TI TECH DAYS

How to select the right multiplexer or signal switch to maximize system performance

Saminah Chaudhry, System Engineer

Multiplexers and Protection Devices

Agenda

Critical parameters for multiplexers and signal switches

- Critical parameters for precision multiplexers
 - On-resistance
 - On-capacitance
 - Leakage current
 - Charge injection
- Protection multiplexer features and common use cases
 - Powered-off protection
 - Fail-safe logic
 - Latch-up immunity
 - Common use cases
- TI package technology
- Portfolio overview and Q&A

2

Critical parameters for multiplexers and signal switches

Critical parameters | Multiplexers & signal switches

Why is **R**_{ON} important for your system?

However, if R1 is very high compared to $\rm R_{ON}$ then any gain error non-linearity introduced due to the MUX $\rm R_{ON}$ is negligible

- The on-resistance of a switch can introduce variations and gain error, which produce signal dependent distortion
- R_{ON} drifts over temperature that limits accuracy and degrades linearity of V_{OUT} related to V_{IN}
- To counter gain error introduced due to R_{ON}, it is recommended to interface the MUX output to a high impedance stage R1 (buffer amplifier)

Why is **C**_{ON} important?

Multiplexer examples	Input source impedance	Switching between channels	Outcome
MUX36S08 (C _{on} = 10 pF)	100 kΩ	10 µs	TI mux settles to the input source's final value
Competitor mux (C _{on} = 30 pF)	100 κΩ	10 µs	The other mux doesn't settle to the final value due to long RC time constant formed by mux on-capacitance (30 pF) and 100 k Ω input impedance of source

- On-capacitance affects settling behavior of multiplexers, which impacts transient performance of the system
- Higher C_{on} can introduce distortion in systems where input channels are switched at a very fast rate
- □ For high input impedance data acquisition systems and fast switching data acquisition systems, a low C_{on} multiplexer is recommended

Why is ILEAKAGE important for your system?

TI Precision Labs video - Leakage Current

- Switch = OFF: $I_{S(OFF)}$ flows through R_{SOURCE} and $I_{D(OFF)}$ flows through R_L
- Switch = ON: Error introduced by leakage current: $V_{ERROR} = (R_{ON} + R_{SOURCE}) \times I_{D(ON)}$

Industrial applications | Factory automation - PLC

Multiplexer examples	Multiplexer leakage current (25°C/85°C)	Offset error (25°C/85°C) (I _{LEAKAGE} x R _{Source})	Offset error 18-bit system (in bits)
MUX 1 (Low leakage)	10 pA / 50 pA	10 μV / 50 μV	0.52 / 2.62
MUX 2 (High leakage)	100 pA / 500 pA	100 μV / 500 μV	5.24 / 26.22

TEXAS INSTRUMENTS

TMUX7219 benchmarks | Leakage current

- TMUX7219 is designed to be the lowest leakage low R_{ON} mux in the industry
- Lower leakage with linear scaling means
 - Less error in measurement
 - Less drift
 - Easier to calibrate in high precision systems

Why is **Q**_{INJECTION} important for your system?

TI Precision Labs video - Charge injection

- What is charge injection error?
 - Charge injection is a voltage change introduced at the output of the switch when logic is turned ON or OFF.
 - This can introduce output voltage error when the control logic is switched.

• Voltage change introduced at the output of switch when switch is turned ON or OFF:

$$Q_{INJ} = (C_D + C_L) \times \Delta V_{OUT}$$

• With large load capacitance, effect of C_D can be ignored:

$$V_{ERROR} = \Delta V_{OUT} \approx \frac{Q_{INJ}}{C_L}$$

Industrial applications | Analog input modules

TMUX7219 benchmarks | Charge injection

- TMUX7219 delivers classleading charge injection performance across the entire signal range
- Lower charge injection means
 - Less error in the signal chain
 - Faster sampling
 - Less overshoot & ringing on switching channels

Critical parameters | Multiplexers & signal switches

Texas Instruments

13

TMUX features | Fail-safe logic

The MCU transmits a 3.3 V logic signal to the switch select (SEL) when the switch is <u>OFF</u>

The 3.3 V logic signal back-powers V_{DD}, back-powering Subsystem B and turning the switch <u>ON</u>

Switch without fail-safe logic:

Switch with fail-safe logic: Unpowered

Switch

Feature Description

TI switches with <u>fail-safe logic</u> will protect downstream components when a logic signal is present in the <u>select (SEL)</u> <u>pins</u> while the switch is unpowered. The switch maintains in a high-impedance state on the SEL logic pins **preventing power from going through V**_{DD} **during power sequencing**.

Benefits

Protects mux and downstream ICs from damage

Eliminates need for power sequencing solutions

- Reduces BOM count and cost
- Simplifies system design
- Improves system reliability

Standard low-voltage <u>TMUX</u> feature

TI Precision Labs video - Fail-safe Logic

TMUX features | Latch-up immunity

Feature Description

TI switches with <u>latch-up immunity</u> prevent undesirable high current events between parasitic structures within the device typically caused by overvoltage events. The TMUX62xx/TMUX72xx family of devices are built in a Silicon On Insulator (SOI) process and will not latch-up when exposed to current injection or overvoltage events.

Benefits

Prevents undesirable high current events between parasitic structures within the device typically caused by overvoltage events.

Provides a simpler, more compact protection solution

- Reduces BOM count and cost
- Simplifies system design
- Improves system reliability

TI Precision Labs video – Latch-up Immunity

Cross section of CMOS Inverter with SCR

Industrial applications | Protection multiplexers

 V_{DD} V_{I/O} VDD 0.1µF Processor JTAG, SPI, GPIO Port _ FLASH TDI / MISO / GPIO S1 D1 TDO / MOSI / GPIO JTAG S2 D2 DEBUG. RAM SPI. GPIO TCK / SCLK / GPIO S3 D3 TMS / SS / GPIO S4 D4 CPU SEL1 SEL2 1.8V Logic SEL3 Peripherals I/O SEL4 GND GND

Multiplexing Flash Memory

Protocol / Signal Isolation

TI packaging & technology

18

TI multiplexer | Package differentiation

1x scale:

TI package technology | SOT-23-THIN (DYY)

Industry's smallest 16-pin leaded packages

SOT-23-THIN vs. QFN – QFN size with leaded reliability

SOT-23-THIN fits inside TSSOP footprint

Dual footprint option SOT-23-THIN will fit inside TSSOP footprint and can be dual routed using conventional PCB design rules.

QFN size with leaded reliability

- SOT-23-THIN package achieves small QFN size and maintains 0.5 mm pitch
- SOT-23-THIN is a QFN alternative for space constrained designs with the added benefits of optical inspection, easier debug, and mechanical reliability of a leaded package

TI multiplexer & signal switch portfolio

TI multiplexer & signal switch portfolio

Backup

Selection guide | Low-voltage V_{SIGNAL} < 24 V

		TMUX1108 TMUX1208			Precision		TMUX	Key Diffe	erences	
	8:1	TMUX1308 SN74LV4051 *CD4051			Protection General Purpose			Precision	Protection	General Purpose
		SN74LV4051	TMUX1109	1	*CD : up to 20 V Supply	Ultra-Low Lea	kage (pA)	1	-	-
		TMUX1104	TMUX1209 TMUX1309 SN74LV4052			Powered-off P	Protection	-	1	-
6	4:1	TMUX1204	SN74CV4052 SN74CBT3253 TS5A5017			Overvoltage P	Protection	-	1	-
atior			*CD4052			1.8 V Logic Co	ontrol	1	1	1
Configuration		TMUX1119 TMUX TMUX1219 TMUX TMUX1247 TMUX SN74LVC3157 TS5237	TMUX1136 TMUX136	5 TMUX1133 E SN74LV4053A 2 CD74HC4053	TMUX1134 TMUX1574 TS3A44159 SN74CBTLV3257	Fail-safe Logi	c	1	1	1
	2:1		TMUX154E TMUX1072 TS5A23157/59			Smallest QFN	packages	1	1	1
	TS5A3159	TS5A22364		TI Device Fam	ilies:	TMUX11xx	TMUX15xx	TMUX12xx, TMUX13xx		
	1:1	TMUX1101 TMUX1102 SN74LVC1G66 TS5A3166	TMUX1121 TMUX1122 TMUX1123 SN74LVC2G66 TS5A2066 TS5A21366		TMUX1111 TMUX1511 TMUX1311 SN74CBTLV3125 SN74HC4066 *CD4066 TMUXxxxX Nomenclature			J		
		1	2	3	4	1 st Digit	2 nd Digi	t 3 rd	& 4 th Digit	Final Letter
			Number of Char	nnels		Supply Range	Product Fa Generatio		annel Count onfiguration	Key Differentiation

Selection guide | Mid-voltage (24 V > V_{SIGNAL} > 100 V)

		MUX36S16		Precision
	16:1	MUX506		Protection
				General Purpose
	8:1	MUX36S08 MUX508	MUX36D08 MUX507	
Configuration	4:1	TMUX6104	MUX36D04 MUX509	
Ŝ	2:1	TMUX6136	TMUX6119	
	1:1		TMUX6121/22/23	TMUX6111/12/13
		1	2	4
		Nu	mber of Channels	

TMUX Key Differences				
	Precision	Protection	General Purpose	
Ultra-Low Leakage (pA)	1	-	-	
Powered-off Protection	-	1	-	
Overvoltage Protection (up to ±60 V)	-	1	-	
Fail-safe Logic	1	1	1	
Smallest QFN packages	1	1	1	
TI Device Families:	TMUX61xx TMUX72xx	TMUX73xxF TMUX74xxF	MUX50x	

TMUXxxxX Nomenclature

1 st Digit	2 nd Digit	3 rd & 4 th Digit	Final Letter
Supply	Product Family	Channel Count	Key
Range	Generation	& Configuration	Differentiation

SLYP717

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated