TI TECH DAYS

eFuses | All-in-one system power protection for industrial systems

Paul Kundmueller

Power Switches

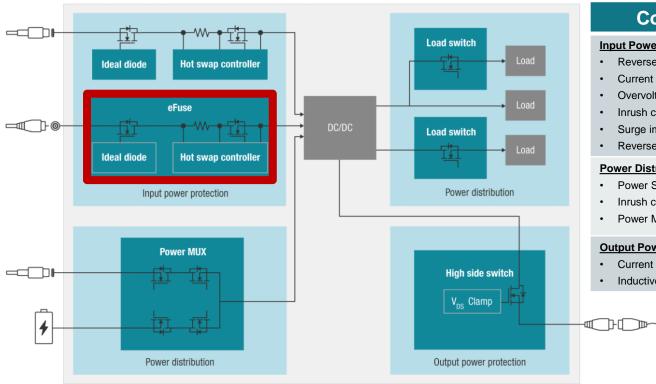
Goal of the presentation

There are four main objectives for this presentation

- Familiarize you with the protection functions of an eFuse and how to use them
- Discuss & compare eFuses to traditional discrete protection
- Introduce new eFuse devices that have recently released
- Share where you can find out more information on eFuses on ti.com and the resource available to you on ti.com

Agenda

- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse


Agenda

Power switches overview

- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse

Power Switches Overview

Common Design Challenges

Input Power Protection

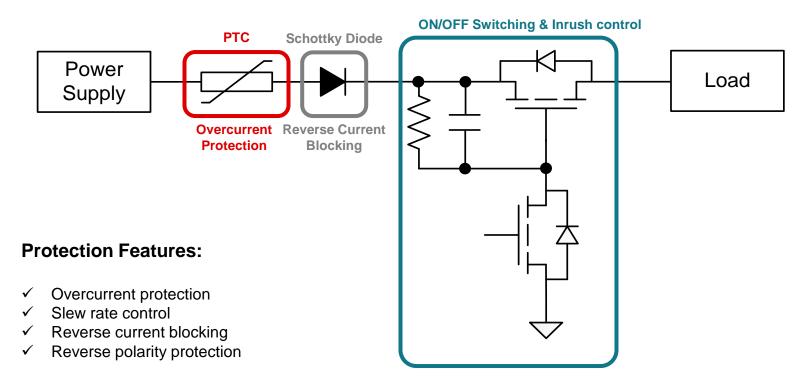
- Reverse current blocking
- Current limiting
- Overvoltage protection
- Inrush current control
- Surge immunity
- **Reverse Polarity Protection**

Power Distribution

- Power Sequencing
- Inrush current control
- Power Muxing/Power Oring

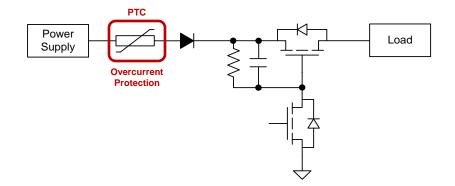
Output Power Protection

- Current limiting
- Inductive load driving



Agenda

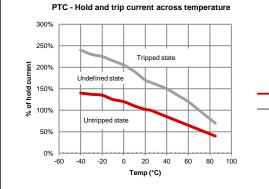
- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse



Discrete Input Protection Circuit

Discrete Input Protection Circuit | Summary

PTCs | Basics


What are PTCs?

• PTCs are positive temperature coefficient (PTC) devices which are used for overcurrent protection.

- During an overcurrent event, a PTC limits current and changes from a low resistance state to a high resistance state.
- When a PTC is in a "tripped state" it reduces the current flow to a low value due to its high resistance state.
- The procedure for resetting the device is to completely remove power and allow the device to reduce its temperature.

PTC – I_{TRIP} & I_{HOLD} vs temperature

= ITRIP

Tripped State: Device will trip and enter a high resistance state

Undefined state: The device can either trip or remain in an untripped state

Untripped state: Device will remain in an untripped state

To ensure the PTC will not trip, I_{HOLD} line should be considered to be the max operating current for the system

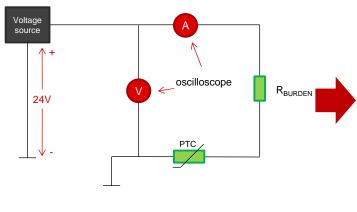
The max I_{TRIP} current should be considered in power dissipation calculations when sizing other system components

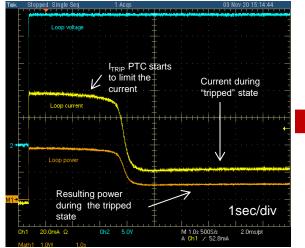
PTC Considerations

Limitation #1: Large variation in hold and trip current across temperatures

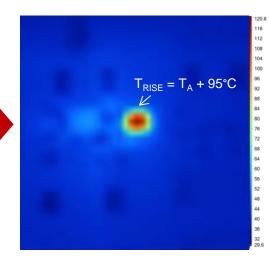
Limitation #2: Slow reaction time to overcurrent events

Limitation #3: High power dissipation during tripped state

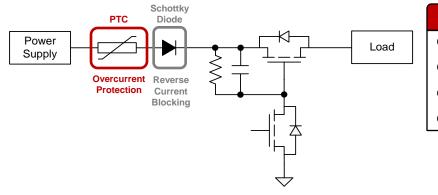

Limitation #4: No fault indication


PTC | Example

Generic PTC		
Specification @ 25C	Value	
ITRIP	100mA	
IHOLD	50mA	
ITRIP response time @ 100mA	2s	
P _{DISS} during tripped state @ 24V	480mW	


Test case: Mis-wire 24V power supply to 4-20mA current loop

Resulting waveform

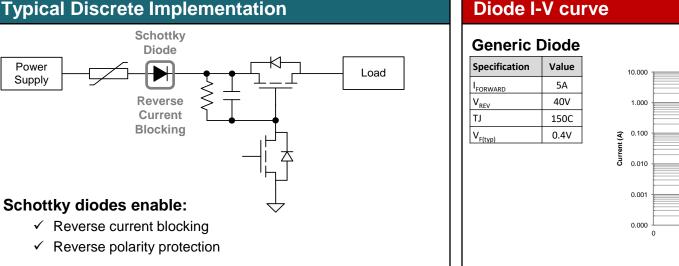

Resulting Thermal Image

No fault reporting available with the PTC

Discrete Input Protection Circuit | Summary

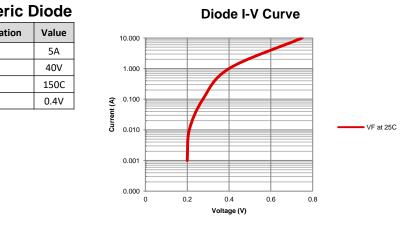
PTC Considerations

Consideration #1: Large variation in hold and trip current across temperatures


Consideration #2: Slow reaction time to overcurrent events

Consideration #3: High power dissipation during tripped state

Consideration #4: No fault indication


Diode in Discrete Implementation

Diode Considerations

- Power Dissipation ٠
 - Diodes dissipate a large amount of power, for example if we have a 2A application the above diode were to be used then it would dissipate _ approximately 0.9W of power
- Size
 - To handle this amount of power, power diode come in large packages such as SOD128 or SMB packages —

Discrete Input Protection Circuit | Summary

PTC Considerations

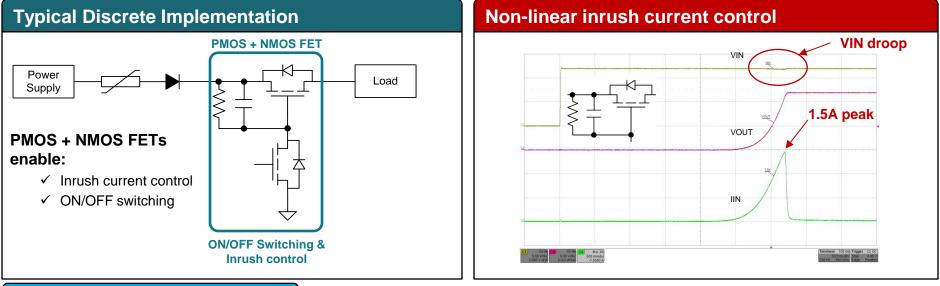
Consideration #1: Large variation in hold and trip current across temperatures

Consideration #2: Slow reaction time to overcurrent events

Consideration #3: High power dissipation during tripped state

Consideration #4: No fault indication

Diode Considerations

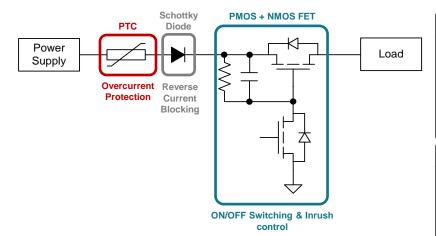

Power Dissipation

 Diodes dissipate a large amount of power, for example if we have a 2A application the diode mentioned previously would dissipate approximately 0.9W of power

Size

 To handle this amount of power, power diode come in large packages such as SOD128 or SMB packages

PMOS & NMOS FET in Discrete Implementation



PMOS & NMOS FET Considerations

- Non-linear inrush current control
 - Due to the RC mechanism, the inrush current during start up of the system will have an exponential rise in current resulting in large peak currents which could collapse the upstream supply
- Size
 - Two components are required to realize the ON/OFF control as well as some additional discrete components to realize the inrush current control

Discrete Input Protection Circuit | Summary

PTC Considerations

Consideration #1: Large variation in hold and trip current across temperatures

Consideration #2: Slow reaction time to overcurrent events

Consideration #3: High power dissipation during tripped state

Consideration #4: No fault indication

Diode Considerations

Power Dissipation

 Diodes dissipate a large amount of power, for example if we have a 2A application the diode mentioned previously would dissipate approximately 0.9W of power

Size

 To handle this amount of power, power diode come in large packages such as SOD128 or SMB packages

PMOS & NMOS FET Considerations

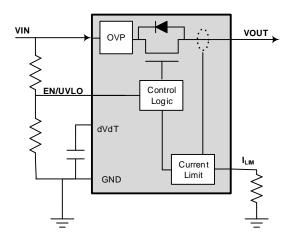
Non-linear inrush current control

 Due to the RC mechanism, the inrush current during start up of the system will have an exponential rise in current resulting in large peak currents which could collapse the upstream supply

Size

 Two components are required to realize the ON/OFF control as well as some additional discrete components to realize the inrush current control

Agenda

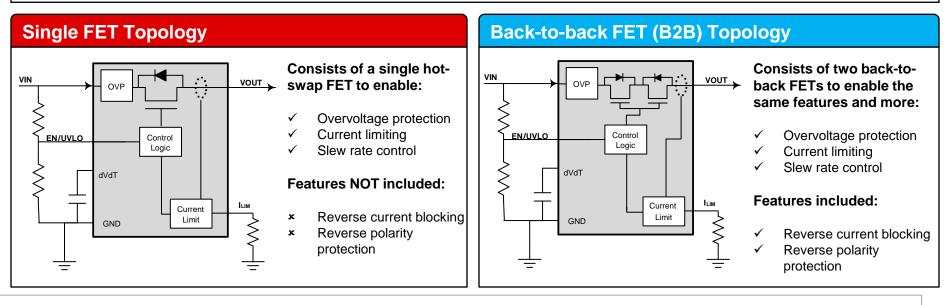

- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse

TI eFuse Overview

eFuses are integrated power protection switches that provide voltage and current protection during fault events.

eFuses are used at the input of a system.

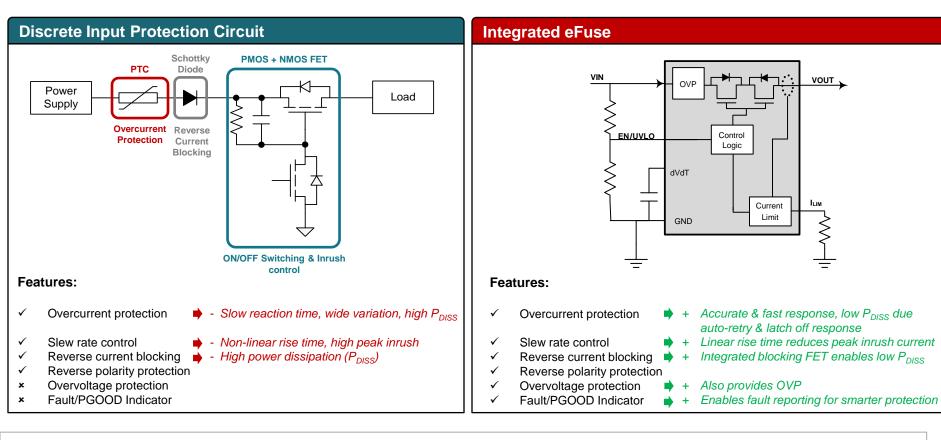
Features & Benefits


Adjustable current limit & Adjustable slew rate control	 More flexibility in system design Enables the same device to be used across different applications
Short circuit protection	 Very fast (<200ns) response time to severe short circuit events
Over & under voltage protection	Programmable OVP & UVLO helps to eliminate supervisory circuits
Reverse current & reverse polarity protection	 Protects against mis-wiring Reserves holdup capacitor charge during power failure (Last Gasp) Enables Power Muxing
Status & power good signals	 PG signal provides sequencing in the application Fault intelligence provided to the micro controller etc Real Time Analog Load current monitor
UL recognized	 All eFuses are UL recognized, this enables faster certification of the end product since a UL device is being used

eFuse Topologies

Basic Topologies

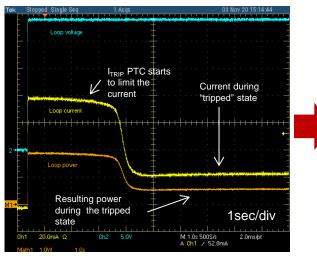
- eFuses utilize a charge pump to drive internal NMOS FET(s) to act as protection switches
- eFuses are available in two different topologies
 - Single FET
 - Back-to Back FET (B2B)



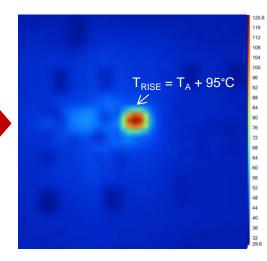
Agenda

- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse

Discrete vs. Integrated | eFuse

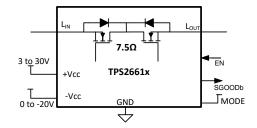

PTC | Example

Generic PTC		
Specification @ 25C	Value	
ITRIP	100mA	
IHOLD	50mA	
ITRIP response time @ 100mA	2s	
P _{DISS} during tripped state @ 24V	480mW	

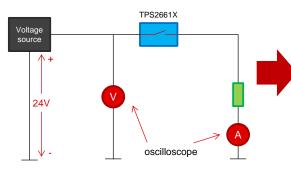

Resulting waveform

Voltage source + 24V -PTC PTC PTC

Test case: Mis-wire 24V power supply to current loop



Resulting Thermal Image



eFuse | Current limiting performance

Test case: Mis-wire 24V power supply to current loop

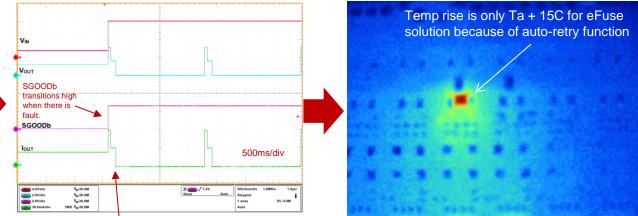


Figure 7-3. Auto Retry with MODE = 180 kΩ

TPS2661 limits the current to the 2x ILIM for 40ms then folds back to 30mA ILIM for 80ms then hits thermal shutdown and retries after a set interval which helps to reduce the heat dissipation inside the module

36.0

35.5

35.0

34.5

34.0

33.5

33.0

32.5

32.0

31.5

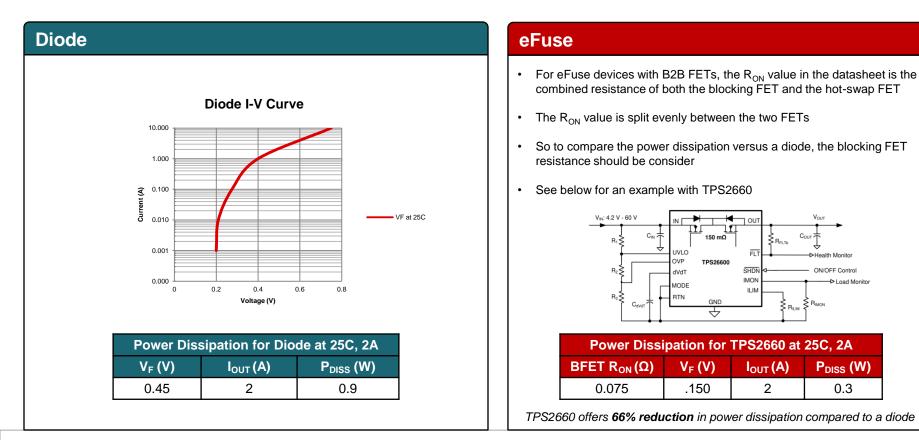
31.0

30.5

30.0 29.5

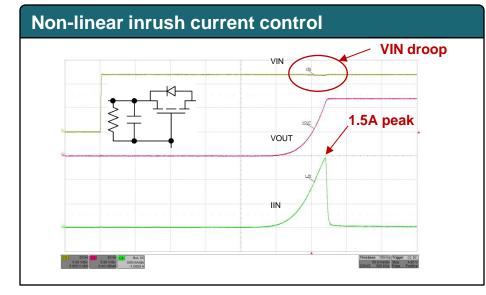
29.0

28.5

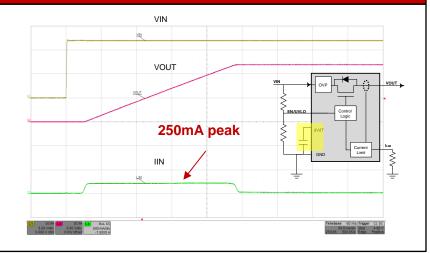

28.0 27.8

eFuse vs. PTC | Summary

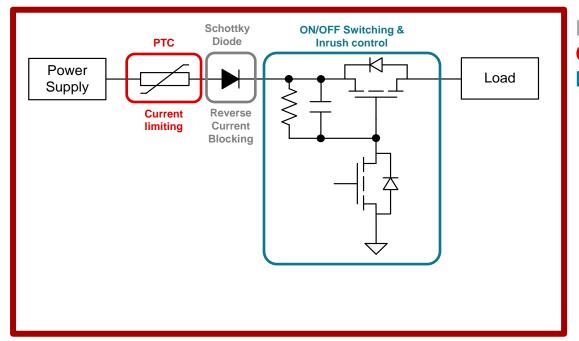
Why is protection needed?	PTC based solution	vs. Integrated protection	
✓ Short-circuit events	Specifications	PTC based protection	TPS2661 Integrated solution
 Mis-wiring during installation Overvoltage transients Why TI? 	Simplified Schematic	I+ RLIM Zeners I- PTC RLIM	H VDD VDD VDD TPS2661x SGOOD RBURDEN I- VDD T COUT ADC RBURDEN
✓ Higher current limit accuracy	I _{LIM} accuracy	+140/-72%	+/-16%
✓ Faster response time to overcurrent	I _{LIM} response time @ 25C	2s	120ms
✓ Compact packaging	Fault Indication	No	Yes, through SGOOD pin
 ✓ Lower heat dissipation during fault ✓ Fault indication 	T _{RISE} during overcurrent fault @ 20°C	T _A + 95°C	T _A + 15°C



eFuse vs. diode | Power dissipation



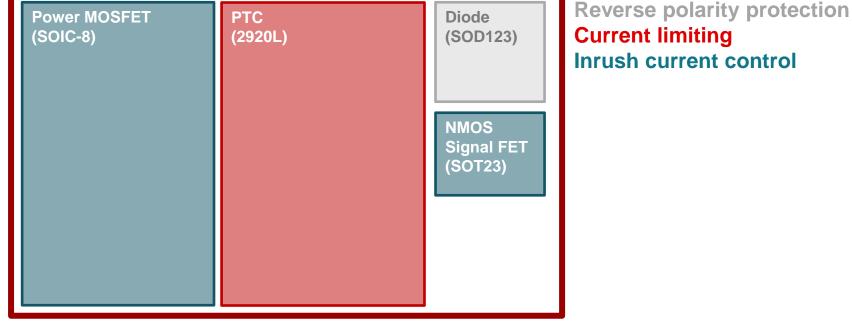
eFuse vs. PFET | Inrush current control


linear inrush current control with eFuse

Size Comparison | Discrete vs. Integrated

How eFuses add features & decrease solution size

Reverse polarity protection Current limiting Inrush current control


Size Comparison | Discrete vs. Integrated

How eFuses add features & decrease solution size

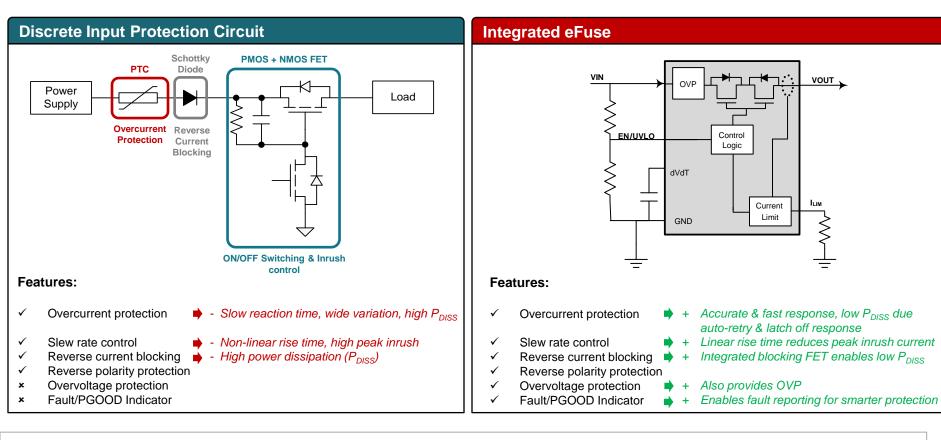
Discrete component for below application example:

- VIN = 24V
- IOUT = 2A

~92mm²

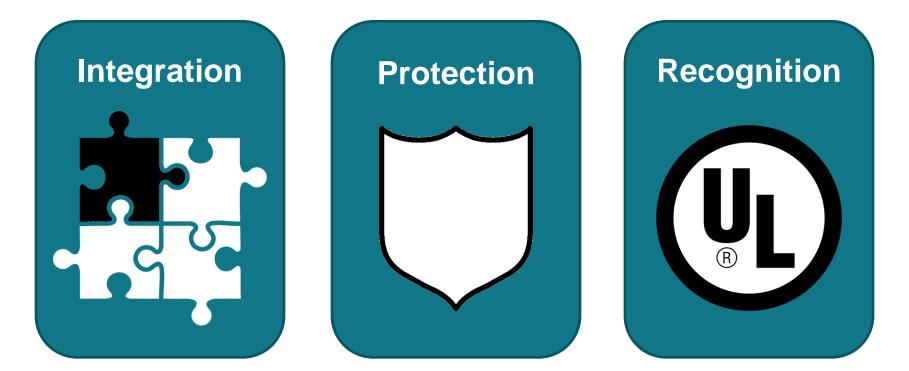
Size Comparison | Discrete vs. Integrated

How eFuses add features & decrease solution size


Discrete component for below application example:

- VIN = 24V
- IOUT = 2A

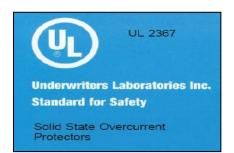
Discrete vs. Integrated | eFuse



Agenda

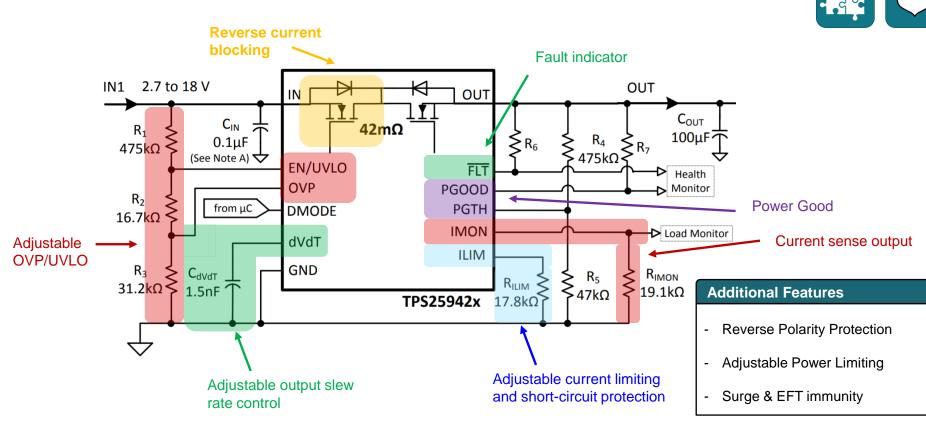
- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse

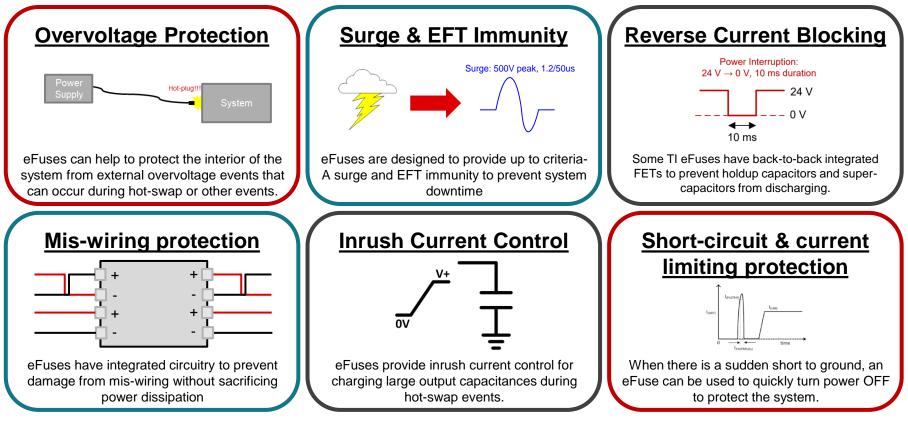
Benefits of TI eFuse

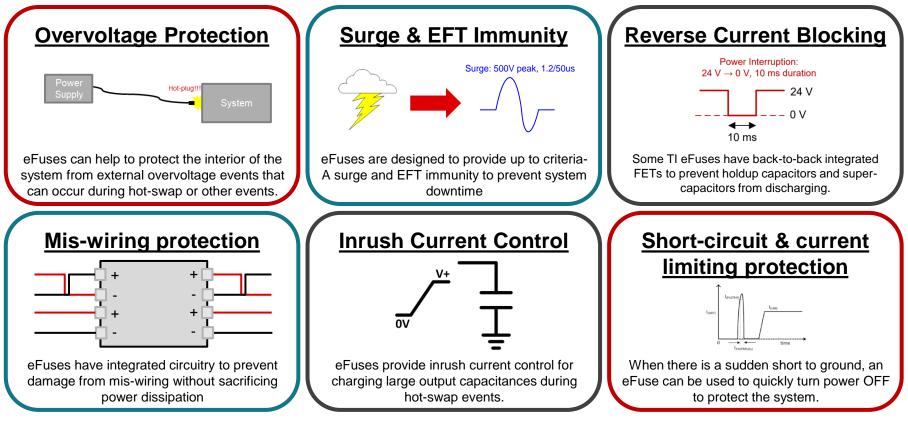


eFuse | UL Recognition

- Tight current limit during overloads & startup
 - Prevents fires, overheating, bus droop, supply stress
- Significantly lower peak currents during short circuit
 - − Often by $5x \rightarrow 20x$
- Significantly faster short circuit shut off
 - Microseconds not 10s of milliseconds
- Most TI eFuses recognized by UL as Protection Devices
 - UL2367 "Solid State Overcurrent Protectors"

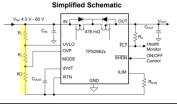


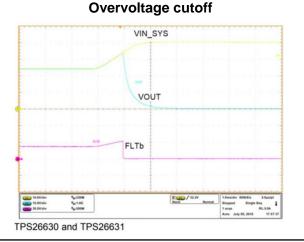

eFuse | Integration & Flexibility



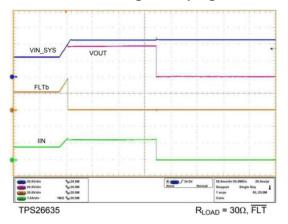
eFuse | Applications & Functions

eFuse | Applications & Functions



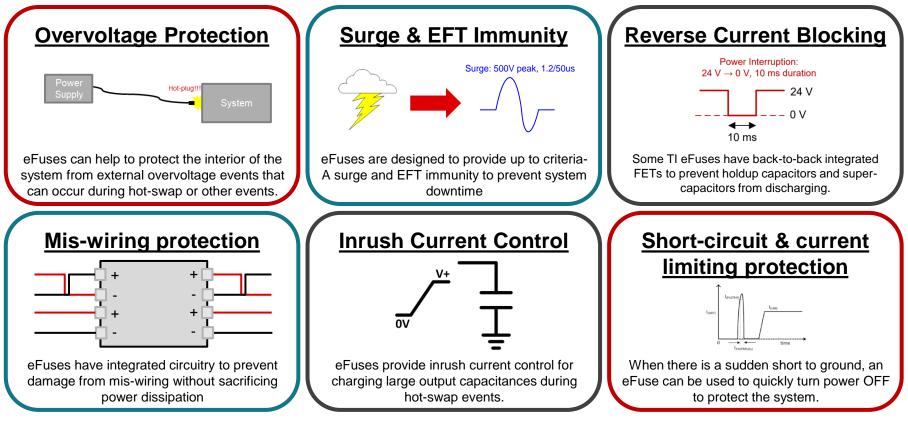

eFuse | Overvoltage Protection

Overvoltage protection schemes


Two Options

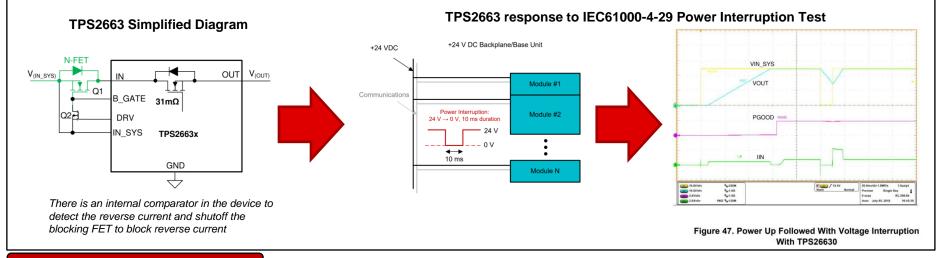
- **Overvoltage cutoff** Immediately turns off the MOSFET to block the overvoltage event
- **Overvoltage clamping** Clamps the output voltage to a certain threshold
- Depending on the device, both options can be adjustable via external resistor ladders or have fixed values

Overvoltage clamping



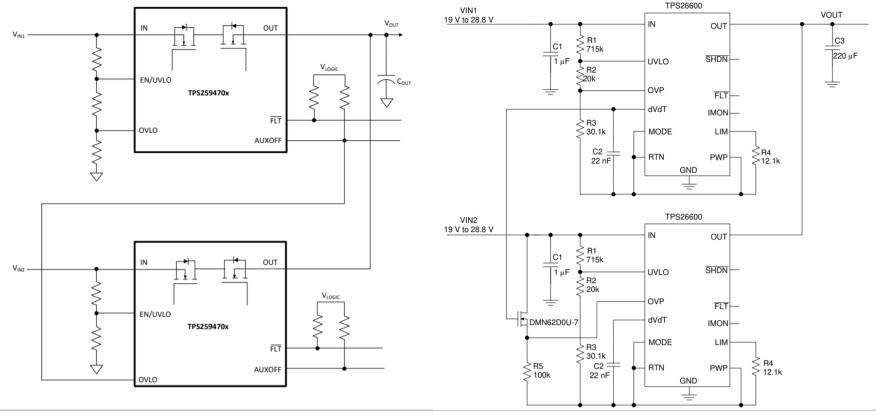
Application Examples

End equipment	Application	
Factory Automation & Motor Drives	 Backplane power protection for hot-swap events and surge events Field power protection for surge events and where long cables are present which can create large inductive spikes 	
Building Automation	 Field power protection for surge events and where long cables are present which can create large inductive spikes 	
Personal Electronics	- Long cables for connecting power to portable electronics	


eFuse | Applications & Functions

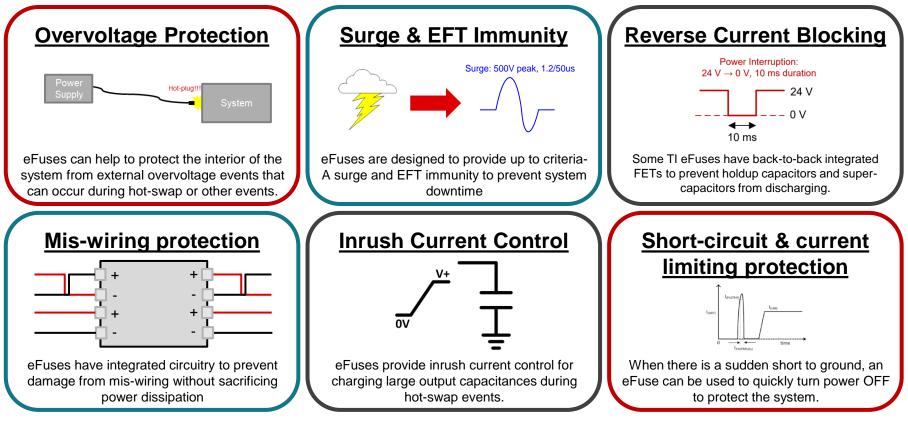
eFuse | Reverse Current Blocking

Reverse current blocking example

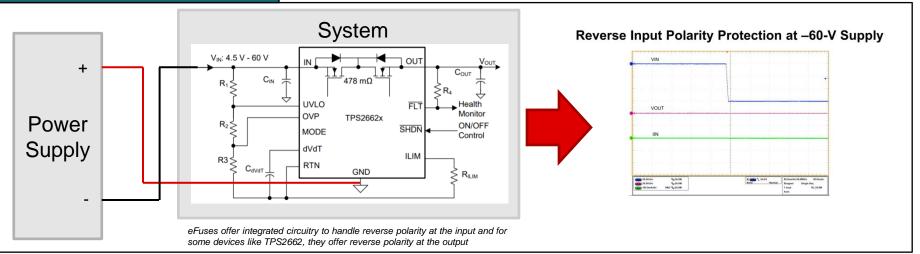


Application Examples

End equipment	Application
Factory Automation & Motor Drives	 IEC61000-4-29 Power Interruption Testing Blocking reverse current to ensure Motor Drive powers down in a safe state
Building Automation	 Backup battery switchover for Fire Alarm Control Panels and Building Security Systems Blocking reverse current to ensure HVAC system powers down in a safe state
Grid Infrastructure	- Last gasp transmission in eMeters and data concentrators

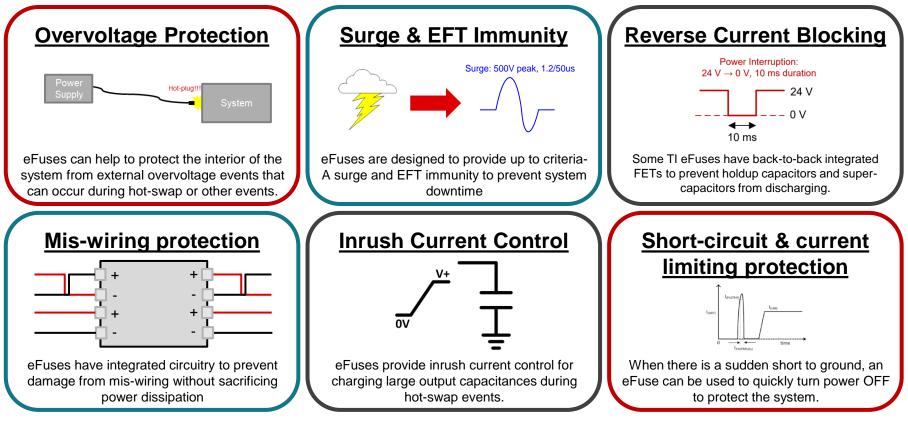


Power Mux examples with eFuses | TPS25947x & TPS2660x


eFuse | Applications & Functions

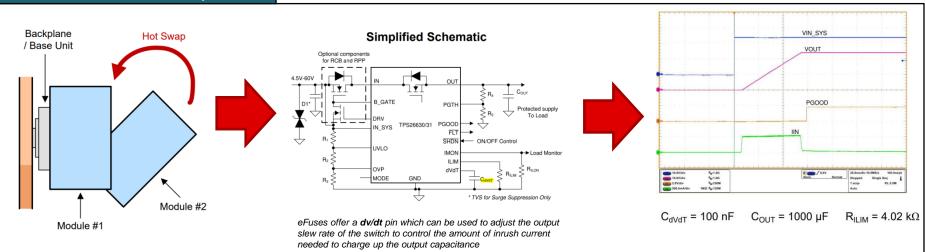
eFuse | Mis-wiring protection

Reverse polarity protection example



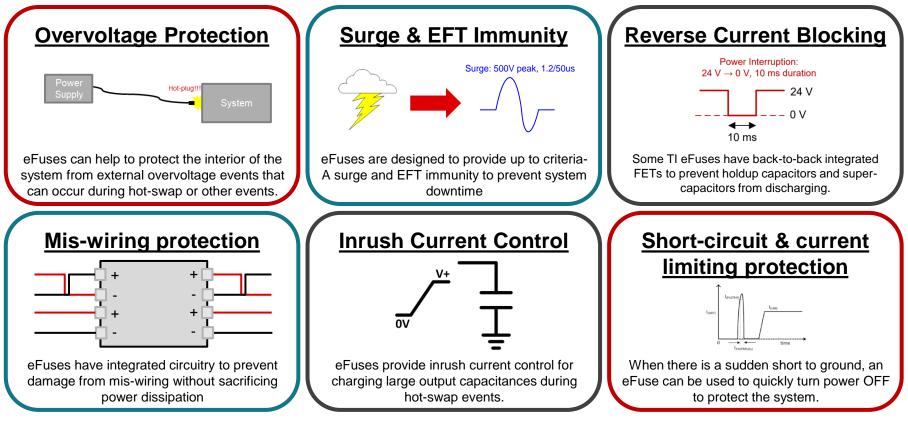
Application Examples

End equipment	Application
Factory Automation & Motor Drives	 Analog Input & Outputs Digital Outputs Field Power Supply Input
Building Automation	 Analog Input & Outputs Sensor Supply Outputs Supply Inputs
Automotive & Industrial Transport	- Reverse battery
Personal Electronics	- Barrel Jack Inputs


eFuse | Applications & Functions

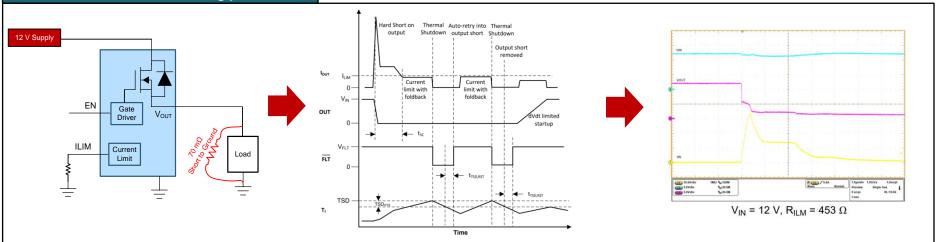
eFuse | Inrush current control

Inrush current control example



					-
An	plio	atio.	n Ex	(0 m	ples
AU		allo			UIES

Application Ex	
End equipment	Application
Factory Automation & Motor Drives	 Backplane power protection where hot-swap events can occur Systems with large holdup capacitances for power failures
Building Automation	 Backplane power protection where hot-swap events can occur Systems with large holdup capacitances for power failures
Grid infrastructure	- Charging up supercapacitors for last gasp transmission


eFuse | Applications & Functions

eFuse | Short-circuit protection & current limiting

Short-circuit & current limiting protection

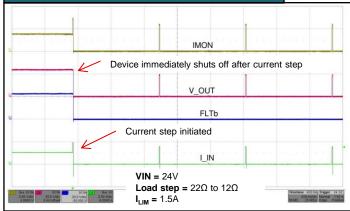
Response & recovery to overcurrent events

There are two types of responses to an overcurrent:

- Circuit breaker
- Current clamping

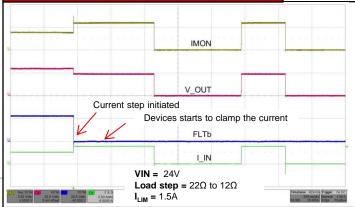
Additionally, there are two types of recoveries from an overcurrent event:

- Auto-retry


Latch-off

Both the response and recovery of overcurrent events will be discussed in more details on the next coming slides

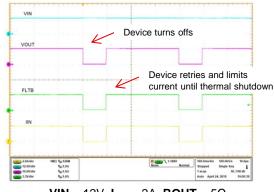
eFuse | Overcurrent response types


Circuit breaker waveform

Circuit breaker

- This function disables the output after a certain current threshold has been reached for a defined blanking time
- The level of the current threshold can be programmed via an external resistor
- The blanking time behavior to disable the eFuse can varies from device to device. Below are couple of options on the blanking time:
 - Immediate shutdown
 - Fixed blanking time
 - Adjustable blanking time

Current clamping waveform

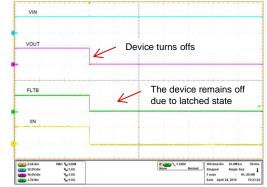


Current Clamping

- This function will clamp the current to a specified level until the device reaches a certain temperature where the device will then shut down to protect itself from overheating
- The level of the current threshold can be programmed via an external resistor

eFuse | Fault recovery types

Auto-retry waveform



 $\textbf{VIN} = 12 \text{V}, \textbf{I}_{\textbf{LIM}} = 2 \text{A}, \textbf{ROUT} = 5 \Omega$

Auto-retry

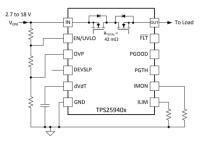
- There could be a need for the system to auto-retry if there is a fault in the system due to an overcurrent
- This helps to reduce the MCU overhead to manage faults on multiple rails
- eFuses enable this auto-retry function by disabling the switch once an overcurrent event has been detected the device will disable itself
- The eFuse device will then re-enable itself after a fixed retry delay timer has expired in the device
- The retry delay time can vary based on the device that is selected. The eFuse datasheet will define the exact timing specification

Latch-off waveform

Latch-off

- In some applications, the need to disable the system to keep it safe after a fault is a requirement or to just reduce the temperature of the system during a fault condition
- eFuses help to do this with their latch-off function. After an overcurrent fault has occurred the device will latch-off and disable the output
- The device will remain in its latched state until either the power is cycled or the enable signal to the device is toggled OFF and ON
- This allows the system to be reset either through software or through a manual push button in the system

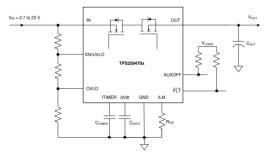
VIN = 12V, **I**_{LIM} = 2A, **ROUT** = 5Ω


Agenda

- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse

TPS25947 | Next Generation & New Features

Current Generation



Package: 3mm x 4mm

Protection Features

- Overvoltage protection
- Reverse current blocking
 Linear slew rate control
- Adjustable PGOOD
- Current monitoring
- Adjustable current limiting

Next Generation

VIN:2.7 - 23V operating, 28V Abs max, \uparrow higher VIN supportIOUT:5.5A max current limit R_{ON} : $28m\Omega$, \clubsuit 33% reduction in R_{ON}

Package: 2mm x 2mm 4 66% reduction in solution size

Provides same protection functions of TPS25940 but is available in a *smaller 2mm x 2mm package* with additional features

Additional features

- Linear Oring control to reduce reverse current
- Programmable overcurrent blanking timer
- Integrated reverse polarity protection

Agenda

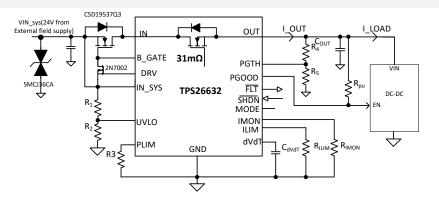
- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & where to find more information and resources on eFuse

TPS2663x | 60V, 31mΩ, 6A Power Limiting eFuse

Features

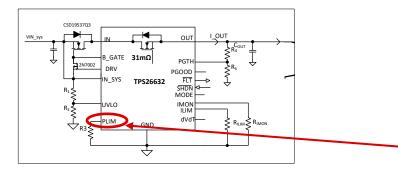
- 4.5V 60V DC operation, -60V standoff
- Integrated 31mΩ MOSFET
- Input Reverse polarity protection and reverse current blocking support with external N-channel FET
- 0.6 to 6 A Accurate current limit (±8%)
- Programmable UVLO; OVP Cut-Off
- Programmable Output Slew Rate using dVdT pin
- Output power limiting scheme (PLIM) TPS26632/TPS26633
- PGOOD output with Programmable detection threshold (PGTH)
- Analog current monitor output (IMON)
- QFN-24, 4mmx4mm Package with 0.5mm pin pitch
- HTSSOP-24, 6.5mmx4.4mm Package with 0.65mm pin pitch
- UL2367 and IEC62638 recognized

Applications

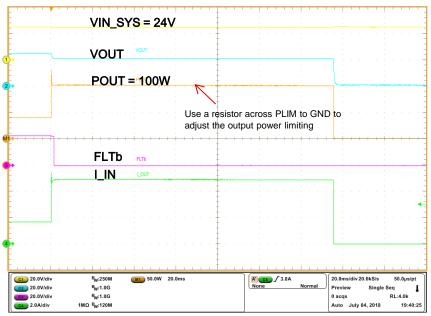

- PLC (I/O Modules, CPU, HMI)
- AC and Servo Drives
- Electronic circuit Breakers
- Industrial Printer controls
- Sensors Hubs

Benefits

- Tolerates V_{BUS} transients
- Lower Power Dissipation
- · Protects against mis-wiring in the field
- Support Reverse Current Protection
- Tight current limit accuracy reduces upstream power supply cost


Production

- Flexible Design Options
- Inrush slew can be tuned to load
- Design flexibility with foldback current limit to pass IEC61010-1
 (Limited Energy circuit)
- QFN package for dense boards
- Standard leaded package



TPS2663 | Output Power Limiting

- There could be a use case where a system needs to remain below a certain power level
- This could be done by limiting the current but this would only be a function of the current and not of the voltage
- However, often times the output current of a system increases as voltage decreases (i.e. downstream buck converters)
- TPSx663 offers output power limiting to ensure the power is limited to certain power level
- This prevents the upstream power supply from collapsing in the event of a fault in a specific module

TPS26632

The power limit of TPSx663 can be adjusted via an external resistor

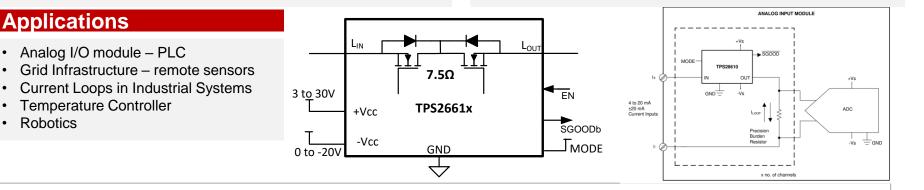
Agenda

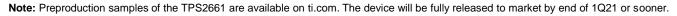
- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - **TPS2661**
- eFuse portfolio & Where to find more information and resources on eFuse

TPS2661x Universal 4-20mA, +/- 20 mA Current loop protector

Features

- Supports bidirectional current loops with 0V to ±50V operating range (with external Vcc)
- Current drawn from loop I_o < 0.1uA (external Vcc powered)
- Integrated 7.5Ω MOSFET
- Fixed I_{I IMIT} = ± 30mA ±15%
- **EN pin control**
- Device status reporting through SGOODb pin
- Protection against input side miswiring
- Thermal shutdown


Applications

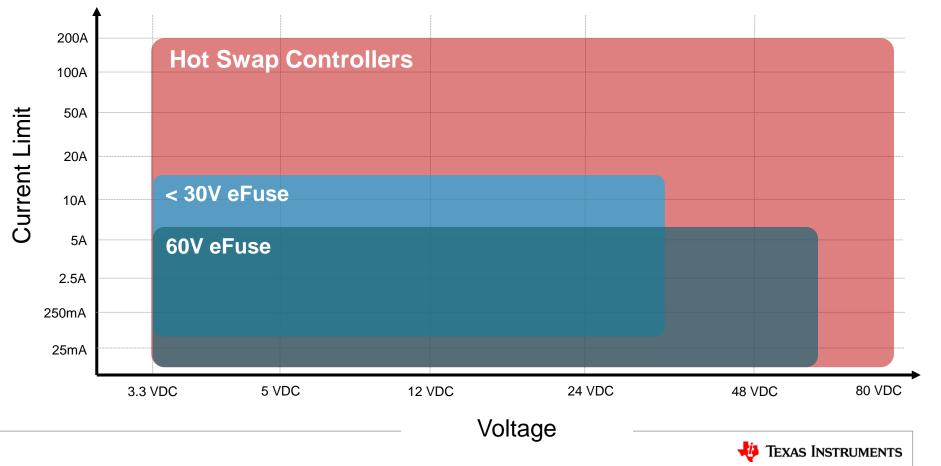

Robotics

• Available in 2.9x1.6mm SOT Package, with 0.65mm pin pitch

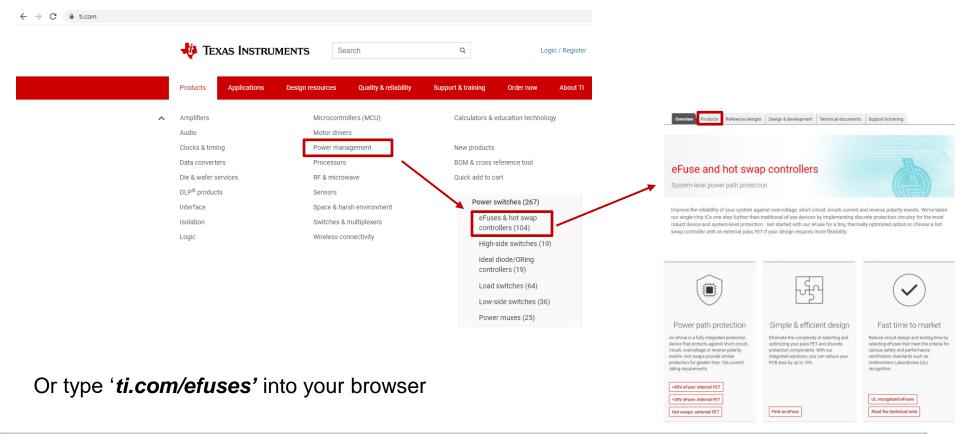
Benefits

- Tolerates V_{BUS} transients
- Ultra Low IQ for lower loss in current Loop
- Higher integration for ease of use •
- Protection during Surge (IEC61000-4-5) with external TVS
- EFT immunity (IEC61000-4-4) ٠
- Protects against mis-wiring in the field
- Variants for Default ON and Default OFF when Vs Supply is absent
- Small footprint for dense boards ٠

TPS2661 | 4-20mA current loop protector


Why is protection needed?	PTC based solution	vs. Integrated protection	
✓ Short-circuit events	Specifications	Specifications PTC based protection	
 ✓ Mis-wiring during installation ✓ Overvoltage transients Why TI? 	Simplified Schematic	I+ RLIM Zeners RBURDEN	H H H H H H H H H H H H H H
 ✓ Higher current limit accuracy 	I _{LIM} accuracy	+140/-72%	+/-16%
✓ Faster response time to overcurrent	I _{LIM} accuracy I _{LIM} response time @ 25C	2s	120ms
✓ Compact packaging	Fault Indication	No	Yes, through SGOOD pin
 ✓ Lower heat dissipation during fault ✓ Fault indication 	T _{RISE} during overcurrent fault @ 20°C	T _A + 95°C	T _A + 15°C
	Solution size (mm ²)	39.52	8.12

Agenda


- Power switches overview
- Analysis of a common discrete protection circuit
- eFuse overview
- eFuse vs. discrete comparison
- Features and applications of an eFuse
- New generation devices available with enhanced protection features
 - TPS25947
 - TPS2663
 - TPS2661
- eFuse portfolio & Where to find more information and resources on eFuse

eFuse & hot-swap controller portfolio | Today

Where on ti.com

UL certificate of compliance documents are available on ti.com

Desc	ription & parametrics	Technical documentation Design & development Yes Ordering & quality Support & training	
★=	Featured		
	Type All	Title Filter title by keyword	Date 11
*	Datasheet	TPS2662x 60-V, 800-mA Industrial eFuse with Integrated Input and Output Reverse Polarity Protection datasheet (Rev. E)	Jul. 09, 2019
	More literature	TPS2662 UL Certificate of Compliance IEC 62368-1	Jan. 17, 2020

Design Calculators for eFuses

To help determine the correct resistor and capacitor values to be used for an eFuse to configure features like overvoltage protection and slew rate control, TI offers a design calculator to ease component selection based on system requirements

These design calculators can be found in the device's product folder in the Design & development section under Design tools & simulation

Design & development

For additional terms or required resources, click any title below to view the detail page where available

CALCULATION TOOL TPS26600 Design Calculator					
SLVC668.ZIP (72 KB)		Download			
	TPS26600 Design C	Calculator Tool			—
	Constants Cells	Input / Select Cells	Calculation Cells		
		Calculated, but can be over-ridden by the user.			
		Note: Once cells are over-ridden, new calculation sheet should be used for the next design			
	Parameter	Description	Value	Units	Tol
	V _{IN} (max)	Maximum System Input Voltage	30.0	V	
	UVset	Undervoltage Lockout Threshold	18.00	V	
	OVset	Over Voltage Cut-Off Threshold	30.00	V	
	Cout	Load Capacitance	220.0	μF	
	T _A (max)	Maximum Ambient Temperature	TA=85C	.С	
	RLstart	Load during start-up (Assumed to be resistive)	48.0	Ω	
	Imax	Maximum continuous load current	1.0	A	
	ILimit	Current Limit, 10% higher than the maximum continuous load current	1.10	A	

Functional Safety | Power Switches

Landing Page for Power Switches

http://www.ti.com/power-management/power-switches/overview.html

Power switches for functional safety

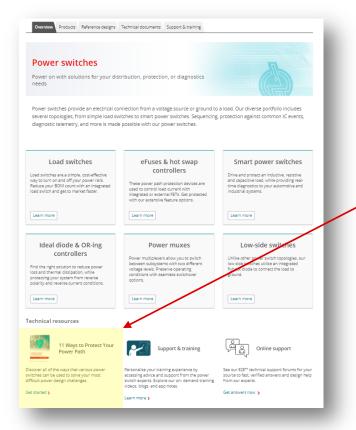
- Trying to meet the rigorous requirements of standards like ISO 26262 or IEC 615082 Our power switches not only comprise critical protection functions for safety-critical applications within ADAS, powertrain, factory automation, robotics and more, they also have functional safety documentation available.
- The device families below have functional-safety capable offerings, meaning you can easily access FIT rate calculations and failure mode distribution (FMD) and/or pin FMA documentation in the technical documents section of each product landing page.
- Navigate to the devices you need in the table below or take advantage
 of the additional resources we've created so you can get your safety
 system tested and into the market quicker.

Individual Functional Safety Documentation available in the Product	
Folder under 'Technical Documentation' tab	

TPS1H100-Q1 S ACTIVE Alert me							
40-V, 100-m Ω , 1-ch automotive smart high-side switch with adjustable current limit							
TP	TASHEET STH100-Q1 40-V, 100-mΩ Single-Channel Smart High-Side Power Switch datasheet (Rev. D) J View now 📓 Download						
Description & parametrics	Description & parametrics Technical documentation Design & development 🏋 Ordering & quality Support & training						
★= Featured	★ = Featured						
Type Title Date ↓↑							
All Filter title by keyword Filter title by							
★ Datasheet TPS1H100-Q1 40-V, 100-mΩ Single-Channel Smart High-Side Power Switch datasheet (Rev. D) Dec. 17, 2019							
Application notes	Application notes TPS1H100-Q1 Functional Safety FIT Rate and Failure Mode Distribution Dec. 16, 2019						
Application notes	Application notes High Accuracy Current Sense of Smart High Side Switches Nov. 01, 2019						

Find functional safety devices

Functional safety-capable rating


High-side switches	0
Ideal diodes & OR-ing controllers	0
eFuses & hot swap controllers	0
Load switches	0

Functional safety design resources

TIDA-01599 Redundant dual-channel safe torque off (STO) reference design for AC inverters and servo drives reference design	TIDA-010049 TUV-assessed digital input reference design for IEC 61508 (SIL-2)	Functional safety systems and high- side switches Learn how to perform an functional safety check through TINA TI simulations on high-side switches and more.
View reference design >	View reference design >	Watch now >

TI.com | 11 Ways to Protect Your Power Path

Purpose

Cookbook for solving power design challenges on system's power path

Location

- Bottom of Power Switches Portal page
- In each power switch product folder under the 'technical documents' tab

How to get there:

- Through Product Tree:
 - Products → Power Management → Power Switches
- Quick link:
 - ti.com/powerswitch

Summary

- eFuse provide small, flexible solutions to protect your system's inputs
- In comparison to traditional discrete circuits, eFuses offer:
 - lower power dissipation
 - higher protection accuracy
 - smaller solution size
 - fault reporting capabilities
- New eFuses have recently been released on ti.com
 - TPS25947, optimized for USB Type C systems and 12V systems
 - TPS2663, tailored to 24V DC bus in industrial systems
 - TPS2661, designed specifically for 4-20mA current loop protection
- To find out more information on eFuses, visit ti.com or type 'ti.com/efuse' in your browser

SLYP739

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated