How to select the right multiplexer or signal switch to maximize system performance

Saminah Chaudhry，System Engineer

Multiplexers and Protection Devices

Agenda

- Critical parameters for multiplexers and signal switches
- Critical parameters for precision multiplexers
- On-resistance
- On-capacitance
- Leakage current
- Charge injection
- Protection multiplexer features and common use cases
- Powered-off protection
- Fail-safe logic
- Latch-up immunity
- Common use cases
- TI package technology
- Portfolio overview and Q\&A

Critical parameters for multiplexers and signal switches

Critical parameters | Multiplexers \& signal switches

Why is R_{ON} important for your system?

$$
\begin{aligned}
& \text { Effective } \\
& \text { Gain }(A G)=-R F /\left(R 1+R_{O N}\right)
\end{aligned}
$$

However, if R1 is very high compared to R_{ON} then any gain error non-linearity introduced due to the MUX $R_{O N}$ is negligible

\square The on-resistance of a switch can introduce variations and gain error, which produce signal dependent distortion
$\square R_{\text {ON }}$ drifts over temperature that limits accuracy and degrades linearity of $\mathrm{V}_{\text {OUT }}$ related to V_{IN}

- To counter gain error introduced due to $R_{O N}$, it is recommended to interface the MUX output to a high impedance stage R1 (buffer amplifier)

Why is C_{ON} important?

Multiplexer examples	Input source impedance	Switching between channels	
MUX36S08 $\left(\mathrm{C}_{\text {on }}=10 \mathrm{pF}\right)$	$100 \mathrm{k} \Omega$	$10 \mu \mathrm{~s}$	Tl mux settles to the input source's final value
Competitor mux $\left(\mathrm{C}_{\text {on }}=30 \mathrm{pF}\right)$	$100 \mathrm{~kg} \Omega$	$10 \mu \mathrm{~s}$	The other mux doesn't settle to the final value due to long RC time constant formed by mux on-capacitance (30 pF) and 100 k Ω
impedance of source			

- On-capacitance affects settling behavior of multiplexers, which impacts transient performance of the system
\square Higher $\mathrm{C}_{\text {on }}$ can introduce distortion in systems where input channels are switched at a very fast rate
\square For high input impedance data acquisition systems and fast switching data acquisition systems, a low $\mathrm{C}_{\text {on }}$ multiplexer is recommended

Why is I leakage important for your system?

- Switch = OFF: $I_{\text {S(OFF) }}$ flows through $R_{\text {SOURCE }}$ and $I_{D(O F F)}$ flows through R_{L}
- Switch = ON: Error introduced by leakage current: $V_{E R R O R}=\left(R_{O N}+R_{\text {SOURCE }}\right) \times I_{D(O N)}$

Industrial applications | Factory automation - PLC

Multiplexer examples	Multiplexer leakage current $\left(25^{\circ} \mathrm{C} / 85^{\circ} \mathrm{C}\right)$	Offset error $\left(25^{\circ} \mathrm{C} / 85^{\circ} \mathrm{C}\right)$ $\left(\mathrm{l}_{\text {LEAKAGE }} \times \mathrm{R}_{\text {Source }}\right)$	Offset error 18-bit system (in bits)
MUX 1 (Low leakage) $10 \mathrm{pA} / 50 \mathrm{pA}$	$10 \mu \mathrm{~V} / 50 \mu \mathrm{~V}$	$0.52 / 2.62$	
MUX 2 (High leakage) $100 \mathrm{pA} / 500 \mathrm{pA}$	$100 \mu \mathrm{~V} / 500 \mu \mathrm{~V}$	$5.24 / 26.22$	

18-bit system example calculation:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{ref}}=5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{LSB}}=\frac{5 \mathrm{~V}}{2^{18}}=19.073 \mu \mathrm{~V}
\end{gathered}
$$

OffsetError $(\mathrm{V})=\mathrm{I}_{\text {LEAKAGE }} \cdot \mathrm{R}_{\text {SOURCE }}=(100 \mathrm{pA})(1 \mathrm{M} \Omega)=100 \mu \mathrm{~V}$
OffsetError $($ Bits $)=\frac{\text { OffsetError }(\mathrm{V})}{\mathrm{V}_{\mathrm{LSB}}}=\frac{100 \mu \mathrm{~V}}{19.073 \mu \mathrm{~V}}=5.24 \mathrm{codes}$

TMUX7219 benchmarks | Leakage current

Leakage Current vs. Input Voltage @ $\pm 15 \mathrm{~V}, 125^{\circ} \mathrm{C}$

```
TA=+125*
```


- TMUX7219 is designed to be the lowest leakage low $R_{O N}$ mux in the industry
- Lower leakage with linear scaling means
- Less error in measurement
- Less drift
- Easier to calibrate in high precision systems

Why is $Q_{\text {InJection }}$ important for your system?

- What is charge injection error?
- Charge injection is a voltage change introduced at the output of the switch when logic is turned ON or OFF.
- This can introduce output voltage error when the control logic is switched.

- Voltage change introduced at the output of switch when switch is turned ON or OFF:

$$
Q_{I N J}=\left(C_{D}+C_{L}\right) \times \Delta V_{\text {OUT }}
$$

- With large load capacitance, effect of C_{D} can be ignored:

$$
V_{E R R O R}=\Delta V_{O U T} \approx \frac{Q_{I N J}}{C_{L}}
$$

Industrial applications | Analog input modules

Multiplexed Data Acquisition Front End

$\mathrm{t}_{\mathrm{ACQ}}>\mathrm{k} \times \mathrm{T}_{\mathrm{FLT}}$

- $\mathrm{T}_{\mathrm{FLT}}=\left(\mathrm{R}_{T H}+\mathrm{R}_{\mathrm{ON}(\mathrm{MUX})}\right) \mathrm{X}\left(\mathrm{C}_{\mathrm{FLT}}+\mathrm{C}_{\mathrm{ON}(\mathrm{MUX})}\right)$
- k is single pole time constant for N bit ADC

TMUX7219 benchmarks | Charge injection

Charge Injection vs. Input Voltage @ $\pm 15 \mathrm{~V}$

- TMUX7219 delivers classleading charge injection performance across the entire signal range
- Lower charge injection means
- Less error in the signal chain
- Faster sampling
- Less overshoot \& ringing on switching channels

Critical parameters | Multiplexers \& signal switches

Supply range

- Single supply: $24 \mathrm{~V}, 15 \mathrm{~V}, 5 \mathrm{~V}, 3.3 \mathrm{~V}$
- Dual supply: $\pm 15 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$

Input signal range

- Low level: 10 mV - 100 mV
- High level:
- Current input: 4... $20 \mathrm{~mA}, 0 . .24 \mathrm{~mA}$, 0... 20 mA
- Voltage input: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0$ to 10 $\mathrm{V}, 0$ to 5 V
- Rail-to-rail, above-rail

HBM ESD level None, 2 kV

Powered-off protection, Fail-safe
logic, Latch-up immunity Simplify power sequencing design complexity

Supply current

- $10 \mathrm{nA}-100 \mu \mathrm{~A}$ max

On-resistance

- $\mathrm{R}_{\mathrm{ON}}: 3 \Omega, 60 \Omega, 125 \Omega$
- Flatness: flat, $1 \Omega, 20 \Omega$
- Drift: $0.5 \% /{ }^{\circ} \mathrm{C}-2 \% /{ }^{\circ} \mathrm{C}$

On-capacitance

Con: 3 pF, 60 pF, 125 pF

Charge injection

- Low: 0.1 pC
- High: 50 pC

Leakage @ $125^{\circ} \mathrm{C}$

- Low: 2 nA max
- High: $1 \mu \mathrm{~A}$ max

Transition time

- Fast switching: $50 \mathrm{~ns}-100 \mathrm{~ns}$
- Slow switching: $1 \mu \mathrm{~s}-10 \mu \mathrm{~s}$

Control logic

- Logic level (V_{DD}): 3.3 V, $5 \mathrm{~V}, 10 \mathrm{~V}$
- Protocol: GPIO, SPI

TMUX features | Powered-off Protection

Feature Description

TI switches with powered-off protection will protect downstream components when input signals are present in the I/O pins while the switch is unpowered. The switch maintains a highimpedance state on the I/O pins which prevents backpowering V_{DD} and the select (SEL) pin.

Benefits

Provides electrical isolation between subsystems
Prevents data from being transmitted unintentionally
Eliminates need for power sequencing solutions

- Reduces BOM count and cost
- Simplifies system design
- Improves system reliability

Learn more about how to eliminate power sequencing issues here!
TI Precision Labs video - Powered-off protection

Switch with powered-off protection

(1) The MCU transmits a 3.3 V logic signal to the switch select (SEL) when the switch is OFF

TMUX features | Fail-safe logic

(2) The 3.3 V logic signal back-powers V_{DD}, back-powering Subsystem B and turning the switch ON

Feature Description

TI switches with fail-safe logic will protect downstream components when a logic signal is present in the select (SEL) pins while the switch is unpowered. The switch maintains in a high-impedance state on the SEL logic pins preventing power from going through V_{DD} during power sequencing.

Benefits

Protects mux and downstream ICs from damage
Eliminates need for power sequencing solutions

- Reduces BOM count and cost
- Simplifies system design
- Improves system reliability

Standard low-voltage TMUX feature

TI Precision Labs video - Fail-safe Logic

TMUX features | Latch-up immunity

Feature Description

TI switches with latch-up immunity prevent undesirable high current events between parasitic structures within the device typically caused by overvoltage events. The TMUX62xx/TMUX72xx family of devices are built in a Silicon On Insulator (SOI) process and will not latch-up when exposed to current injection or overvoltage events.

Benefits

Prevents undesirable high current events between parasitic structures within the device typically caused by overvoltage events.

Provides a simpler, more compact protection solution

- Reduces BOM count and cost
- Simplifies system design
- Improves system reliability

II Precision Labs video - Latch-up Immunity

Cross section of CMOS Inverter with SCR

Oxide Insulating Trench Layer

Industrial applications | Protection multiplexers

Multiplexing Flash Memory

Protocol / Signal Isolation

TI packaging \& technology

TI multiplexer | Package differentiation

TI package technology | SOT-23-THIN (DYY)

Industry's smallest 16-pin leaded packages

TI 16-pin packages

SOT-23-THIN vs. TSSOP - 57\% space savings

	$\begin{aligned} & \text { SOT-23 } \\ & \text { THIN (DYY) } \end{aligned}$	$\begin{aligned} & \text { TSSOP } \\ & \text { (PW) } \end{aligned}$	TSSOP	SOT-23Thin
D (length)	4.2 mm	5.0 mm	-	8 man
E (width)	3.2 mm	6.4 mm	PW	DYY
Pitch	0.5 mm	0.65 mm		
Area	13.7 mm²	32.0 mm²		smaller

SOT-23-THIN fits inside TSSOP footprint

SOT-23-THIN vs. QFN - QFN size with leaded reliability

QFN size with leaded reliability

- SOT-23-THIN package achieves small QFN size and maintains 0.5 mm pitch
- SOT-23-THIN is a QFN alternative for space constrained designs with the added benefits of optical inspection, easier debug, and mechanical reliability of a leaded package

TI multiplexer \& signal switch portfolio

TI multiplexer \& signal switch portfolio

- Broad portfolio of precision, protection and general-purpose multiplexers
- Broad selection from low and mid-voltage

Backup

Selection guide | Low-voltage $\mathrm{V}_{\text {SIGNAL }}<24 \mathrm{~V}$

	8:1	TMUX1108 TMUX1208 TMUX1308 SN74LV4051 *CD4051 SN74LV4051			Precision Protection
	4:1	TMUX1104 TMUX1204	TMUX1109 TMUX1209 TMUX1309 SN74LV4052 SN74CBT3253 TS5A5017 *CD4052		
	2:1	TMUX1119 TMUX1219 TMUX1247 SN74LVC3157 TS5A3159	TMUX1136 TMUX136 TMUX154E TMUX1072 TS5A23157/59 TS5A22364	TMUX1133 SN74LV4053A CD74HC4053 *CD4053	TMUX1134 TMUX1574 TS3A44159 SN74CBTLV3257
	1:1	TMUX1101 TMUX1102 SN74LVC1G66 TS5A3166	TMUX1121 TMUX1122 TMUX1123 SN74LVC2G66 TS5A2066 TS5A21366		TMUX1111 TMUX1511 TMUX1311 SN74CBTLV3125 SN74HC4066 *CD4066
		1	2	3	4
Number of Channels					

TMUX Key Differences

	Precision	Protection	General Purpose
Ultra-Low Leakage (pA)	\checkmark	-	-
Powered-off Protection	-	\checkmark	-
Overvoltage Protection	-	\checkmark	-
1.8 V Logic Control	\checkmark	\checkmark	\checkmark
Fail-safe Logic	\checkmark	\checkmark	\checkmark
Smallest QFN packages	\checkmark	\checkmark	\checkmark
TI Device Families:	TMux11xx	TMUX15xx	TMUX12xx, TMUX13xx

TMUXxxxxX Nomenclature

1st Digit	2nd Digit $^{\text {3rd \& 4th Digit }}$	Final Letter	
Supply Range	Product Family Generation	Channel Count \& Configuration	Key Differentiation

Selection guide | Mid-voltage ($24 \mathrm{~V}>\mathrm{V}_{\text {SIGNAL }}>100 \mathrm{~V}$)

TMUX Key Differences

	Precision	Protection	General Purpose
Ultra-Low Leakage (pA)	\checkmark	-	-
Powered-off Protection	-	\checkmark	-
Overvoltage Protection (up to ± 60 V)	-	\checkmark	-
Fail-safe Logic	\checkmark	\checkmark	\checkmark
Smallest QFN packages	\checkmark	\checkmark	\checkmark
TI Device Families:	TMUX61xx TMUX72xx	TMUX73xxF TMUX74xxF	MUX50x

TMUXxxxxX Nomenclature

$1^{\text {st }}$ Digit	2nd Digit $^{\text {nd }}$	3rd $^{\text {\& 4h }}$ Digit	Final Letter
Supply Range	Product Family Generation	Channel Count \& Configuration	Key Differentiation

地
 TEXAS INSTRUMENTS

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's Terms of Use, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

