TI 10KW High efficient/small size solar inverter
new solution

Texas Instruments
April, Y18
WW Solar Trends

- China is expected to install 30+GW in 2017
- 570+GW of Cumulative growth by 2022
- 5%+ growth CAGR 2017-2022

TI Design map for Solar Inverters and Renewable Energy Storage
TI Designs – Power Conversion Stages

DC/AC

- TIDM-Solar-ONEPHINV
 - Single Phase, Current Source Inverter, full bridge, grid-tied, 96% peak eff. & <5% THD
 - Input: 400 VDC
 - Output: 120/220 VAC

- TIDM-HV-1PH-DCAC
 - Single Phase, Voltage Source Inverter, full bridge, grid-tied mode, 98% peak eff. & <1% THD (LL)
 - Input: 380 VDC
 - Output: 110/220 VAC

- TIDM-SOLARINV
 - Active clamp fly-back DC/DC Grid-tied AC/DC with MPPT, 93% peak eff. & <4% THD
 - Input: 28 VDC – 45 VDC
 - Output: 110/220 VAC

- TIDM-SOLAR-DCDC
 - DC/DC with two-ph interleaved boost con. for MPPT (String Level), resonant LLC con. & Iso
 - Input: 200 VDC – 300 VDC
 - Output: 400 VDC

DC/DC

- TIDA-00120
 - MPPT Charge Controller for Low Voltage Systems, 96% eff.
 - Max o/p I of 20A (small form factor)
 - Input: 15 VDC – 44 VDC
 - Output: 12/24 VDC

- SM72445EVM
 - SM72445 Module Level Micro-Converter, 99.5% Eff, Max 11A & 300W
 - Input: 15 VDC – 50 VDC
 - Output: 5 VDC – 43 VDC

- TIDM-BUCKBOOST-BIDIR
 - Bi-Directional Non-Isolated Buck Boost Converter, Fast PWM switch 250kHz, >95% eff
 - Input: 10 VDC - 100 VDC
 - Output: 5 VDC - 100 VDC

- TIDM-BIDIR-400-12
 - Bi-Directional Isolated Buck Boost Converter, 300W, <80% eff, Seamless transition buck/boost
 - Input: 200 to 400 VDC
 - Output: 12 VDC
Gate Drivers

- **PMP9455**
 - Gate Driver for 800VA to 3kVA Inverters (SM72295), Integrated current sense + buf

- **TIDA-00448**
 - 4 A, Single Ch, Isolated, Prop Delay 40 ns, IGBT Driver

- **TIDA-00638**
 - Isolated Gate Driver for 100V to 400VAC inverters (SN6505 & ISO5451)

- **TIDA-00195**
 - 2.5 A, Single Ch, Isolated, Prop Delay 76 ns, IGBT Driver

- **PMP9461**
 - Complete Micro-inverter design using SM72295 full bridge driver with int. I sense

HMI

- **TIDEP0044**
 - Solar Inverter Gateway Development Platform (AM3358)

- **TIDEP0015**
 - Capacitive Touchscreen Display (Sitara AM4376)

- **TIDM-CAPTIVATE-64-BUTTON**
 - 64-Button Capacitive Touch Panel With TI Microcontroller With CapTIvate Technology

In-Design

- Flexible High Current IGBT Gate Driver with Reinforced Digital Isolation (ISO7842)

- DC/DC: 3A, Dual Ch, Non-isolated, Prop Delay 22 ns, Matching Delay 1 ns, Dual Half Bridge MOSFET Driver

- DC/DC: 7A, Single Ch, Non-isolated, Prop Delay 25 ns, MOSFET Driver

Full system design

- Supports Wi-Fi, CAN, RS-232, USB, Display, Industrial Ethernet, and PLC

- Supports Ethernet, RS-485, CAN, and Display

- Single and multitouch detection, 100bps and 10ms typical delay
TI Designs – V & I Sensing

Shunts
- **Non-Isolated**
 - TIDA-00528 (OPA333/NA226)
 - 40 to 400 V Uni-Directional Current/Voltage/Power Monitoring
 - Max Voltage: 400 V
 - Max Current: 8 A

- **Isolated**
 - TIDA-00555 (AMC1100)
 - I&V Sense using fully diff. Isolation Amp, 3 I&V Channels, <0.5% Acc
 - Max Voltage: 300 V
 - Max Current: 40 A

 - TIDA-00080 (AMC1304)
 - I&V Sense using fully diff. Isolated DS Mod, and F2837XD Dual-Core Delfino Board, 3 I&V Channels, <0.5% Acc
 - Max Voltage: 1 kVAC
 - Max Current: 200 A

 - TIDA-00639 (OPA333/NA226)
 - 600 V Uni-Directional Current/Voltage/Power Monitoring for Smart Combiner Box
 - Max Voltage: 600 V
 - Max Current: 15 A

 - TIDA-00601 (AMC1304)
 - I&V Sense using fully diff. Isolated DS Mod, and MSP430F6761
 - Max Voltage: 1 kVAC
 - Max Current: 90 A

 - TIDA-00738 (AMC1304/OPA188)
 - Wide Input Current Using Shunts and Voltage Measurement
 - Max Voltage: 300 VAC
 - Max Current: 60 A

Hall
- TIDA-00218 (DRV5053)
 - AC Current Measurement with Hall Effect Sensor
 - Max Current: 12 A

Fluxgate
- TIPD196 (DRV421)
 - ±15 A Current Sensor Using Closed-Loop Compensated Fluxgate Sensor
 - Max Current: 15 A

- TIPD205 (DRV425)
 - ±100 A Bus Bar Current Sensor using Open-Loop Fluxgate Sensors
 - Max Current: ±100 A

Wide Input Current Using Shunts and Voltage Measurement
TI Designs – Communication & Power Supply

Comm

- **TI Designs SOMPLC-FCC**
 - System on Module for PLC (FCC Frequency Band)
 - Input: 35-450 kHz & 34-234 kbps Data

- **TI Designs SOMPLC-F28PLC84**
 - System on Module for PLC (CENELEC Frequency Band)
 - Input: 35-80 kHz & 34-234 kbps Data

- **TI Designs Industrial-PLC**
 - PLC Lite for Industrial Applications
 - Input: 35-150 kHz & 2.4 - 21 kbps Data

AC/DC

- **PMP8966**
 - Primary-Side Regulated Flyback with 85-265 VAC Input and 9V/2.5A Output
 - Input: 85 VDC – 265 VAC
 - Output: 9 VDC @ 2.5 A

- **PMP7991**
 - High and Wide AC Vin Quasi-Resonant Isolated Flyback
 - Input: 85 VDC – 265 VAC
 - Output: 12 or 5 VDC @ 2 A

DC/DC

- **PMP8878**
 - High Voltage Input (185 Vdc to 700 Vdc) to 12 V @ 1 A, 3.3 V @ 100 mA Non-Isolated
 - Input: 185 VDC – 700 VDC
 - Output: 12 V @ 1 A, 3.3 V @ 100 mA

- **TIDA-00173**
 - 400 to 690 VAC Input or 400 to 1200VDC Input, 50 W Isolated Power Supply
 - Input: 400-690VAC or 400-1200 VDC
 - Output: 24V, 16V & 6 V
TI 10KW Solar Inverter Design(TIDA-01606)
TIDA-01606
10kW 3-Phase 3-Level Grid Tie inverter reference design for solar string inverter

Design Features

- 10kW 3-Phase 3-Level inverter using SiC MOSFETs
- System Specifications:
 - Input: 800V/1000V
 - Output: 400VAC 50/60 Hz
 - Power: 10KW/10KVA
 - Efficiency: > 99% peak efficiency
 - PWM frequency: 50kHz
 - Uses ISO5852, UCC5320 gate driver & C2000 MCU controller
 - Uses Littelfuse LSIC1MO120E0080 1200V 80mOhms SiC MOSFETS
 - Reduces output filter size by switching inverter at 50kHz
 - Isolated current sensing using AMC1306 for load current monitoring
 - Differential voltage sensing using OPA4350 for load voltage monitoring
 - Targets less than 2% output current THD at full load

Design Benefits

- 3-Level T-type inverter topology for reduced ground current in transformer-less grid-tie inverter applications
- Reduced size at higher efficiency using low Rdson SiC MosFET and higher switching frequency (50kHz) at higher power (10kW)
- Platform for testing both 2-level and 3-level inverter by enabling or disabling middle devices through digital control.

Tools & Resources

- TIDA-01606 Tools Folder
- Test Data/Design Guide
- Design Files: Schematics, BOM and BOM Analysis, Design Files
- Key TI Devices: UCC5320, ISO5852, AMC1306, SN6505, TMS320F28379D, OPA4350, OPA350, LM76003, PTH08080WAZT, UCC27211
Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Output</td>
<td></td>
</tr>
<tr>
<td>Power (KW/KVA)</td>
<td>10/10</td>
</tr>
<tr>
<td>PF rated/adjustable</td>
<td>1/0.7 lag to 0.7 lead</td>
</tr>
<tr>
<td>Grid Voltage (L-L)</td>
<td>400V ± 20%</td>
</tr>
<tr>
<td>No of Phases</td>
<td>3</td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60Hz ± 5Hz</td>
</tr>
<tr>
<td>Current (Max)(A)</td>
<td>18</td>
</tr>
<tr>
<td>DC Input</td>
<td></td>
</tr>
<tr>
<td>Nominal Voltage (V)</td>
<td>800</td>
</tr>
<tr>
<td>Rated Min/Max Voltage (V)</td>
<td>600/1000</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Efficiency (peak/European)</td>
<td>98.5%</td>
</tr>
<tr>
<td>Output current THD</td>
<td><2%</td>
</tr>
<tr>
<td>Other Specs</td>
<td></td>
</tr>
<tr>
<td>Off Grid operation</td>
<td>No</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-25°C to +60°C</td>
</tr>
<tr>
<td>Thermal management</td>
<td>Forced air cooling</td>
</tr>
</tbody>
</table>

Target End Equipment's

String Inverters – Residential/Commercial
10kW Three Level Inverter Hardware

Total Size: 350mm x 200mm x 100mm
10kW Three Level Inverter Measurements

Measured Efficiency (vs) Load

99.07% Peak Efficiency

Efficiency (%) vs Load (% of 10kW)

- Input - 600V
- Input - 800V
- Input - 1000V
10kW Three Level Inverter Summary

- **99.07% Peak Efficiency at 8kW**
- **99.02% Efficiency at 10kW**
- **1.4kW/l**

<table>
<thead>
<tr>
<th>SYSTEM PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>600-1000Vdc</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>400VAC 50/60Hz</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>10kW</td>
</tr>
<tr>
<td>PWM Frequency</td>
<td>50kHz</td>
</tr>
<tr>
<td>Efficiency (Peak)</td>
<td>99.07% @ 8kW</td>
</tr>
<tr>
<td>Efficiency (Full Load)</td>
<td>99.02% @ 10kW</td>
</tr>
<tr>
<td>Size</td>
<td>350mm x 200mm x 100mm</td>
</tr>
</tbody>
</table>
C2000 - Essentials of Real-time Control

Factors affecting real-time control performance:
- Greater the application
- Faster the update rate…
- Limited Time Window to Update Power Electronics Stimulus

Microcontroller → Ref \[\sum \] Processing → Actuation → Power Electronics

Sensing

Limited Time Window to Update Power Electronics Stimulus

Analog To Digital
Update Control Loop
Digital To Analog
Background Tasks

Faster the update rate…

Greater the application performance
C2000 - The Real-Time Control Portfolio

Delfino™
- F2833x/23x
- C2834x
- F2837xS
- F2837xD

100 MIPS
12 PWM ch., Type 1
1x 12-bit, 2 S/H
12.5 MSPS ADC

800 MIPS
24 PWM ch., Type 4
4x 12/16-bit, 4 S/H
3.5/1.1 MSPS per ADC

Piccolo™
- F2802x
- F2803x
- F2805x
- F2806x
- F28004x
- F2807x

40 MIPS
8 PWM ch., Type 1
1x 12-bit, 2 S/H
2 MSPS ADC

240 MIPS
24 PWM ch., Type 4
3x 12-bit, 3 S/H
3.1 MSPS per ADC
Delfino™ TMS320F2837xD

Features
- **800MIPS** real-time performance of dual C28x core with dual CLA co-processors to run parallel control loops
- 4 differential **16-bit ADC**, 1MSPS each and 3x 12-bit DAC
- **Trigonometric Math Unit (TMU)** - 1 to 3 cycle SIN, COS, ARCTAN instructions
- **Direct memory access through dual EMIFs** (16bit/32bit)
- **Protection** with 8x Windowed Comparators and X-Bar
- **8 Sigma Delta Decimation Filters** to enable sensing across the isolation boundary

Tools
- TMS320F28379D Experimenter’s Kit
 - Part Number: TMDXDOCK28379D

Software
- Digital Power SDK & powerSUITE
- Code Composer Studio (CCS) IDE
- controlSUITE™ Software
- SafeTI

Packages
- **176-pin HLQFP**: 24x24mm²
- **337-pin NFBGA**: 18x18mm²

TMS320F2837xD

<table>
<thead>
<tr>
<th>Sensing</th>
<th>Processing</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC1: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS</td>
<td>C28x™ DSP core 200 MHz</td>
<td>FPU</td>
</tr>
<tr>
<td>ADC2: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS</td>
<td>TMU</td>
<td>TMU</td>
</tr>
<tr>
<td>ADC3: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS</td>
<td>VCPU-III</td>
<td>VCPU-III</td>
</tr>
<tr>
<td>ADC4: 16-bit, 1.1-MSPS 12-bit, 3.5 MSPS</td>
<td>CLA DSP core 200 MHz Floating-Point Math</td>
<td>CLA DSP core 200 MHz Floating-Point Math</td>
</tr>
<tr>
<td>8x Windowed Comparators w/ Integrated 12-bit DAC</td>
<td>6ch DMA</td>
<td>6ch DMA</td>
</tr>
<tr>
<td>8x Sigma Delta Interface</td>
<td>Temperature Sensor</td>
<td>Temperature Sensor</td>
</tr>
<tr>
<td>3x eQEP</td>
<td>3x eCAP</td>
<td>6x eCAP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Modules</th>
<th>Memory</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x 32-bit CPU Timers</td>
<td>Up to 512 KB Flash</td>
<td>Up to 512 KB Flash</td>
</tr>
<tr>
<td>NMI Watchdog Timer</td>
<td>Up to 102 KB SRAM</td>
<td>Up to 102 KB SRAM</td>
</tr>
<tr>
<td>2x 192 Interrupt PIE</td>
<td>2x 128-bit Security Zones</td>
<td>Boot ROM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actuation</th>
<th>4x UART</th>
</tr>
</thead>
<tbody>
<tr>
<td>12x ePWM Modules (Type 4)</td>
<td>2x UART (w/ true PMBus)</td>
</tr>
<tr>
<td>24x Outputs (16x High-Res)</td>
<td>3x SPI</td>
</tr>
<tr>
<td>Fault Trip Zones</td>
<td>2x SPI</td>
</tr>
<tr>
<td>2x CAN 2.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connectivity</th>
<th>4x UART</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x UART</td>
<td></td>
</tr>
<tr>
<td>2x 12C (w/ true PMBus)</td>
<td></td>
</tr>
<tr>
<td>3x SPI</td>
<td></td>
</tr>
<tr>
<td>2x SPI</td>
<td></td>
</tr>
<tr>
<td>2x CAN 2.0</td>
<td></td>
</tr>
<tr>
<td>USB 2.0 OTG FS MAC & PHY</td>
<td></td>
</tr>
<tr>
<td>uPP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power & Clocking</th>
<th>2x 10 MHz OSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x 10 MHz OSC</td>
<td></td>
</tr>
<tr>
<td>Ext OSC Input</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Debug</th>
<th>Real-time JTAG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperatures
- 105°C
- 125°C
- Q100
UCC53xx Family

0.5/2/4/6A/10A Isolated IGBT/SiC Gate Drivers with High CMTI

Features

- **Integrated SiO$_2$ Dielectric Capacitor**
 - 0.5A, 2A, 4A, 6A, 10A Peak Source/Sink Drive
 - Flexibility and Options
 - Split Outputs (ISO53xxS)
 - UVLO with respect to IGBT emitter (ISO53xxE)
 - Miller Clamp option (ISO53xxM)
 - 100 kV/µs CMTI min
 - 70 ns (max) Prop Delay.
 - 4kV ESD on all pins
- **Immunity and Certifications**
 - Basic and Reinforced Isolation Options
 - Upto 5.0 kVrms Isolation rating (UL 1577)
 - Upto 8kVpk Transient (VDE0884-10)
 - Upto 1414 Vpk Working Voltage (VDE0884-10)
 - Enables IEC61800-5-1, IEC60664-1 & IEC62109-1
- **Power and Package**
 - Wide V_{CC2} Range: 15V-35V
 - 8-pin Narrow Body SOIC (4 mm Creepage)
 - 8-pin Wide SOIC Package (>8.3mm Creepage)
 - 3V to 15V input supply range.
 - Extended Temp: -55 to 125 °C

Applications

- Industrial Motor Control Drives
- Industrial Power Supplies
- Solar Inverters
- HEV & EV power modules

Benefits

- Reinforced isolation rating
- Different configuration options available
- Improved system performance
- Enabling low power & efficient solutions

![Diagram of UCC53xx Family](image)
ISO5852S: +2.5A/-5A, Isolated, High CMTI, Miller Clamp

Features

• Integrated SiO₂ Dielectric Capacitor
 • CMOS compatible logic input threshold
 • Safety Features: Miller Clamp, Desat Detect, UVLO, Fault feedback, Ready status feedback, auto soft-shutdown on short
 • +2.5/-5A Peak Source/Sink Split Outputs
 • 120 kV/µs CMTI (typ) / 100 kV/µs (min)
 • 30ns Integrated Glitch Filter
 • 110 ns (max) Prop Delay
 • 4kV ESD on all pins

• Immunity and Certifications
 • 12.8 kVpk Surge (8 kV VIOSM) per VDE Reinforced Isolation
 • 5.7 kVrms isolation rating per UL1577
 • 8000 Vpk VİOTM (transient) and 2121 Vpk VİORM (working voltage) per VDE0884-10
 • Enables IEC61800-5-1, IEC60664-1 & IEC62109-1

• Power and Package
 • Wide VCC2 Range: 15V-30V
 • 16-pin Wide SOIC Package (>8mm Creepage)
 • Extended Temp: -40 to 125 °C

Benefits

• Component-level Reinforced rating
• Improved system performance
• Enabling low power & efficient solutions
• High Immunity for Noisy Environments
• High Reliability in Harsh Environments
• Certified by all 3 World Wide agencies

<table>
<thead>
<tr>
<th>PART #</th>
<th>Split outputs</th>
<th>Soft Turnoff</th>
<th>UVLO+/ UVLO- (typ)</th>
<th>PKG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO5852S</td>
<td>Yes</td>
<td>Yes</td>
<td>11.6/10.3</td>
<td>16DW</td>
</tr>
</tbody>
</table>

DW Package
16-Pin SOIC Top View

Texas Instruments
AMC1306
Small Reinforced Isolated Modulator, ±50mV | ±250mV Input, CMOS Interface/Manchester Encoding

Features

- **Reinforced Isolation (UL1577 & VDE 0884-10)**
 - Working Voltage: 1.5 kV_{RMS}, 2.1 kV_{DC}
 - Isolation Voltage: 7 kV_{PEAK} / 12.8 kV_{SURGE}
 - Isolation Lifetime: >> 135 years
- **CMTI:** 100 kV/µs (typ) / 50 kV/µs (min)
- **Clock:** 5-21 MHz (external)
- **Various Input Voltage Ranges:**
 - ±50 mV & ±250 mV
- **Superior DC Performance:**
 - Offset / Offset Drift: ±4.5 µV (±100 µV max) / ±1 µV/°C
 - Gain / Gain Drift: ±0.2% (max) / 40 ppm/°C (max)
- **Manchester-coded Modulator Bitstream Options**
- **Temperature Range:** -40°C to 125°C
- **Small Package:** SO-8 (DWV)

Benefits

- **Unique ±50-mV input & Manchester coded (DC-free) output options**
- **Reduced input voltage range for lowest P_{D} on shunt**
- **Smallest package size**
- **Simplified clock routing & duty cycle correction with Manchester Encoding**
- **Missing high-side supply & input common-mode over-range indication**

Applications

- **Shunt-based Current Measurement:**
 - Compact Motor Drives
 - Frequency Inverter Applications
 - Solar Inverters
AMC1306– Advantages

Small Reinforced Isolated Modulator, ±50mV | ±250mV Input, CMOS Interface/Manchester Encoding

- 80% lower power dissipation vs. ±250mV
- ±50 mV drop
- Small package size: DWV-8
- Manchester encoding option provides for encoded clock and DC-free operation
- Isolated 21 MHz ΔΣ modulator with integrated gain stage - supporting fast overload response
- External clock input simplifies system level synchronization
- 80% lower power dissipation vs. ±250mV
- ±50 mV drop
- Small package size: DWV-8
- Manchester encoding option provides for encoded clock and DC-free operation
- Isolated 21 MHz ΔΣ modulator with integrated gain stage - supporting fast overload response
- External clock input simplifies system level synchronization
Thanks!
IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT. AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include, without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm, evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated