Application Note
How to Program TXE81XX SPI I/O Expander Family

i3 TEXAS INSTRUMENTS

Tyler Townsend
ABSTRACT
This application note provides insight into programming the TXE81XX family of /O expanders.

Table of Contents

I L33 e Yo [T T2 4o TSR 1
2 Setup and CoNFIGUIALION.ooiii ettt e e e e et e e st e e ettt e e neeeesmaeee e saeeeanseeesnneeeeseeeeanseeesnneeeeanneeeans 1
3 TXEB1XX 24-Bit SPIWOrd DefinitioN..............coooiiiiiiiiiecic ettt st e s e et e st e e s teeesbeessaeenseesseeeneesnnen 4
Y o Ty | (] (=Y o XSSOSR OO PRRPRRROOt 5
L30T e 114 T TN =T T =SSR 6
(S E: 110 o] (=3 O o Yo [- TSSOSO RRTN 9
A=V T4 4T T/ 13
30 T=Y = =T 4T PP 14
Trademarks

All trademarks are the property of their respective owners.
1 Introduction

The TXE81XX device family is TI's first SPI to GPIO expander. This application note provides details on how
to program these devices with an explanation of the 24-bit SPI word structure. This document also looks at the
register map and helps to explain the purposes of some of the common registers within the 1/O expander.

2 Setup and Configuration

TXE81XX SPI to GPIO expander family is controlled through the 4-wire SPI interface: MISO (master-in-slave-
out), MOSI (master-out-slave-in), SCLK (clock), and CS (chip select) lines. To this day, the terminology has since
been redefined to the following.

MISO — POCI (peripheral-out-controller-in)
MOSI — PICO (peripheral-in-controller-out)
SCLK is the same

CS is the same

The TXE81XX follows the terminology as follows.
SDI (serial-data-input) — MOSI / PICO

SDO (serial-data-output) — MISO / POCI

SCLK — Clock

CS — Chip Select

In this example, the MO launchpad LP-MSPMO0C1104 is used to program the TXE8124 with the following
connections.

VCC = 3.3V — (pin 2)
PA11 — SCLK (pin 29)

SCEA154 — JULY 2025 How to Program TXE81XX SPI I/O Expander Family 1
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

Setup and Configuration

13 TEXAS
INSTRUMENTS

www.ti.com

PA16 — MISO/POCI/SDO (pin 1)
PA18 — MOSI/PICO/SDI (pin 30)
PA2 — /CS (pin 28)

GND — (pin 3)

The SPI settings are set for 500kHz SPI clock, CPOL (clock idle polarity) = 0 (LOW), CPHA (clock-phase) = 0

(rising-edge / leading edge).

Figure 2-1 is the complete block diagram used for the physical connections between the TXE8124 and the

Copyright © 2025 Texas Instruments Incorporated

MSPMO.
1300 INT[32]
VCC RESET|31]
— 3 |eND sDI |[30]
[4|po.0 SCLK |29]
VCC =33V (5 [po-1 C_S-
ALY [6|ro.2 P1.0[27]
oate [7 |po3 P1.1/26]
LP-MSPMOC1104 [8]ro4 P1.2[25]
PA18 (S0 TXE8124 o1.3[24]
PA2 [10]ro.6 P1.4[23]
GND (11 ro.7 P1.5[22]
[12]p2.0 P1.6[21]
[13]p2.1 P1.7|20]
[14]p2.2 p2.7[19]
[15]p2.3 P2.6/18]
[16]p2.4 p2.5[17]
Figure 2-1. Connection Scheme for LP-MSPM0C1104 and TXE8124
2 How to Program TXE81XX SPI I/O Expander Family SCEA154 — JULY 2025

Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Setup and Configuration

Figure 2-2. LP-MSPM0C1104 Connection to TXE81XXEVM Example

SCEA154 — JULY 2025 How to Program TXE81XX SPI I/O Expander Family 3
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

TXE81XX 24-Bit SPI Word Definition

I

TeExAS
INSTRUMENTS

www.ti.com

3 TXE81XX 24-Bit SPI Word Definition

TXE81XX uses the following 24-bit word structure to initiate SPI writes and reads to and from the device.

First Byte Second Byte Third Byte
B23|B22|B21|B20|B19|B18|B17|B16|B15|B14|B13|B12|B11|B10| B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | BO
RW| X | X F F F F F X|P P Pl X]| X]| X]| M|D7|D6|D5|D4|D3]|D2|D1]| DO

<4— Feature Address —>| |<— Port. T |< Data »

Selection
Read/ Multi-Port
Write

Figure 3-1. TXE81XX 24-Bit SPI Word

The SPI word is 24 bits long and requires data to be shifted in MSB first on SDI.
B23 — R/W = read or write bit (R=1, W =0)
B22 - B21 = (X) don’t care

B20 - B16 = feature address (5 bits)

B15 = (X) do not care

B14 - B12 = port selection (Port 0 = 000, Port 1 = 001, Port 2 = 010)

B11 - B9 = (X) don’t care

B8 = multi-port bit (multi-port enabled = 1, multi-port disabled = 0)
B7 - BO = data byte

Copyright © 2025 Texas Instruments Incorporated

How to Program TXE81XX SPI I/O Expander Family

SCEA154 — JULY 2025
Submit Document Feedback

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com SPI Write Steps

4 SPI Write Steps

A SPI write command involves writing data to a designated register while also reading the previous register data
contents on SDO (full-duplex).

1. Drive /CS LOW. This enables the internal shift register

2. Shift 24 bits of data into the device MSB first on SDI. Data must be stable during the rising edge of the clock
(SCLK).

3. The MSB bit (B23) must be a “0” to indicate this is a write operation.

4. 16 bits of status is sent out on SDO. The first 2 bits are 2’b11 (indicating this to be a status segment). The
next 6 bits B21-B16 are bits D5 to DO of the Fault Status Register. The last 8 bits B15-B8 are all 0’s.

5. The previous data in the register is read on SDO (B7-B0) while a data byte is written into the register on SDI
(B7-B0).

6. After the last bit of data is transferred, drive SCLK low if there is no more data to be transferred.
7. De-assert /CS (drive this high) to end the write cycle

0x00

+10ps +20 s
0x03
oo SDI W
SPI-MOS

aops Sops +60ps
l OxFF
. P—— v
Indicates “write’

/ T30 s
Operation—>|E|xxooo11| xxxxm [1 1 1 1 1 1

oxcl 0x00 0x00

Indicates Previous Data
“status’ segment —[1 1] o 0 0o 0o o 00 0o 0o o o0 o] [0 0 0o 0 0o o 0o o]« in Ropistor

Duty: 50.2 %
Freq: 502.008 kHz
width': 1.008 MHz

cs D5 — DO of Fault
SPI-Enable Status Register

L

A

| /CS LOW for 24-bits]

v

Figure 4-1. SPI Write Example Using Saleae Logic Analyzer

SCEA154 — JULY 2025 How to Program TXE81XX SPI I/O Expander Family 5
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS
INSTRUMENTS
Coding Example www.ti.com

5 Coding Example

The current version of code composer studio can be downloaded from Tl Developer Zone below the Common
Actions section.

After downloading and opening the Code Composer Studio IDE, the example code can be found by browsing the
software examples provided in the Resource Explorer.

Code Composer Studio™

et started User guide

LP-MSPMOC1104 LaunchPad Overview

MSPMOC1104 LaunchPad™ development kit for 24-MHz Arm ® Cortex®- with Code Composer Studio™ IDE
MO+ MCU

Getting started

with MSPMO Academy Projects and build

Debug

with Resource Explorer

Themes

Dark (Theia)

and configure, develop and run applications without coding

Figure 5-1. In Code Composer Studio IDE, Browse Software and Examples

Once the resource explorer is opened, follow the below directory to locate the sample code:

Arm”R-Based Microcontrollers — Embedded Software — MSPMO SDK — 2.04.00.06 — Examples —
Development Tools — LP-MSPM0C1104 LaunchPad — DriverLib — spi_controller_internal_loopback_poll —
No RTOS — GCC Compiler — spi_controller_internal_loopback_poll

The sample project can be imported into the CCS IDE by clicking the 3 dots and selecting “Import to CCS IDE.”
Once imported, start by selecting the “spi_controller_internal_loopback_poll.syscfg” file.

The SPI settings in the example are to be modified through the SYSCONFIG GUI. Underneath SPI, select the
following configurations to setup the code properly.

6 How to Program TXE81XX SPI I/O Expander Family SCEA154 — JULY 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

http://Dev.ti.com
https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Coding Example

Aa @ & > MSPMOCII0L @ » Software » SPI
— =
'cg Project Configur. 1/1 & e $PLO
Selected Peripheral
Beeper @ Quick Profiles
Board n & SP1 Profiles preriss
Configuration NVM ®
DMA ®
Basic Configuration
GPIO 19®
SYSCTL n @
WWDT ® SP1 Initialization Configuration
Mode Select Controller
ADC12 ®
VREF ® Clock Configurstion
B ® | Target Bit Rate (Hz) 500000
12C - SMBUS ® Calculated Bit Rate 500000.00
sP n @G Calculated Error (%) 0
UART @ Frame Format Motorola 4-wire
UART - LIN ®
Clock Polarity Low
TIMER @ Phase Data captured on first clock e..
TIMER - CAPTURE ® Frame Size (bits) 8
TIMER - COMPARE ® Bt Ord MS8
TIMER - PWM ®
TIMER - QE1 ® SP1 Controller Basic Configuration
Timer Fault ®
Chip Select cso
CRC ®

Figure 5-2. SYSCONFIG Setup

SPI_0 is the name of the SPI peripheral in use. A custom profile is created. The mode is selected to be
Controller with a target bit rate of 500kHz. Frame formatting is Motorola 4-wire SPI. Clock polarity set to LOW.
Clock phase — data captured on first clock edge which is rising edge. Frame size is set to 8 bits. Bit order is
MSB first. While chip select is CS0 — PA11, this example uses the GPIO on PA2 to capture the 3-byte framing
structure for the TXE8124 device. CS0 — PA11 is ignored for this example.

Select the following for the Advanced Configuration tab making sure the Enable Internal Loopback is unchecked.

SCEA154 — JULY 2025

Submit Document Feedback

How to Program TXE81XX SPI I/O Expander Family 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS

INSTRUMENTS
Coding Example www.ti.com
Advanced Configuration o
Parity Disabled v
RX FIFO Threshold Level RX FIFO contains>= 2 entries v
TX FIFO Threshold Level TX FIFO contains <= 2 entries x
| Communication Direction PICO and POCI -
Enable Packing O
SP1 Controller Advanced Configuration A
Enable Command Data Mode O
Enable Internal Loopback O
Delayed Data Sampling Counts 0
Calculated Delayed Sampling 0.00s

Figure 5-3. Below the Advanced Configuration Tab, the Enable Internal Loopback is Disabled

The SYSCONFIG GUI sets up the SPI configuration without having to write code within the MO driver library.
This sets up the SPI driver giving more time to focus on the example functions for the TXE81XX.

8 How to Program TXE81XX SPI I/O Expander Family SCEA154 — JULY 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Sample Code

6 Sample Code

The following sample code can be copied over the spi_controller_internal_loopback_poll.c example code from
the MSPMO SDK. This .c file was modified to include SPI write and read functions that work with the 24-bit word

scheme of the TXE81XX.

/*SPI Connections:

VCC = 3.3V
CPOL=0
CPHA=0

Clock Frequency = 500kHz
SCLK = PA11

MISO = PA16
MOSI = PA18
/CS = PA2

*/

#include "ti_msp_dl_config.h" //MSP driver library
/[Define the TXE81xx Register Map from the TXE81xx d

#define scratch_reg (0x00)
#define device_ID (0x01)

#define input_reg (0x02)

#define output_reg (0x03)

#define config_reg (0x04)

#define pol_reg (0x05)

#define pp_od_sel (0x06)

#define od_conf (0x07)

#define pu_pd_en (0x08)

#define pu_pd_sel (0x09)

#define bus_holder (0x0A)
#define smart_int (Ox0B)

#define int_mask (0x0C)

#define glitch_filter_en (0x0D)
#define int_flag_status (Ox0E)
#define int_port_status (0x0F)
#define fail_safe_en_reg_1 (0x12)
#define fail_safe_en_reg_2 (0x13)
#define fail_safe_dir_config1 (0x14)
#define fail_safe_dir_config2 (0x15)
#define fail_safe_out1 (0x16)
#define fail_safe_out2 (0x17)

SCEA154 — JULY 2025
Submit Document Feedback

How to Program TXE81XX SPI I/O Expander Family 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS
INSTRUMENTS

Sample Code www.ti.com

#define fail_safe_redun (0x18)

#define fail_safe_fault (0x19)

#define software_reset (0x1A)

/ldefine each port

/[TXE8116 - Port 0 / Port 1

/[TXE8124 - Port 0 / Port 1/ Port 2

#define port0 (0x00)

#define port1 (0x01)

#define port2 (0x02)

#define DELAY_500khz (50) //delay cycles to tune /CS for SPI comms at 500kHz
//[Function Definitions

uint8_t SPI_Transfer(uint8_t feat_addr, uint8_t port, uint8_t data_byte, bool multi_port);
uint8_t SPI_read (uint8_t feat_addr, uint8_t port);

int main(void)

{

volatile uint8_t read_val = 0x00;

SYSCFG_DL _init(); //initalize SPI driver

read_val = SPI_Transfer(config_reg, port0, OxFF, false); //write to configuration register 0 - set all output
/Iwrite outputs every second on port O

while(1){

read_val = SPI_Transfer(output_reg, port0, OxFF, false); //OxFF - LED's off

read_val = SPI_read(output_reg, port0);

delay_cycles(24000000);

read_val = SPI_Transfer(output_reg, port0, OxAA, false); //0xAA - alternate LED's
read_val = SPI_read(output_reg, port0);

delay_cycles(24000000);

read_val = SPI_Transfer(output_reg, port0, 0x55, false); //0x55 - alternate the other way
read_val = SPI_read(output_reg, port0);

delay_cycles(24000000);

read_val = SPI_Transfer(output_reg, port0, 0x00, false); //0x00 - LED's ON
read_val = SPI_read(output_reg, port0);

delay_cycles(24000000);

}

}

/[The SPI_Transfer both writes and returns the previous byte set in the 8-bit register
uint8_t SPI_Transfer(uint8_t feat_addr, uint8_t port, uint8_t data_byte, bool multi_port){

10 How to Program TXE81XX SPI I/O Expander Family SCEA154 — JULY 2025
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Sample Code

uint8_t write_byte = feat_addr & 0x1F; //only keep B20 - B16
uint8_t port_byte = (port << 4) & 0x70; //only keep B14 - B12, first shift port number to upper nibble
uint8_t m_bit;

uint8_t status_byte1 = 0x00; //first 2 bits are 2'b11 (indicating status segment), next 6 bits are D5 to DO bits of
the fault flag register

uint8_t status_byte2 = 0x00; //8 bits are all 0

uint8_t reg_data_out = 0x00; //the current register data
if (multi_port == true){

m_bit = 0x01; // multi-port = 1 = enabled

}else {

m_bit = 0x00; // multi-port = 0 = disabled

}

DL_GPIO_clearPins(GPIO_LEDS_PORT, GPIO_LEDS_USER_LED 1_PIN |
GPIO_LEDS_USER_TEST_PIN); //set /CS LOW

DL_SPI_transmitData8(SPI_0_INST, write_byte); //Transmit B23 - B16
DL_SPI_transmitData8(SPI_0_INST, port_byte + m_bit); /Transmit B15 - B8
DL_SPI_transmitData8(SPI_0_INST, data_byte); //Transmit B7 - BO

status_byte1 = DL_SPI_receiveDataBlocking8 (SPI1_0_INST); //reading data on SDO 1st byte
status_byte2 = DL_SPI_receiveDataBlocking8 (SPI_0_INST); //reading data on SDO 2nd byte

reg_data_out = DL_SPI_receiveDataBlocking8 (SPI1_0_INST); //reading data on SDO 3rd byte - this is the
register data returned (previously set byte in register)

delay_cycles(DELAY_500khz); //delay to time chip select

DL_GPIO_setPins(GPIO_LEDS_PORT, GPIO_LEDS_USER LED 1 PIN |
GPIO_LEDS_USER_TEST_PIN); //set /CS HIGH

return reg_data_out; //return the previous register byte

}

/[create a function to directly read a register and the status bits for the fault flag register

uint8_t SPI_read (uint8_t feat_addr, uint8_t port){

uint8_t read_byte = (feat_addr & Ox1F) + 0x80; //only keep B20 - B16 and make B23 = 1 for a "READ"
uint8_t port_byte = (port << 4) & 0x70; //only keep B14-B12, first shift port number to upper nibble

uint8_t status_byte1 = 0x00; //first 2 bits are 2'b11 (indicating status segment), next 6 bits are D5 to DO bits of
the fault flag register

uint8_t status_byte2 = 0x00; //8 bits are all 0

uint8_t reg_data_out = 0x00; //the current register data

DL_GPIO_clearPins(GPIO_LEDS_PORT, GPIO_LEDS USER_LED_1_PIN |
GPIO_LEDS_USER_TEST_PIN); //set CS LOW

DL_SPI_transmitData8(SPI_0_INST, read_byte); //send read command byte
DL_SPI_transmitData8(SPI_0_INST, port_byte); //specify the port selection
DL_SPI_transmitData8(SPI_0_INST, 0x00); //0x00 dummy data to shift out 8 bits of register data on MISO

SCEA154 — JULY 2025 How to Program TXE81XX SPI I/O Expander Family 1
Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS

INSTRUMENTS
Sample Code www.ti.com
status_byte1 = DL_SPI_receiveDataBlocking8 (SPI1_0_INST); //first 8 bits of status
status_byte2 = DL_SPI_receiveDataBlocking8 (SPI1_0_INST); //second 8 bits of status
reg_data_out = DL_SPI_receiveDataBlocking8 (SPI1_0_INST); //register data byte
delay_cycles(DELAY_500khz); //delay to time chip select
DL_GPIO_setPins(GPIO_LEDS_PORT, GPIO_LEDS_USER_LED 1_PIN |
GPIO_LEDS_USER_TEST_PIN); //set CS HIGH
return reg_data_out; //return register byte
}
12 How to Program TXE81XX SPI I/O Expander Family SCEA154 — JULY 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Summary

7 Summary

The TXE family of SPI to GPIO expanders uses a 24-bit word format. Writing to the TXE device is a full-duplex
operation where data can be written and read from a register on SDI and SDO respectively. A direct read of the
TXE results in data output from a register on SDO. The example code provided is a non-optimized design for
simple read or write commands to the TXE, and shows the general format on how to operate the IC.

SCEA154 — JULY 2025 How to Program TXE81XX SPI I/O Expander Family 13

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

13 TEXAS

INSTRUMENTS
References www.ti.com
8 References
» Texas Instruments, MSPMO SDK, resource explorer.
14 How to Program TXE81XX SPI I/O Expander Family SCEA154 — JULY 2025

Submit Document Feedback
Copyright © 2025 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__AEIJm0rwIeU.2P1OBWwlaA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SCEA154
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA154&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI’'s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
Tl products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Setup and Configuration
	3 TXE81XX 24-Bit SPI Word Definition
	4 SPI Write Steps
	5 Coding Example
	6 Sample Code
	7 Summary
	8 References

