit 6 of the mode register. It enables I/O master operation or I/O slave operation. See also *mode register*.
- **Mode register:** 8-bit write-only register controls the operating mode of the TSP50C0x/1x.

NPRF (new product release form): A form required by Texas Instruments to track and document all steps involved in implementing a new speech code onto one of the parent speech devices.

OTP (one-time programmable): A type of EPROM that can only be programmed once. The TSP50P11 has a OTP EPROM in place of ROM for program and data storage.

Ρ

- **parallel-to-serial register:** 8-bit register used primarily to unpack speech data.
- **PC (program counter):** 14-bit program counter that stores an address that points to the next instruction to be executed.
- **PCM bit:** Bit 2 in the mode register. It enables/disables PCM mode. See also mode register, PCM mode.
- **PCM (pulse-code modulation) mode:** Allows a periodically sampled waveform to be loaded directly into the DAC and provides the ability to synthesize arbitrary waveforms.
- **periodic pulse:** A voiced-speech sound (e.g., |A| vowel sound). See also *voiced speech*.
- **pitch parameter:** Information required by the LPC model. It controls the input into the LPC system by providing one of two excitation signals. See also *LPC*, *LPC mode*, *LPC model*.
- pitch-period counter: See PPC.
- pitch register: Stores values for the PPC. See also PPC.
- **pitch-synchronous interpolation:** Helps minimize the inevitable noise from interpolation by making it occur at the lowest energy part of the speech and by making it a harmonic of the fundamental frequency of the speech.
- **PLCC (plastic-leaded chip carrier):** The TSP50C12 is available only in a 68-lead PLCC package.
- **plosives:** Abrupt unvoiced-speech sounds (e.g., the "Phaa" in the letter |P|). See also *unvoiced speech*.
- **port A:** 8-bit I/O port is controlled by a data-direction register. Each output bit can be programmed independently.
- **port B:** 2-bit I/O port is controlled by a data-direction register. Each output bit can be programmed independently.

- **PPC (pitch-period counter):** Controls the timing of the periodic impulse that simulates the vocal cords and is used to synchronize the interpolation of all speech parameters during each frame.
- **program counter stack:** Has three levels to store three program counter addresses for return from subroutines or interrupts. See also *PC*.
- **programming mode:** TSP50P11 option that allows programming of the EPROM in this one-time programmable device. See also *OTP*.
- **PW2 option:** Causes the processor to produce a double-sized pulse width. This results in a higher volume output, which increases the risk of clipping the output. The PW2 option is available on the TSP50C04/06/12/13/14/19.

R

- **RAMROM bit:** Bit 5 in the mode register. It either enables data source for the GET instruction from internal or external ROM or from internal RAM. See also *mode register*.
- **RELP** (residual encoded linear predictive synthesis): A method of synthesizing normal speech.

S

- **SDS5000:** Speech development system that uses an IBM PC/XT, PC/AT, or compatible to run high speed speech analysis.
- **SEB50C1X:** An in-circuit emulation of speech EPROM for the TSP50C0x/1x family of devices.
- **SEB60CXX:** An in-circuit emulation of up to four TSP60CXXs for use as storage for the TSP50C0x/1x devices during development.
- single-pin single ended (option 2): Option accurate to 9 bits $(\pm 1/2 \text{ LSB})$ that is designed for use with a single-transistor amplifier. While this option retains all 10 I/O pins, it also requires more power to operate. This option is available on the TSP50C04/06/10/11/13/14/19.
- single-pin double ended (option 3): Option accurate to 10 bits (± 1/2 LSB) that is provided for use with operational amplifiers and power amplifiers. It offers 10 bits of resolution and 10 I/O pins and is available on the TSP50C10/11/12.
- **slave mode:** Allows the TSP50C0x/1x to be controlled by a master microprocessor.

- **speech address register (SAR):** 14-bit register used to point to to data in ROM.
- standby mode: The TSP50C0x/1x can be put into a low-power-dissipation standby mode by either executing a SETOFF instruction or by taking INIT low. When placed in standby mode, output data is cleared, the I/O pins are placed in a high-impedance input mode, the program counter is cleared to zero, the registers are left in an undefined state, the values stored in RAM are retained, the clock stops running, and no instructions are executed. See also *PC*.
- **synthesizer mode 0 (OFF mode):** When the PCM and LPC bits of the mode register are cleared, the synthesizer is disabled and all instruction cycles are devoted to the processor. See also *LPC bit, mode register, PCM bit.*
- synthesizer mode 1 (LPC mode): Normal speaking mode. The LPC bit of the mode register is set high for LPC mode. When the PCM bit is set low, the synthesizer uses 53% of the instruction cycles. When the PCM bit is set high, the synthesizer uses 50% of the instruction cycles. See also LPC bit, mode register, PCM bit.
- **synthesizer mode 2 (PCM mode):** Mode used for tone and music generation. The PCM bit of the mode register is set high for PCM mode. The processor uses all the instruction cycles and the A register is transferred directly to the D/A register. See also A register, D/A register, mode register, PCM bit, PCM mode.
- synthesizer mode 3 (PCM and LPC mode): When both the PCM and LPC bits of the mode register are set high, the LPC synthesizer runs normally with excitation function provided by software. In this mode the synthesizer takes 50% of the instruction cycles and the A register is transferred to the excitation function input of the synthesizer. This mode is included for use with RELP and other similar synthesis techniques. See also A register, LPC bit, LPC mode, mode register, PCM bit, PCM mode, RELP.
- **timer prescale register:** 8-bit register that is a programmable divider between the processor clock and the timer register. See also *timer register*.
- **timer register:** 8-bit register used for generating interrupts and for counting events.
- **TSP60C18:** A 256K-bit ROM organized internally as a 16K-bits × 16 bits. It can provide additional storage for the TSP50C0x/1x devices.

TSP60C81: A 1024K-bit ROM organized internally as a 64K-bits \times 16 bits. It can provide additional storage for the TSP50C0x/1x devices.

two-pin push pull (option 1): Option accurate to 10 bits (\pm 1/2 LSB) and works well with a very efficient four-transistor amplifier. It requires two pins, which leaves only 9 pins for output.

UNV bit: Bit 7 of the mode register. Enables the pitch-controlled excitation sequence in LPC mode or enables the random excitation sequence in LPC mode. See also *LPC mode*, *mode register*.

unvoiced speech: One of two types of sound used in the LPC model, unvoiced sounds have a white-noise-like characteristic. An example is the |s| sound. See also *LPC mode*, *voiced speech*.

voiced speech: One of two types of sound used in the LPC model, voiced sounds have tonal characteristics and when produced in humans are created with the help of the vocal cords. An example is the |r| sound. See also *LPC mode*, *unvoiced speech*.

X register: 8-bit register that can be used as a RAM index register to point to a specific RAM location.

&, arithmetic operators in expressions 4-14	AMAAC (add memory to A register) instruction E-10
&&, arithmetic operators in expressions 4-14	AMAAC instruction arithmetic mode 6-41
\$, predefined operand field symbol 4-12	ANDCM (add a constant with memory) instruc-
%, arithmetic operators in expressions 4-14	tion E-11
+, arithmetic operators in expressions 4-14	ANEC (A register not equal to constant) instruc-
++, arithmetic operators in expressions 4-14	tion E-12
-, arithmetic operators in expressions 4-14	AORG directive
	description 4-16
/, arithmetic operators in expressions 4-14	syntax 4-16
16-bit indirect-address initializa- tion TSP60C18/81 6-57	applications TSP50C0x/1x 1-2
2s complement arithmetic mode 6-39	arithmetic logic unit. See ALU
8-bit indirect-address initializa-	arithmetic modes 6-39
tion TSP60C18/81 6-56	2s complement 6-39
990 option OPTION directive 4-22	ACAAC instruction 6-41
990 option of mon directive 4-22	AMAAC instruction 6-41
	EXTSG instruction 6-39
A	integer mode 6-40
	INTGR instruction 6-39
A register	LUAA instruction 6-41
I/O port registers 2-13	LUAB instruction 6-41
port B 2-13 RETI instruction 2-8	SMAAN instruction 6-41 TCA instruction 6-41
synthesizer mode 0 2-17	TMA instruction 6-41
synthesizer mode 2 2-17	TMAD instruction 6-41
synthesizer mode 2 2-17	TMAIX instruction 6-41
TASYN instruction 2-12	TXA instruction 6-40 6-41
transferring to pitch register 2-12	XBX instruction 6-41
TSP50C0x/1x 2-8	ASM10 invoking the assembler 4-3
A0 pin description 6-49	ASM50C1x assembler TSP50C19 6-76
ABAAC (add B register to A register) instruction E-7	assembler
absolute maximum ratings	\$ 4-12
TSP50C0x/1x 3-2	AORG directive 4-16
TSP50P11 F-6	arithmetic operators in expressions 4-14
ACAAC (add constant to A register) instruction E-8	assembly binary object file 4-7
ACAAC instruction	assembly listing file 4-8
arithmetic mode 6-41	assembly source file 4-7
extended-sign mode 6-41	assembly tagged object file 4-8
integer mode 6-41	binary-code file-disable switch 4-6
addressing modes TSP60C18/81 6-51	BYTE directive 4-16
ADP50C12	BYTE unlist option 4-4
features A-7	character string 4-13 command-line options 4-4
speech development tool A-7	COPY directive 4-16
AGEC (A register greater than or equal to constant)	DATA directive 4-17
instruction E-9	DATA unlist option 4-5
ALU	directives 4-15
EXTSG instruction 2-8	directives summery 4-15
INTGR instruction 2-8	END directive 4-18
TSP50C0x/1x 2-8	FQU directive 4-17

assembler (continued)	assembly binary object file
error-to-screen switch 4-6	assembler 4-7
expressions 4-14	program.bin 4-7
IDT directive 4-18	assembly instruction
input files 4-7	opcode table 5-6
instruction count switch 4-6	syntax 5-2
invoking 4-3	assembly instructions summary 5-3
label field symbols 4-12	assembly listing file
LIST directive 4-19	assembler 4-8
listing file switch 4-5	program.lst 4-8
NARROW directive 4-19	. •
object mode switch 4-5	assembly source file assembler 4-7
operand field predefined symbols 4-12	program.src 4-7
operand field symbols 4-12	
OPTION directive 4-19	assembly tagged object file
990 option 4-22	assembler 4-8
BUNLST option 4-20	program.mpo 4-8
DUNLST option 4-20	assembly-time constants source-statement for-
FUNLST option 4-20	mat 4-11
I COUNT option 4-20	AXCA (A register times to constant) instruction E-13
LSTUNL option 4-21	AXCA instruction multiplication scheme 6-42
OBJUNL option 4-21	AXMA (A register times memory) instruction E-14
PAGEOF option 4-21	AXMA instruction multiplication scheme 6-42
RXREF option 4-21	•
SCRNOF option 4-21	AXTM (A register times timer) instruction E-15
TUNLST option 4-21	AXTM instruction multiplication scheme 6-42
WARNOFF option 4-21	
XREF option 4-21	В
output files 4-7	
PAGE directive 4-22	B register
page-eject disable switch 4-6	RETI instruction 2-9
parentheses in expressions 4-14	TSP50C0x/1x 2-9
program.bin 4-7	XBX instruction 2-9
program.lst 4-8	B2 bit TSP50C19 6-75
program.mpo 4-8	
program.src 4-7	B3 bit TSP50C19 6-75
RBYTE directive 4-22	binary integer constants source-statement for-
RDATA directive 4-23	mat 4-10
relative ROM address for TSP50C19 6-76	binary-code file-disable switch command-line op-
RTEXT directive 4-23	tion 4-6
source-statement format 4-9	block addressing TSP50C19 ROM 2-4
TEXT directive 4-24	BR (branch if status set) instruction E-16
TEXT unlist option 4-5	BR instruction
TITL directive 4-24	program counter 2-5
TSP50C19 6-76	status flag 2-9
UNL directive 4-25	BRA (branch always to address in A register)
WARNING unlist option 4-5	instruction E-17
WIDE directive 4-25	
XREF switch 4-5	BRA instruction program counter 2-5
XREF unlist option 4-5	BUNLST option OPTION directive 4-20

BYTE directive description 4-16 syntax 4-16	LCD drive type A diagram 2-25 LCD drive type B 2-26 LCD drive type B diagram 2-27
BYTE unlist command-line option 4-4	customer options TSP50C12 clock 2-29
C	D
C0 pin description 6-49	D/A options timing requirements 3-4
C1 pin description 6-49	D6 parameter
C2 pin description 6-49	energy parameter 6-2
C3 pin description 6-49	frame decoding 6-3 PITCH parameter 6-2
CALL (call subroutine if status set) instruction E-18	REPEAT parameter 6-2
CALL instruction	speech coding 6-2
program counter 2-5	DAC
status flag 2-9	sample rates 2-19
CE pin description 6-49	single-pin double-ended mode 2-19
CEB pin description 6-49	single-pin single-ended mode 2-19
character constants source-statement format 4-11	TASYN instruction 2-19
character strings assembler 4-13	two-pin double-ended mode 2-19
3	data block selection TSP50C19 6-76
CLA (clear A register) instruction E-19	data compression LPC-12 1-20
CLB (clear B register) instruction E-20	data direction register. See DDR
clock TSP50C12 customer options 2-29	DATA directive
CLX (clear X register) instruction E-21	description 4-17 syntax 4-17
command field source-statement format 4-9	data input register. See DIR
command line	data output register. See DOR
binary-code file-disable switch 4-6 BYTE unlist option 4-4	DATA unlist command-line option 4-5
DATA unlist option 4-5	DDR I/O register 2-14
error-to-screen switch 4-6	decimal integer constants source-statement for-
instruction count switch 4-6	mat 4-10
listing file switch 4-5	DECMN (decrement memory) instruction E-22
object mode switch 4-5	DECXN (decrement X register) instruction E-23
options 4-4	development cycle 7-2
page-eject disable switch 4-6 TEXT unlist option 4-5	digital-to-analog converter. See DAC
WARNING unlist option 4-5	digital-to-analog options
XREF switch 4-5	option 1 1-7
XREF unlist option 4-5	four-transistor waveform circuit 1-8
comment field source-statement format 4-10	operational amplifier circuit 1-9
constants source-statement format 4-10	power amplifier interface circuit 1-9
contrast adjustment LCD 2-28	waveform 1-8 option 2 1-9
COPY directive	one-transistor amplifier circuit 1-11
description 4-16	waveform 1-10
syntax 4-16	option 3 1-11
customer option	operational amplifier interface circuit 1-12
LCD drive type A 2-24	waveform 1-12

digital-to-analog options (continued) single-pin double-ended option 1-11 operational amplifier interface circuit 1-12	TSP50C14 3-10 TSP50C19 3-10 TSP50P11 F-8
waveform 1-12	ENA1 mode register bit 2-16
single-pin single-ended option 1-9	-
one-transistor amplifier circuit 1-11	ENA2
waveform 1-10	enable/disable level-2 interrupt 2-16 interrupt 2-16
TSP50C04 1-7	mode register bit 2-16
TSP50C06 1-7	-
TSP50C12 1-7	END directive
TSP50C13 1-7	description 4-18
TSP50C14 1-7	syntax 4-18
TSP50C19 1-7	EPROM protection bit TSP50P11 F-9
TSP50Cox/1x 1-7 two-pin push pull option 1-7	EQU directive
four-transistor amplifier circuit 1-8	description 4-17
operational amplifier circuit 1-9	syntax 4-17
power amplifier interface circuit 1-9	error-to-screen switch command-line option 4-6
waveform 1-8	EVM timer register 2-10
DIR I/O register 2-14	EVM50C19 ROM block selection 6-76
direct-address initialization TSP60C18/81 6-55	EVM50C1x
direct-addressing mode TSP60C18/81 6-51	features A-6
directives	speech development tool A-6
assembler 4-15	excitation sequence
summery 4-15	pitch-controlled
DOR I/O register 2-14	enabled 2-16
DTMF program D-1 to D-11	MASTER mode register bit 2-16 random
DTMF sample program walkthrough 6-67	enabled 2-16
DUNLST option OPTION directive 4-20	MASTER mode register bit 2-16
DW package	expression
mechanical information 7-6	& arithmetic operator 4-14
TSP50C04 pin assignments 1-18	&& arithmetic operator 4-14
TSP50C06 pin assignments 1-18	% arithmetic operator 4-14
TSP50C10 pin assignments 1-13	+ arithmetic operator 4-14
TSP50C11 pin assignments 1-13	++ arithmetic operator 4-14
TSP50C13 pin assignments 1-18	arithmetic operator 4-14
TSP50C14 pin assignments 1-18	/ arithmetic operator 4-14
TSP50C19 pin assignments 1-18	x arithmetic operator 4-14
	expressions
E	arithmetic operators 4-14
-	assembler 4-14
electrical characteristics	parentheses 4-14
TSP50C04 3-10	extended-sign mode 6-40
TSP50C06 3-10	ACAAC instruction 6-41
TSP50C10 3-6	external interrupt
TSP50C11 3-6	timing diagram 3-5
TSP50C12 3-8	timing requirements 3-5
TSP50C13 3-10	external ROM initialization program C-1 to C-11

PA0 pin 2-15 PA1 pin 2-15 PA2 pin 2-15 PA3 pin 2-15 PA7 pin 2-15 PB0 pin 2-15 TSP50C0x/1x 2-15 TSP60C18 2-15 TSP60C81 2-15	TSP50C04 1-4 TSP50C06 1-4 TSP50C10 1-3 TSP50C11 1-3 TSP50C12 1-4 TSP50C13 1-4 TSP50C14 1-4 TSP50C19 1-4 functional description TSP50C0x/1x 2-2
EXTROM external ROM enable/disable 2-16 GET instruction 6-61 mode register bit 2-16 parallel-to-serial register 2-13 slave mode 6-44	FUNLST option OPTION directive 4-20 G generating tones PCM 6-66
EXTSG (change to extended-sign mode) instruction E-24	GET (get data from RAM/ROM) instruction E-25 GET instruction bit stream from memory 6-60 data source enable 2-16
EXTSG instruction ALU 2-8 arithmetic modes 6-39 integer mode flag 2-10	external ROM 6-62 EXTROM mode register bit 6-61 internal RAM 6-63 internal ROM 6-62 parallel-to-serial register 2-13 parallel-to-serial register and RAM 2-13 RAMROM mode register bit 2-16, 6-61 SAR 2-12
FAB50C1x	Н
features A-8 speech development tool A-8	hardware initialization TSP60C18/81 6-54 HCLB pin description 6-49
features TSP50C04 1-5 TSP50C06 1-5 TSP50C0x/1x 1-5 TSP50C10 1-5	hexadecimal integer constants source-statement format 4-11
TSP50C11 1-5 TSP50C12 1-6 TSP50C13 1-5 TSP50C14 1-5 TSP50C19 1-5	I COUNT option OPTION directive 4-20 I/O configuration TSP50C10 1-15 TSP50C11 1-15
FLAGS bit used by sample program 6-7	I/O master operation enable 2-16
forms new product release 7-12	MASTER mode register bit 2-16
frame decoding D6 parameter 6-3	I/O port registers A register 2-13
frame-length control prescale register 2-18	I/O register PER 2-14
frame-update routine sample program 6-10	slave mode 2-15

I/O registers DDR 2-14 DIR 2-14 DOR 2-14 IAC (increment A register) instruction E-27	interrupt (continued) mode register status 2-21 PB1 pin 2-15 synthesizer mode 0 2-17 synthesizer mode 3 2-17 when not to take 2-21
IBC (increment B register) instruction E-28	
IDT directive description 4-18 syntax 4-18 INCMC (increment memory) instruction E-29	interrupt service routine sample program 6-10 Interrupt-1 vectors LPC mode register bit 2-20 PCM mode register bit 2-20
indirect-addressing mode TSP60C18/81 6-52 INIT pin input leakage current graph 3-7 mode register 2-15 standby mode 6-43 initialization	Interrupt-2 vectors LPC mode register bit 2-21 PCM mode register bit 2-21 interrupts level-1 2-20 level-2 2-20
16-bit indirect-address TSP60C18/81 6-57 8-bit indirect-address TSP60C18/81 6-56 direct-address TSP60C18/81 6-55 hardware TSP60C18/81 6-54 software TSP60C18/81 6-54	TSP50C0x/1x 2-20 INTGR (change to integer mode) instruction E-30 INTGR instruction ALU 2-8 arithmetic modes 6-39
initialization sequence timing TSP50P11 F-11 initialization timing diagram 3-4	integer mode flag 2-10 IXC (increment X register) instruction E-31
requirements 3-4 input leakage current on INIT graph TSP50C10 3-7	K
on INIT graph TSP50C11 3-7 input ports TSP50C0x/1x 2-13	K parameters fixed RAM location 6-5
instruction count switch command-line option 4-6	speech coding 6-2
integer mode 6-40 ACAAC instruction 6-41	
integer mode flag EXTSG instruction 2-10 INTGR instruction 2-10 RETI instruction 2-10 TSP50C0x/1x 2-10	label field source-statement format 4-9 symbols 4-12 LCD
Interrupt external. timing diagram 3-5 external. timing requirements 3-5 interrupt ENA1 mode register bit 2-16 ENA2 mode register bit 2-16	contrast adjustment 2-28 drive type A 2-24 drive type A diagram 2-25 drive type B 2-26 drive type B diagram 2-27 driver 2-22 functional description 2-22
interrupt-1 vectors 2-20 interrupt-2 vectors 2-21 level-1 2-17 level-2 enable/disable 2-16 level-1 enable/disable 2-16	LCD drive type customer option 2-24 to 2-28 RAM map 2-23 reference voltage 2-28 linear predictive coding. See LPC

LIST directive	mode
description 4-19	direct-addressing TSP60C18/81 6-51
syntax 4-19	external ROM 6-48
listing file switch command-line option 4-5	indirect-addressing TSP60C18/81 6-52
low-power standby condition TSP60C18/81 6-58	PCM 6-66
LPC	programming TSP50P11 F-3 slave 6-44
editing speech A-3	standby 6-43
interrupt-1 vectors 2-20	•
interrupt-2 vectors 2-21	mode register INIT pin 2-15
K parameters 6-2	status during interrupt 2-21
linear predictive coding 1-19 LPC-12 vocal tract model diagram 1-20	TSP50C0x/1x 2-15
LPC-12 vocal tract model 1-20	mode register bits
mode register bit 2-16	ENA1 2-16
synthesizer mode 0 2-17	ENA2 2-16
synthesizer mode 1 2-17	EXTROM 2-16
LPC mode-register bit PB1 interrupt 2-15	INIT pin 2-15
LPC processor	level-1 interrupt enable/disable 2-16
enable/disable 2-16	LPC 2-16
mode register bits 2-16	LPC processor enable/disable 2-16 MASTER 2-16
LPC-12	PCM 2-16
data compression 1-20	RAMROM 2-16
diagram 1-20 vocal tract model 1-20	slave mode 6-44
	UNV 2-16
LSTUNL option OPTION directive 4-21	multiplication scheme AXCA AXMA AXTA instruc-
LUAA (look-up with A register) instruction E-32	tions 6-42
LUAA instruction arithmetic mode 6-41	music program E-1 to E-11
LUAB (look-up with B register) instruction E-33	
LUAB instruction arithmetic mode 6-41	
LUAPS (indirect look-up with A register) instruc- tion E-34	N
LUAPS instruction	
parallel-to-serial register 2-13	Ninaskana
SAR 2-12	N package mechanical information 7-4
	TSP50C04 pin assignments 1-18
M	TSP50C06 pin assignments 1-18
IVI	TSP50C10 pin assignments 1-13
MACTED	TSP50C11 pin assignments 1-13
MASTER I/O master operation enable 2-16	TSP50C13 pin assignments 1-18
mode register bit 2-16	TSP50C14 pin assignments 1-18
slave mode enable 2-16	TSP50C19 pin assignments 1-18 TSP50P11 pin assignments F-2
mechanical information 7-4	•
DW package 7-6	NARROW directive
N package 7-4	description 4-19 syntax 4-19
PLCC package 7-8	•
PLCC reflow soldering precautions 7-10	new product release form. See NPRF

NPRF	ordering information 7-11
TSP50C04 7-13	oscillator circuit
TSP50C06 7-15	TSP50C10 1-15
TSP50C10 7-17	TSP50C11 1-15
TSP50C11 7-19	
TSP50C12 7-21	output ports TSP50C0x/1x 2-13
TSP50C13 7-23	
TSP50C14 7-25	
TSP50C19 7-27	Р
0	PA0 external ROM mode 2-15
	PA1 pin external ROM mode 2-15
object mode switch command-line option 4-5	PA2 pin external ROM mode 2-15
OBJUNL option OPTION directive 4-21	PA3 pin external ROM mode 2-15
opcode assembly instruction table 5-6	PA7 pin
operand field	external ROM mode 2-15
\$ 4-12	slave mode 2-15
predefined symbols 4-12	PAGE directive
source-statement format 4-10	description 4-22
symbols 4-12	syntax 4-22
option 1 digital-to-analog options 1-7	
four-transistor waveform circuit 1-8	page-eject disable switch command-line option 4-6
operational amplifier circuit 1-9	PAGEOF option OPTION directive 4-21
power amplifier interface circuit 1-9	parallel-to-serial register
waveform 1-8	EXTROM mode register bit 2-13
option 2 digital-to-analog options 1-9	GET instruction 2-13
one-transistor amplifier circuit 1-11 waveform 1-10	GET instruction and RAM 2-13
	LUAPS instruction 2-13 RAMROM mode-register bit 2-13
option 3 digital-to-analog options 1-11	SAR 2-13
operational amplifier interface circuit 1-12 waveform 1-12	TSP50C0x/1x 2-13
	TSP60C18 2-13
OPTION directive	TSP60C81 2-13
990 option 4-22 BUNLST option 4-20	X register 2-13
description 4-19	parentheses assembler expressions 4-14
DUNLST option 4-20	PB0 pin slave mode 2-15
FUNLST option 4-20	·
I COUNT option 4-20	PB1 slave mode 2-15
LSTUNL option 4-21	PB1 interrupt
OBJUNL option 4-21	LPC mode-register bit 2-15
PAGEOF option 4-21	PCM mode-register bit 2-15
RXREF option 4-21	PB1 pin
SCRNOF option 4-21	interrupt 2-15
syntax 4-19 TUNLST option 4-21	synthesizer mode 0 2-17
WARNOFF option 4-21	TSP50C10 2-15
XREF option 4-21	TSP50C11 2-15
ORCM (OR constant with memory) instruction E-35	TSP50C12 2-15 two-pin push pull option 2-15
Citom (Cit Solistant With Memory) mondellon E-55	the phi pash pan option 2 10

PCM	pin description table
generating tones 6-66	TSP50C04 1-18
interrupt-1 vectors 2-20	TSP50C06 1-18
interrupt-2 vectors 2-21	TSP50C10 1-14
mode register bit 2-16	TSP50C11 1-14
PCM mode enable/disable 2-16	TSP50C12 1-17
	TSP50C13 1-18
synthesizer mode 0 2-17	TSP50C14 1-18
synthesizer mode 2 2-17	TSP50C19 1-18
synthesizer mode 3 2-17	TSP50P11 F-2
PCM mode	101 001 111 -2
enable/disable bit 2-16	pin descriptions
TASYN instruction 6-66	TSP50C04 1-18
timing considerations 6-67	TSP50C06 1-18
tirning considerations of or	TSP50C10 1-13
PCM mode-register bit PB1 interrupt 2-15	TSP50C11 1-13
PER I/O register 2-14	TSP50C12 1-16
FER I/O register 2-14	TSP50C13 1-18
pin assignment diagram	TSP50C14 1-18
TSP50C04 1-18	TSP50C19 1-18
TSP50C06 1-18	
TSP50C10 1-13	pitch register
TSP50C11 1-13	TASYN instruction 2-11
TSP50C12 1-16	transferring from A register 2-12
TSP50C13 1-18	TSE chip 2-12
TSP50C14 1-18	TSP50C0x/1x 2-11
	unvoiced frames 2-12
TSP50C19 1-18	voiced frames 2-12
TSP50P11 F-2	pitch-period counter. See PPC
pin assignment table	
TSP50C04 1-18	pitfalls speech development A-4
TSP50C06 1-18	PLCC (68-pin) package TSP50C12 pin assign-
TSP50C10 1-14	ments 1-16
TSP50C11 1-14	
TSP50C12 1-17	PLCC package
TSP50C13 1-18	mechanical information 7-8
TSP50C14 1-18	reflow soldering precautions 7-10
TSP50C19 1-18	port A
TSP50P11 F-2	slave mode 2-15
13P30P11 F-2	TSP50C0x/1x 2-13
pin assignments	
TSP50C04 1-18	port B
TSP50C06 1-18	A register 2-13
TSP50C10 1-13	TSP50C04 2-13
TSP50C11 1-13	TSP50C06 2-13
TSP50C12 1-16	TSP50C10 2-13
TSP50C12 1-16 TSP50C13 1-18	TSP50C11 2-13
TSP50C13 1-18	TSP50C12 2-13
TSP50C14 1-16 TSP50C19 1-18	TSP50C13 2-13
13500013 1-10	TSP50C14 2-13
nin description TSP60C18/81 6-49	TSP50C10 2-13 2-14

power-up initialization circuit	RAM (continued)
TSP50C10 1-15	map of TSP50C10 2-6
TSP50C11 1-15	map of TSP50C11 2-6
PPC TSP50C0x/1x 2-11	map of TSP50C12 2-7
predefined symbols assembler operand field 4-12	map of TSP50C13 2-8
prescale register frame-length control 2-18	map of TSP50C14 2-8
program counter	map of TSP50C19 2-8
BR instruction 2-5	RAMROM mode register bit 2-16
BRA instruction 2-5	speech decoding 6-4
CALL instruction 2-5	TSP50C04 2-7
RETI instruction 2-5	TSP50C06 2-7
RETN instruction 2-5	TSP50C10 2-6
SBR instruction 2-5	TSP50C11 2-6 TSP50C12 2-6
stack 2-5	TSP50C12 2-0 TSP50C13 2-7
TSP50C0x/1x 2-5	TSP50C14 2-7
program interface timing TSP50P11 F-11	TSP50C19 2-7
program mode protection bit TSP50P11 F-9	
•	RAM map
program.bin	LPC-12 values location during speech genera- tion 2-18
assembler 4-7 assembly binary object file 4-7	speech generation 2-18
program.lst	RAMROM
assembler 4-8	GET instruction 6-61 GET instruction data source 2-16
assembly listing file 4-8	mode register bit 2-16
program.mpo	parallel-to-serial register 2-13
assembler 4-8	
assembly tagged object file 4-8	RBYTE directive
program.src	description 4-22
assembler 4-7	syntax 4-22
assembly source file 4-7	RDATA directive
programming mode TSP50P11 F-3	description 4-23
programming sequence timing TSP50P11 F-12	syntax 4-23
protection bit TSP50P11 F-9	read operation
pullup enable register. See PER	slave mode 6-47
pullup/down resistors TSP60C18/81 6-59	waveform 6-47
pulse code modulation. See PCM	read sequence timing TSP50P11 F-12
pulse code modulation. See i Givi	read timing
	diagram (slave mode) 3-5
R	requirements (slave mode) 3-5
	recommended operating conditions
R/W pin description 6-49	TSP50C0x/1x 3-3
RAM	TSP50P11 F-7
during speech generation 2-18	reference voltage LCD 2-28
GET instruction data source enable 2-16	reflow soldering precautions PLCC package 7-10
internal GET instruction 6-63	
location of parameters 6-5	RELPS synthesizer mode 3 2-18
locations used in sample program 6-6 map of TSP50C04 2-8	residual encoded linear predictive synthesis. See RELPS
map of TSP50C06 2-8	RETI (return from interrupt) instruction E-36

RETI instruction	sample program
A register 2-8	DTMF walkthrough 6-67
B register 2-9	FLAGS bits 6-7
integer mode flag 2-10	frame-update routine 6-10
program counter 2-5	initialization 6-9
status flag 2-9	level-1 interrupt service routine 6-10
RETN (return from subroutine) instruction E-37	overview 6-9
RETN instruction program counter 2-5	phrase selection 6-9
ROM	RAM locations 6-6
data source enable 2-16	ROM used 6-8
enable/disable 2-16	speech initialization 6-9
EVM50C19 block selection 6-76	walk-through 6-11
external initialization program C-1 to C-11	sample rates DAC 2-19
external GET instruction 6-62	sample synthesis program B-1 to B-47
EXTROM mode register bit 2-16	SAR
internal GET instruction 6-62	GET instruction 2-12
RAMROM mode register bit 2-16	LUAPS instruction 2-12
SEB50C19 block selection 6-76	parallel-to-serial register 2-13
TSP50C04 2-2 2-4	TSP50C0x/1x 2-12
TSP50C04 reserved locations 2-4	SARA (shift A register right one bit) instruction E-40
TSP50C06 2-2 2-4	SBAAN (subtract B register from A register) instruc
TSP50C06 reserved locations 2-4	tion F-41
TSP50C10 2-2 2-4	SBR (short branch if status set) instruction E-42
TSP50C10 reserved locations 2-4	SBR instruction
TSP50C11 2-2 2-4	program counter 2-5
TSP50C11 reserved locations 2-4	status flag 2-9
TSP50C12 2-2 2-4 TSP50C12 reserved locations 2-4	script generation speech development A-2
TSP50C12 reserved locations 2-4	
TSP50C13 reserved locations 2-4	SCRNOF option OPTION directive 4-21
TSP50C14 2-2 2-4	SDS5000
TSP50C14 reserved locations 2-4	features A-5
TSP50C19 2-2 2-4	speech development tool A-5
TSP50C19 block addressing 2-4	SEB50C19 ROM block selection 6-76
TSP50C19 block selection 6-75	SEB50C1X
TSP50C19 program location 6-77	features A-6
TSP50C19 reserved locations 2-4	speech development tool A-6
used by sample program 6-8	SEB60CXX
RTEXT directive	features A-6
description 4-23	speech development tool A-6
syntax 4-23	SETOFF (set processor to OFF mode) instruc-
RXREF option OPTION directive 4-21	tion E-43
The second of th	SETOFF instruction
	pullup/down resistors for TSP60C18/81 6-59
S	standby mode 6-43
	single-pin double-ended mode DAC 2-19
SALA (shift A register) instruction E-38	single-pin single-ended mode DAC 2-19
SALA4 (shift A register left four bits) instruction E-39	single-pin double-ended option digital-to-analog op-
sample music program F-1 to F-11	tions 1-11

single-pin single-ended option digital-to-analog options 1-9	speech development ADP50C12 A-7
slave mode 6-44 enable 2-16 I/O registers 2-15 MASTER mode register bit 2-16 PA7 pin 2-15 PB0 pin 2-15 PB1 2-15 port A 2-15 read operation 6-47 read operation waveform 6-47 read timing diagram 3-5 read timing requirements 3-5 write operation waveform 6-46 write timing diagram 3-4 write timing requirements 3-4	EVM50C1x A-6 FAB50C1x A-8 LPC editing A-3 pitfalls A-4 script generation A-2 SDS5000 A-5 SEB50C1X A-6 SEB60CXX A-6 speaker selection A-2 speech collection A-2 tools A-5 speech development sequence summary 7-3 speech generation LPC-12 values location in RAM 2-18 RAM 2-18 RAM map 2-18
SMAAN (subtract memory from A register) instruction E-44	speech production sequence summary 7-3 speech synthesizer modes 2-17 SPCK pin description 6-40
SMAAN instruction arithmetic mode 6-41	SRCK pin description 6-49 standby condition low-power TSP60C18/81 6-58
software initialization TSP60C18/81 6-54	standby mode 6-43
source code TSP50C19 6-76	status flag
source-statement format assembler 4-9 assembly-time constants 4-11 binary integer constants 4-10 character constants 4-11 command field 4-9 comment field 4-10 constants 4-10 decimal integer constants 4-10 hexadecimal integer constants 4-11 label field 4-9 operand field 4-10	BR instruction 2-9 CALL instruction 2-9 RETI instruction 2-9 SBR instruction 2-9 TSP50C0x/1x 2-9 STR pin description 6-49 symbols \$4-12 assembler label field 4-12 predefined assembler operand field 4-12 syntax
speaker selection speech development A-2	assembly instruction 5-2
special functions testing TSP50P11 F-5	description 4-2 synthesizer control TSP50C0x/1x 6-2
speech address register. See SAR	synthesizer mode 0
speech coding 6-2 D6 parameter 6-2 K parameters 6-2 speech collection speech development A-2	A register 2-17 level-1 interrupt 2-17 LPC mode register bit 2-17 PB1 pin 2-17 PCM mode register bit 2-17
speech decoding 6-2 6-4 D6 parameter frame decoding 6-3 parameter unpacking 6-4 RAM usage 6-4	TASYN instruction 2-17 synthesizer mode 1 LPC 2-17 TASYN instruction 2-17

synthesizer mode 2	TCA instruction arithmetic mode 6-41
A register 2-17 PCM 2-17	TCP50C12 PLCC package mechanical information 7-8
TASYN instruction 2-17	TCX (transfer constant to X register) instruction E-57
synthesizer mode 3	testing special functions on TSP50P11 F-5
A register 2-17	TEXT directive
level-1 interrupt 2-17	description 4-24
PCM 2-17 RELPS 2-18	syntax 4-24
TASYN instruction 2-17	TEXT unlist command-line option 4-5
system block diagram TSP50C0x/1x 2-3	timer prescale register
System block diagram for 6000% tx 2 0	TAPSC instruction 2-11
T	TATM instruction 2-11
	TSP50C0x/1x 2-11
TAB (transfer A register to B register) instruc-	timer register
tion E-45	EVM development tool 2-10
TAM (transfer A register to memory) instruction E-46	TATM instruction 2-10
TAMD (transfer A register to memory direct) instruc-	TSP50C0x/1x 2-10
tion E-47	TTMA instruction 2-10
TAMD instruction X register 2-9	timing requirements D/A options 3-4
TAMIX (transfer A register to memory and increment	TITL directive
X register) instruction E-48	description 4-24 syntax 4-24
TAMODE (transfer A register to mode register)	•
instruction E-49	TMA (transfer memory to A register) instruction E-58
TAPSC (transfer A register to prescale register)	TMA instruction arithmetic mode 6-41
instruction E-50	TMAD (transfer memory to A register) instruc-
TAPSC instruction timer prescale register 2-11	tion E-59
TASYN (transfer A register to synthesizer register)	TMAD instruction arithmetic mode 6-41
instruction E-51	X register 2-9
TASYN instruction	TMAIX (transfer memory to A register and increment
A register 2-12	X register) instruction E-60
DAC 2-19	TMAIX instruction arithmetic mode 6-41
PCM mode 6-66 pitch register 2-11	
synthesizer mode 0 2-17	TMXD (transfer memory directly to X register) instruction E-61
synthesizer mode 1 2-17	TMXD instruction X register 2-9
synthesizer mode 2 2-17	tools
synthesizer mode 3 2-17	ADP50C12 A-7
TATM (transfer A register to timer register) instruc-	EVM50C1x A-6
tion E-53	FAB50C1x A-8
TATM instruction	SDS5000 A-5
timer prescale register 2-11	SEB50C1X A-6
timer register 2-10	SEB60CXX A-6
TAX (transfer A register to X register) instruc-	speech development A-5
tion E-54	TRNDA (transfer random number into A register)
TBM (transfer B register to memory) instruction E-55	instruction E-62
TCA (transfer constant to A register) instruction E-56	TSE chip pitch register 2-12

TSP50C04	TSP50C0x/1x (continued)
DAC forms 2-19	DTMF program D-1 to D-11
digital-to-analog options 1-7	external interrupt timing diagram 3-5
DW package mechanical information 7-6	external interrupt timing requirements 3-5
electrical characteristics 3-10	external ROM initialization program C-1 to C-11
features 1-5	external ROM mode 2-15
functional block diagram 1-4	external ROM mode and TSP60C18/81 6-48
N package mechanical information 7-4	features 1-5
new product release form 7-13	functional description 2-2
pin assignment diagram 1-18	initialization timing diagram 3-4
pin assignment table 1-18	initialization timing requirements 3-4
pin assignments 1-18	input/output ports 2-13
pin description table 1-18	integer mode flag 2-10
pin descriptions 1-18	interrupts 2-20
port B 2-13	introduction 1-2
RAM 2-7	mode register 2-15
RAM map 2-8	new product release forms 7-12
ROM reserved locations 2-4	parallel-to-serial register 2-13
ROM size 2-2 2-4	pitch register 2-11
ROM usage for sample program 6-8	port A 2-13
	PPC 2-11
TSP50C06	program counter 2-5
DAC forms 2-19	program counter stack 2-5
digital-to-analog options 1-7	read timing diagram (slave mode) 3-5
DW package mechanical information 7-6	read timing requirements (slave mode) 3-5
electrical characteristics 3-10	recommended operating conditions 3-3
features 1-5	sample music program E-1 to E-11
functional block diagram 1-4	sample synthesis program B-1 to B-47
N package mechanical information 7-4	SAR 2-12
new product release form 7-15	speech coding and decoding 6-2
pin assignment diagram 1-18	status flag 2-9
pin assignment table 1-18	synthesizer control 6-2
pin assignments 1-18	system block diagram 2-3
pin description table 1-18	timer prescale register 2-11
pin descriptions 1-18	timer register 2-11
port B 2-13	write timing diagram (slave mode) 3-4
RAM 2-7	write timing diagram (slave mode) 3-4 write timing requirements (slave mode) 3-4
RAM map 2-8	X register 2-9
ROM reserved locations 2-4	A register 2-9
ROM size 2-2 2-4	TSP50C10
ROM usage for sample program 6-8	DAC forms 2-19
TSP50C0x/1x	DW package mechanical information 7-6
A register 2-8	electrical characteristics 3-6
absolute maximum ratings 3-2	features 1-5
ALU 2-8	functional block diagram 1-3
Applications 1-2	I/O configurations 1-15
B register 2-9	input leakage current on INIT graph 3-7
control of TSP60C18/81 6-53	N package mechanical information 7-4
D/A options timing requirements 3-4	new product release form 7-17
development cycle 7-2	oscillator circuit 1-15
digital-to-analog options 1-7	PB1 pin 2-15

TSP50C10 (continued)	TSP50C12 (continued)
pin assignment diagram 1-13	LCD drive type B diagram 2-27
pin assignment table 1-14	LCD driver 2-22
pin assignments 1-13	LCD functional description 2-22
pin description table 1-14	LCD RAM map 2-23
pin descriptions 1-13	LCD voltage reference 2-28
port B 2-13	new product release form 7-21
power-up initialization circuit 1-15	PB1 pin 2-15
RAM 2-6	pin assignment diagram 1-16
RAM map 2-6	pin assignment table 1-17
ROM reserved locations 2-4	pin assignments 1-16
ROM size 2-2 2-4	pin description table 1-17
ROM usage for sample program 6-8	pin descriptions 1-16
two-pin push pull option 2-15	port B 2-13
TSP50C11	RAM 2-6
DAC forms 2-19	RAM map 2-7
DW package mechanical information 7-6	ROM reserved locations 2-4
electrical characteristics 3-6	ROM size 2-2 2-4
features 1-5	ROM usage for sample program 6-8
functional block diagram 1-3	two-pin push pull option 2-15
I/O configurations 1-15	voltage doubler diagram 2-28
input leakage current on INIT graph 3-7	TSP50C13
N package mechanical information 7-4	DAC forms 2-19
new product release form 7-19	digital-to-analog options 1-7
oscillator circuit 1-15	DW package mechanical information 7-6
PB1 pin 2-15	electrical characteristics 3-10
pin assignment diagram 1-13	features 1-5
pin assignment table 1-14	functional block diagram 1-4
pin assignments 1-13	N package mechanical information 7-4
pin description table 1-14	new product release form 7-23
pin descriptions 1-13	pin assignment diagram 1-18
port B 2-13	pin assignment table 1-18
power-up initialization circuit 1-15	pin assignments 1-18
RAM 2-6	pin description table 1-18
RAM map 2-6	pin descriptions 1-18
ROM reserved locations 2-4	port B 2-13
ROM size 2-2 2-4	RAM 2-7
ROM usage for sample program 6-8	RAM map 2-8
two-pin push pull option 2-15	ROM reserved locations 2-4
TSP50C12	ROM size 2-2 2-4
clock options 2-29	ROM usage for sample program 6-8
DAC forms 2-19	TSP50C14
digital-to-analog options 1-7	DAC forms 2-19
electrical characteristics 3-8	digital-to-analog options 1-7
features 1-6	DW package mechanical information 7-6
functional block diagram 1-4	electrical characteristics 3-10
LCD contrast adjustment 2-28	features 1-5
LCD drive type A 2-24	functional block diagram 1-4
LCD drive type A 2-24 LCD drive type A diagram 2-25	N package mechanical information 7-4
LCD drive type A diagram 2-25	new product release form 7-25

	
TSP50C14 (continued)	TSP50P11 (continued)
pin assignment diagram 1-18	pin assignment diagram F-2
pin assignment table 1-18	pin assignment table F-2
pin assignments 1-18	pin description table F-2
pin description table 1-18	program interface timing F-11
pin descriptions 1-18	programming mode F-3
port B 2-13	programming sequence timing F-12
RAM 2-7	protection bit F-9
RAM map 2-8	read sequence timing F-12
ROM reserved locations 2-4	recommended operating conditions F-7
ROM size 2-2 2-4	shifting data in F-3
	•
ROM usage for sample program 6-8	shifting data out F-3
TSP50C19	special functions testing F-5
ASM50C1x assembler 6-76	write sequence timing F-11
bits B2 and B3 6-75	TSP60C18
DAC forms 2-19	16-bit indirect-address initialization 6-57
data block selection 6-76	8-bit indirect-address initialization 6-56
digital-to-analog options 1-7	
	addressing 6-50
DW package mechanical information 7-6	addressing modes 6-51
electrical characteristics 3-10	control by TSP50C0x/1x 6-53
EVM50C19 ROM block selection 6-76	direct-address initialization 6-55
features 1-5	direct-addressing mode 6-51
functional block diagram 1-4	external ROM mode 2-15 6-48
N package mechanical information 7-4	hardware initialization 6-54
new product release form 7-27	I/O signals 6-48
pin assignment diagram 1-18	indirect-addressing mode 6-52
pin assignment table 1-18	interface 6-48
pin assignments 1-18	low-power standby condition 6-58
pin description table 1-18	parallel-to-serial register 2-13
pin descriptions 1-18	pin description 6-49
port B 2-13 2-14	pinout 6-50
program location in ROM 6-77	pullup/down resistors 6-59
programming 6-75	software initialization 6-54
RAM 2-7	Software initialization 0-34
	TSP60C81
RAM map 2-8 relative ROM address and block selected 6-76	16-bit indirect-address initialization 6-57
	8-bit indirect-address initialization 6-56
ROM block addressing 2-4	addressing 6-50
ROM block selection 6-75	addressing modes 6-51
ROM reserved locations 2-4	control by TSP50C0x/1x 6-53
ROM size 2-2 2-4	direct-address initialization 6-55
ROM usage for sample program 6-8	direct-addressing mode 6-51
SEB50C19 ROM block selection 6-76	external ROM mode 2-15 6-48
source code 6-76	hardware initialization 6-54
TSP50P11	
	I/O signals 6-48
absolute maximum ratings F-6	indirect-addressing mode 6-52
differences from TSP50C11 F-13	interface 6-48
electrical characteristics F-8	low-power standby condition 6-58
initialization sequence timing F-11	parallel-to-serial register 2-13

pin description 6-49

introduction F-2

TSP60C81 (continued) unvoiced speech defined 1-19 pinout 6-50 software initialization 6-54 TSTCA (test constant with A register) instruction E-63 vocal tract 1-19 TSTCM (test constant with memory) instruction E-64 voiced frames pitch register 2-12 TTMA (transfer timer register to A register) instrucvoiced speech defined 1-19 tion E-65 voltage doubler TSP50C12 diagram 2-28 TTMA instruction timer register 2-10 TUNLST option OPTION directive 4-21 two-pin double-ended mode DAC 2-19 two-pin push pull option WARNING unlist command-line option 4-5 PB1 pin 2-15 WARNOFF option OPTION directive 4-21 TSP50C10 2-15 WIDE directive TSP50C11 2-15 description 4-25 TSP50C12 2-15 syntax 4-25 two-pin push pull option write operation digital-to-analog options 1-7 slave mode 6-45 four-transistor amplifier circuit 1-8 waveform 6-46 operational amplifier circuit 1-9 write sequence timing TSP50P11 F-11 power amplifier interface circuit 1-9 write timing waveform 1-8 diagram (slave mode) 3-4 single-pin double-ended option requirements (slave mode) 3-4 operational amplifier interface circuit 1-12 waveform 1-12 single-pin single-ended option one-transistor amplifier circuit 1-11 waveform 1-10 x arithmetic operators in expressions 4-14 TXA (transfer X register to A register) instruc-X register tion E-66 parallel-to-serial register 2-13 TXA instruction TAMD instruction 2-9 arithmetic mode 6-41 TMAD instruction 2-9 arithmetic modes 6-40 TMXD instruction 2-9 TSP50C0x/1x 2-9 XBA (exchange contents of B register and A register) instruction E-67 XBX (exchange contents of B register and X register) instruction E-68 **UNL** directive XBX instruction description 4-25 arithmetic mode 6-41 syntax 4-25 B register 2-9 UNV XGEC (X register greater than or equal to constant) mode register bit 2-16 instruction E-69 pitch-controlled excitation sequence en-XREF option OPTION directive 4-21 abled 2-16 random excitation sequence enabled 2-16 XREF switch command-line option 4-5 unvoiced frames pitch register 2-12 XREF unlist command-line option 4-5