

LM3263 DSBGA Evaluation Module

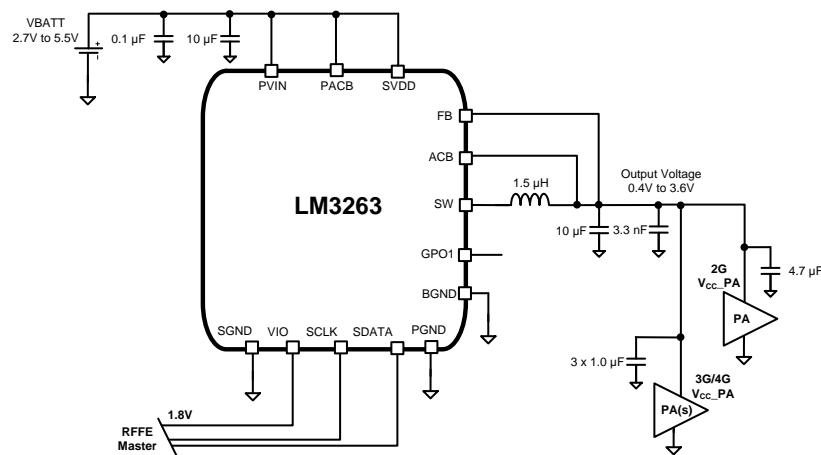
1 Introduction

The LM3263 Evaluation Module is a working demonstration of a step-down DC-DC converter optimized for powering multimode 2G/3G/4G RF power amplifiers (PAs) from a single Lithium-Ion cell.

The LM3263 steps down an input voltage from 2.7V to 5.5V to a dynamically adjustable output voltage of 0.4V to 3.6V. The output voltage is externally programmed through the RFFE Digital Control Interface and is set to ensure efficient operation at all power levels of the RF PA.

This application note contains information about the evaluation module. For more details and electrical characteristics, please refer to the LM3263 datasheet ([SNVS837](#)).

2 Operating Conditions

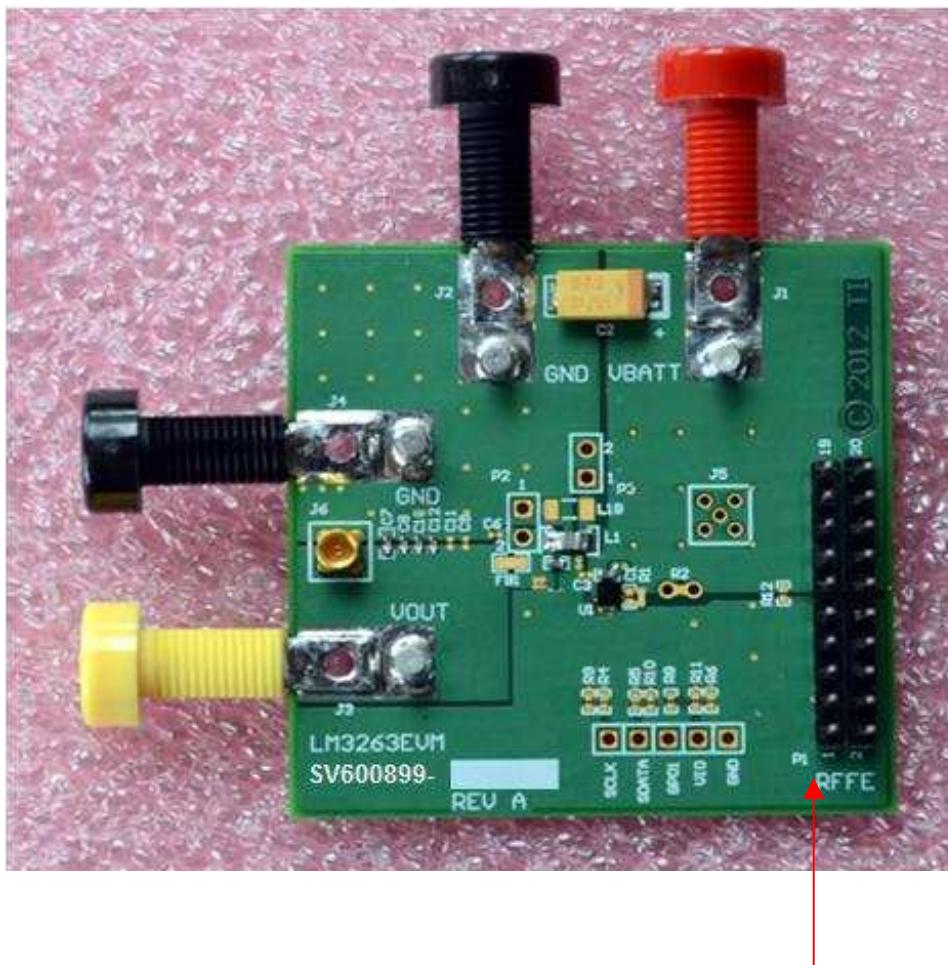

The device will operate under the following conditions:

- V_{IN} range: 2.7V to 5.5V
- V_{OUT} Range: 0.4V to 3.6V
- I_{OUT} range: 0mA to 2.5A

3 Package

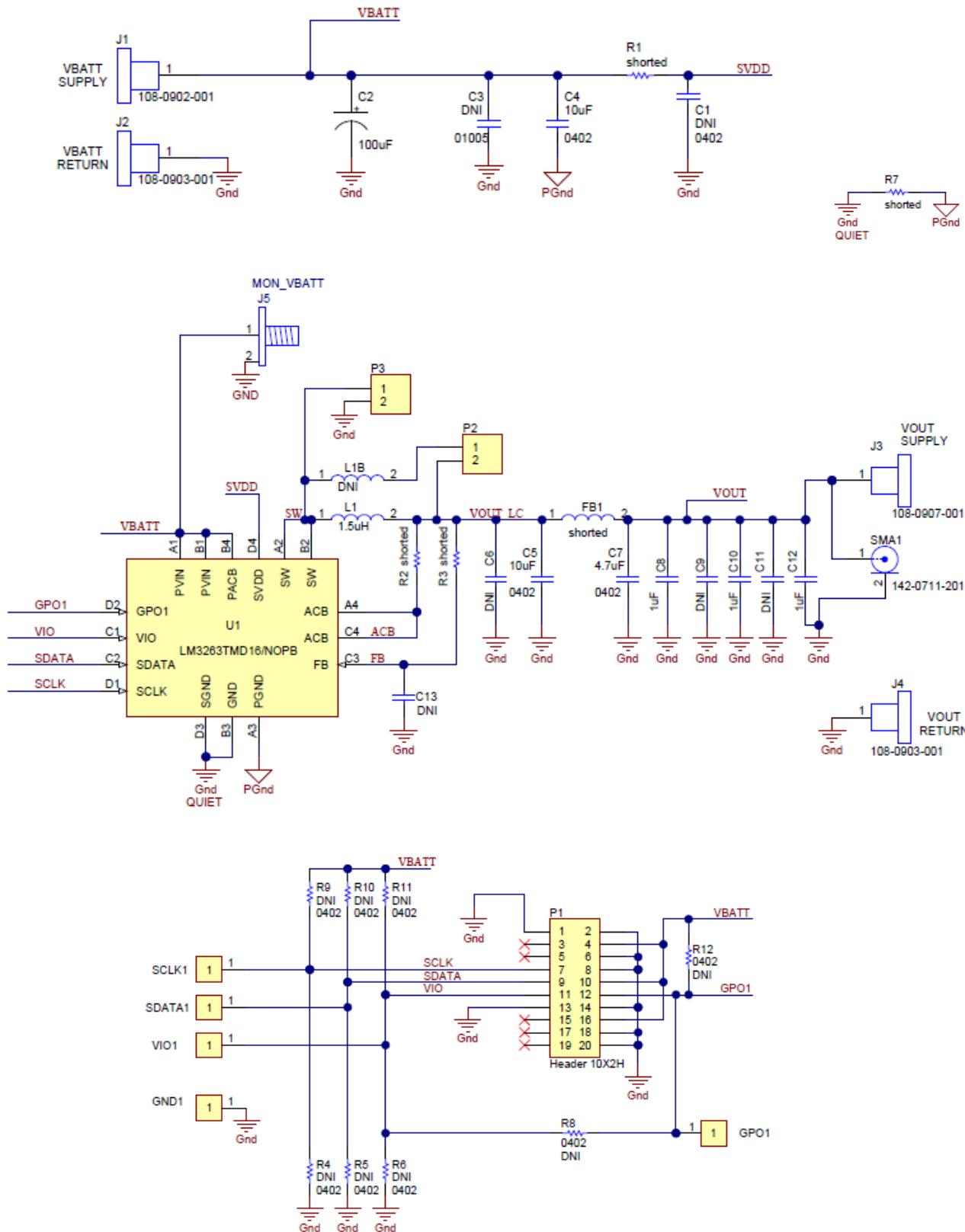
The LM3263 is available in a 16-bump (0.4 mm pitch) lead-free DSBGA package.

4 Typical Application Circuit



All trademarks are the property of their respective owners.

5 Bill of Materials


Designator	Model	Description	Manufacturer
U1	LM3263TM	DC-DC converter	Texas Instruments
C2	T495D107K010A	100 μ F, 10V, 3216 (7343) Low ESR Tantrum Cap	Kemet
C4	CL05A106MP5NUNB	10 μ F, 10V, 0402 (1005) Input Bulk capacitor	Samsung
C5	CL05A106MP5NUNB	10 μ F, 10V, 0402 (1005) Output Bulk capacitor	Samsung
C7	CL05A475MP5NRNB	4.7 μ F, 10V, 0402 (1005) Resemble VCC PA decoupling capacitor	Samsung
C8, C10, C12	C0603X5R0J105M	1.0 μ F, 6.3V, 0201 (0603) Resemble VCC PA decoupling capacitor	TDK
L1	DFE201610C-1R5N	1.5uH, 2.0 x 1.6 x 1.0 mm, Inductor	Toko

6 Evaluation Module Photo

20 pin Connector (VIO, SCLK, SDATA,
GND connect to LM8335EVM.)

7 Evaluation Module Schematic

Note: R4, R5, R6, R9, R10, R11, R12 are internal use only.

8 Connecting to the Module

1. Connect VBATT to the RED (+) and BLACK (GND) banana connector pins.
2. Connect the load (resistor or PA) to the YELLOW (+) and BLACK (GND) banana connector pins.
3. Connect PC USB Power to the LM8335EVM using a micro-USB Type "B" cable.
4. Connect the RFFE interface ribbon cable from LM8335EVM to the LM3263 Evaluation Module "20-pin Connector" and align VIO, SDATA, SCLK, and GND.
5. Refer to the [Section 11](#) for information on turning on VIO and other RFFE related questions.

8.1 Module Layers

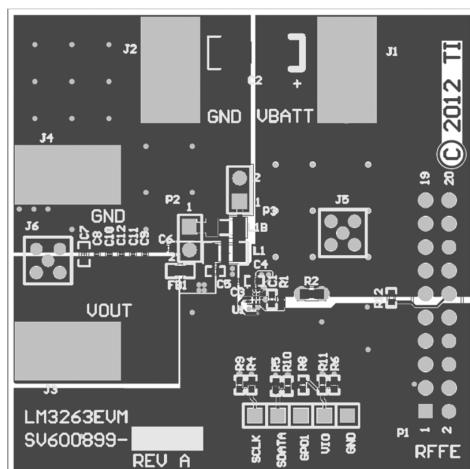


Figure 1. Top Layer

Figure 2. Mid Layer 1

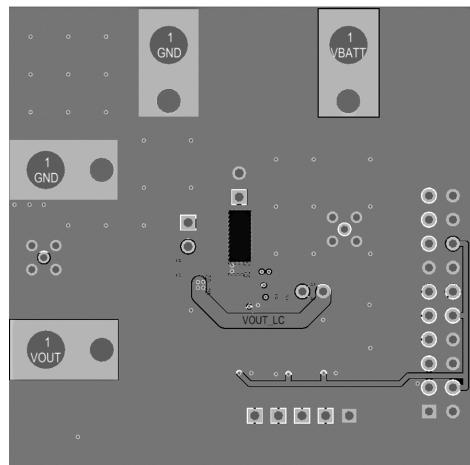


Figure 3. Mid Layer 2

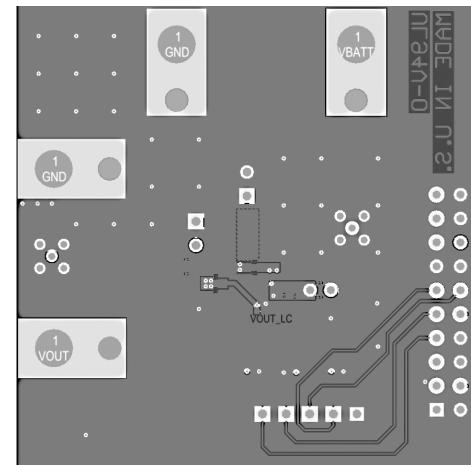
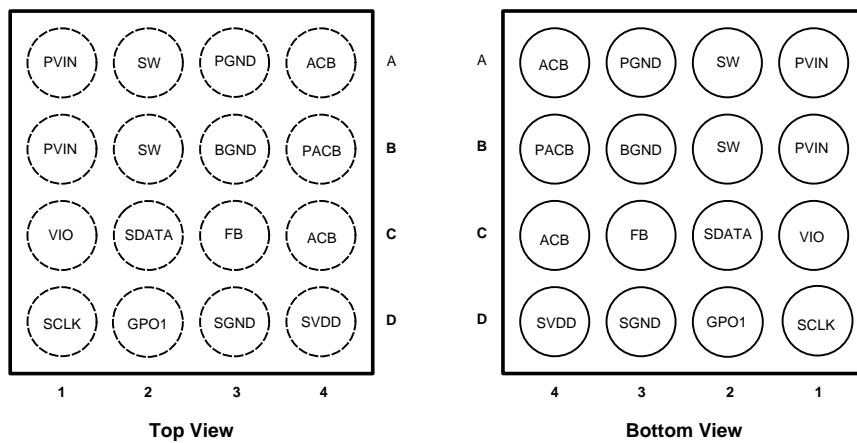



Figure 4. Bottom Layer

9 Connection Diagram

Figure 5. Connection Diagram

10 Pin Descriptions

Pin #	Name	Description
A1	PVIN	Power Supply Voltage Input to the internal PFET switch.
B1		
C1	VIO	VIO functions as the RFFE interface reference voltage. VIO also functions as reset and enable input to the LM3263. Typically connected to voltage regulator controlled by RF or Baseband IC.
D1	SCLK	Digital control interface RFFE Bus clock input. Typically connected to RFFE master on RF or Baseband IC. SCLK must be held low when VIO is not applied.
A2	SW	Switching Node connection to the internal PFET switch and NFET synchronous rectifier.
B2		
C2	SDATA	Digital control interface RFFE Bus data input/output. Typically connected to RFFE master on RF or Baseband IC. SDATA must be held low when VIO is not applied.
D2	GPO1	General Purpose Output. Also used to reconfigure USID.
A3	PGND	Power Ground to the internal NFET switch.
B3	BGND	ACB, Analog Bypass Ground and Digital Ground.
C3	FB	Feedback Analog Input. Connect to the output at the output filter capacitor.
D3	SGND	Signal Analog Ground (Low Current).
A4	ACB	ACB and Analog Bypass output. Connect to the output at the output filter capacitor.
C4		
B4	PACB	ACB Power Supply Input.
D4	SVDD	Analog Power Supply Voltage.

11 Appendix: LM3263 GUI Software User Guide

11.1 Introduction

The LM3263 software interface facilitates RFFE serial communication between a PC and the LM3263 via the LM8335 evaluation module (EVM). This version of the software is provided for initial evaluation of the LM3263.

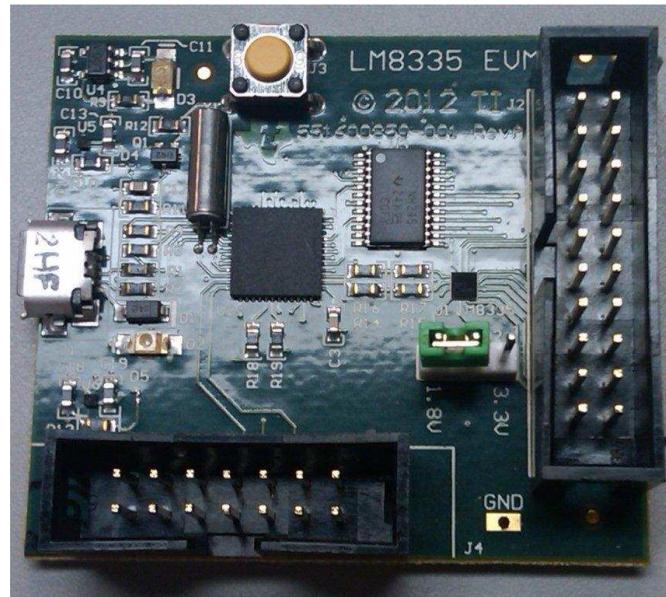
11.2 General Information

“The RF Front-End Control Interface (later referred to as RFFE) was developed to offer a common and widespread method for controlling RF front-end devices. There are a variety of front-end devices, including Power Amplifiers (PA), Low-Noise Amplifiers (LNA), filters, switches, power management modules, antenna tuners and sensors. These functions may be located either in separate devices or integrated into a single device, depending on the application.” -MIPI® Alliance Specification for RFFE

11.3 Items Needed

1. LM3263 Evaluation Module;
2. LM8335 Evaluation Module (EVM, including Micro USB "B" cable - order from www.ti.com);
3. LM3263EVM-to-LM8335EVM Ribbon Cable; and
4. LM3263 GUI program (download from www.ti.com).

11.4 Software Installation

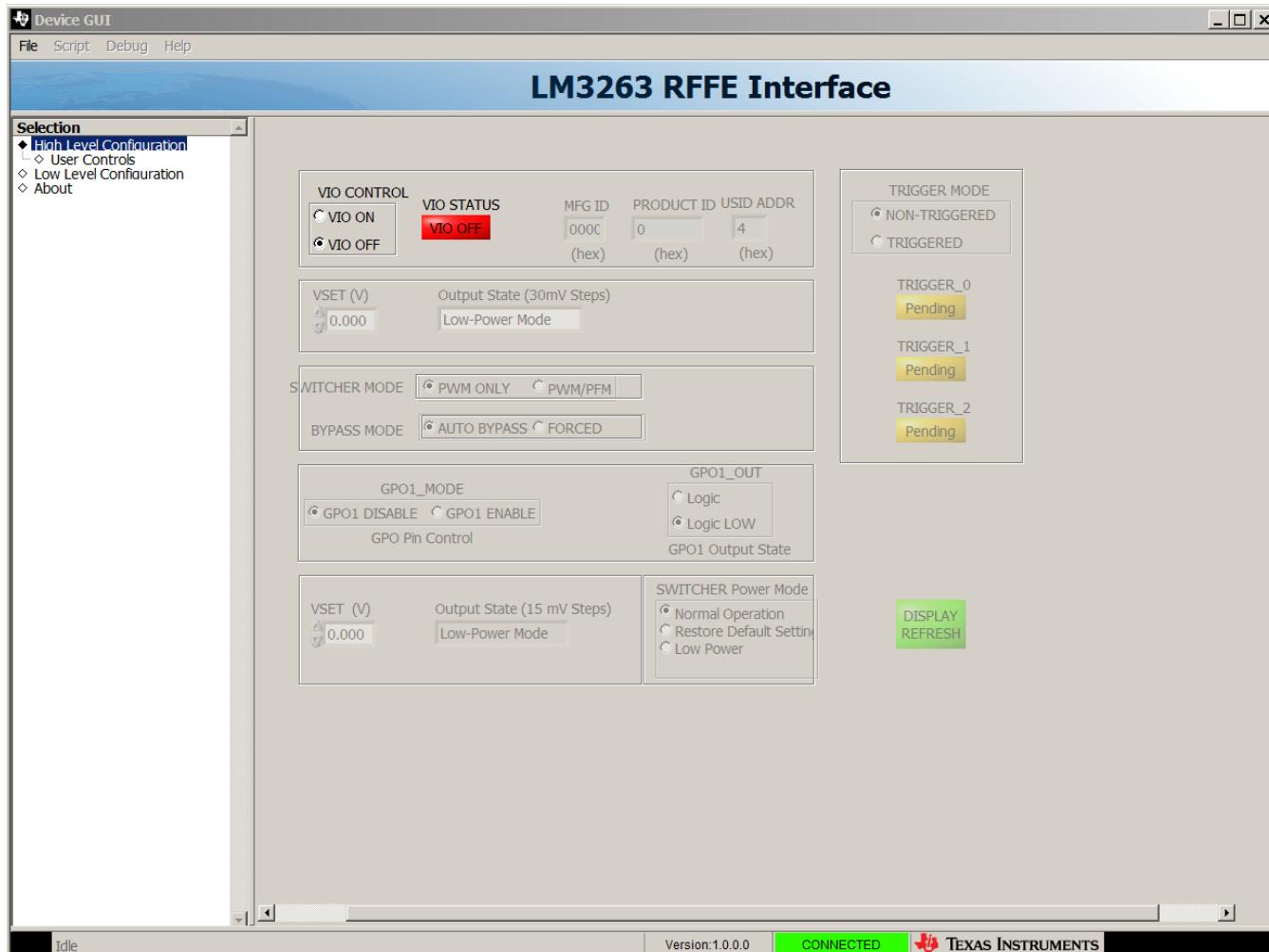

NOTE: 1. Version 4.0 or later Microsoft .NET Framework software is required and must be downloaded from Microsoft.

2. 2010 (32-bit standard RTE) or later version of NI LabVIEW Run-Time Engine is required and must be downloaded from the Texas Instruments website.

1. Execute setup.exe onto a computer.
2. “TI\LM3263 RFFE Interface” directory will be created under C:\Program Files. Click “Next”.
3. Click the radio button “I accept the License Agreement”, and click “Next”.
4. Then click “Next”.
5. Then click “Finish”. Installation Completed.

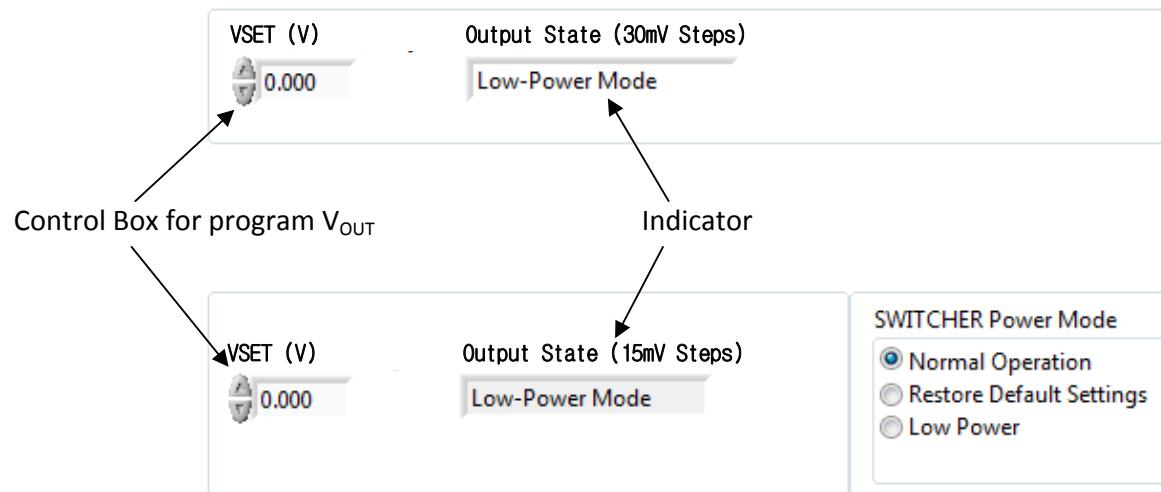
11.5 Startup Sequence

Micro USB-B connector


Ribbon cable connector from LM3263EVM to LM8335EVM; Connector showing the following PINS:

- GND (Pin #1, Pin #8)
- SCLK (Pin #7)
- SDATA (Pin #9)
- VIO (Pin #11)

Figure 6. LM8335EVM


1. Connect the USB interface board (LM8335EVM) to a PC using the USB cable. VDDIO jumper is connected VDDIO to 1.8V. Two LEDs (D2, D3) turn on.
2. Connect the LM3263 evaluation module to the LM8335EVM using the provided ribbon cable.

3. Run the “LM3263 RFFE Interface” in the Start/All Programs menu. All radio buttons are grayed out except “VIO CONTROL”.

Figure 7. LM3263 GUI Initial Screen

4. Apply power supply voltage to the LM3263 VBATT within the input voltage range of 2.7V to 5.5V.
5. Click “VIO ON”. “VIO STATUS” turns to “VIO ON” in green. And all control boxes and radio buttons are enabled.
6. The default “TRIGGER MODE” in this GUI is “Non-Triggered” to make evaluation simpler, as opposed to the device default mode, which is “Triggered”.
7. To set the expected output voltage, click the up/down arrow or type in the desired output voltage at the control box of the “VSET (V)”.

Figure 8. Programming Output Voltage Windows

NOTE: The other controls in the GUI are dependent on the register map as seen in [Section 12](#).

12 Programmable Registers

Addr	Register Contents					
00h	REGISTER _0					
Bits	Function	Default	Trigger ⁽¹⁾	R/W	Description	
7	RSVD	0	N/A	N/A	Reserved	
6:0	VSET[7:1]	00h	Yes	R/W	Register 00h interacts with Register 03h. DC-DC converter mode and output voltage control bits 00h : Low-Power Mode 01h : Reserved 02h : Standby Mode 03h to 7Eh : Active Mode, Setting Output Voltage is enabled. Output voltage can be set 0.4V to 3.6V by 0Dh to 78h with 30 mV steps 7Fh : Forced-Bypass Mode. VSET[7:1] (dec) = Desired V_{OUT} / 0.03 (round up decimals), then converts a decimal number to hexadecimal.	
01h	SMPS_CFG					
Bits	Function	Default	Trigger ⁽¹⁾	R/W	Description	
7:6	RSVD	0	N/A	N/A	Reserved	
5	MODE	0	Yes	R/W	Switching mode select bit 0: Forced-PWM Mode (PWM only) 1: Auto-PFM Mode (PFM/PWM)	
4	BYPS	0	Yes	R/W	Forced bypass bit 0: Auto-Bypass Mode 1: Forced-Bypass Mode	
3:0	RSVD	0h	N/A	N/A	Reserved	
02h	GPO_CTRL					
Bits	Function	Default	Trigger ⁽¹⁾	R/W	Description	
7	GPO1_OUT	0	Yes	R/W	GPO1 output control 0: Low state 1: High state	
6	GPO1_MODE	0	Yes	R/W	GPO1 Mode Selection 0 : General Purpose Output disabled 1 : General Purpose output driven by GPO1_OUT.	
5:0	RSVD	00h	N/A	N/A	Reserved	
03h	VSET_CTRL					
Bits	Function	Default	Trigger ⁽¹⁾	R/W	Description	
7:0	VSET[7:0]	00h	Yes	R/W	DC-DC converter mode and output voltage fine control bits 00h-01h : Low-Power Mode 02h-03h : Reserved 04h-05h : Standby Mode 06h to FDh : Active Mode, Setting Output Voltage is enabled. Output voltage can be set 0.4V to 3.6V by 1Bh to F0h with 15 mV steps FEh-FFh : Forced Bypass Mode. VSET[7:0] (dec) = Desired V_{OUT} / 0.015 (round up decimals), then converts a decimal number to hexadecimal.	

⁽¹⁾ Trigger=Yes: When all PM_TRIG.TRIG_MSK_* bits are set '1', REGISTER_0 will be written immediately during a write operation. If any PM_TRIG.TRIG_MSK_* bits are cleared ('0'), REGISTER_0 will not be updated to the new value after a write operation only after an unmasked PM_TRIG.TRIG_* bit is subsequently written to a '1'.

Addr	Register Contents					
1Ah	RFFE_STATUS					
Bits	Function	Default	Trigger ⁽²⁾	R/W	Description	
7	SWRESET	0	No		Software Reset. A write to '1' will cause all registers except for USID to be reset. Will always read back '0'.	
6	CMD_FRAME_PERR	0	No		Set if parity error detected in command frame. Cleared on read. Write will have no effect on this bit.	
5	CMD_LENGTH_ERR	0	No		Error when transaction interrupted by new SSC. Cleared on read. Write will have no effect on this bit.	
4	RSVD	0	No		Reserved	
3	DATA_FRAME_PERR	0	No		Write data frame parity error. Cleared on read. Write will have no effect on this bit.	
2	RD_UNUSED_REG	0	No		Read command to an invalid register. Cleared on read. Write will have no effect on this bit.	
1	WR_UNUSED_REG	0	No		Write command to an invalid register. Cleared on read. Write will have no effect on this bit.	
0	BID_GID_ERR	0	No		Read command with a broadcast ID or Group ID. Cleared on read. Write will have no effect on this bit.	
1Bh	GROUP_ID					
Bits	Function	Default	Trigger ⁽²⁾	R/W	Description	
7:4	RSVD	0h	N/A	N/A	Reserved	
3:0	GSID	0h	No		Group Slave ID.	
1Ch	PM_TRIG					
Bits	Function	Default	Trigger ⁽²⁾	R/W	Description	
7:6	PWR_MODE	10b	No	R/W	Power Mode Bits. 00b = Active Mode 01b = Restore default settings 10b = Low-Power Mode 11b = Reserved	
5	TRIG_MSK_2	0	No		Mask bit for Trigger 2. Broadcast write to this bit is ignored.	
4	TRIG_MSK_1	0	No		Mask bit for Trigger 1. Broadcast write to this bit is ignored.	
3	TRIG_MSK_0	0	No		Mask bit for Trigger 0. Broadcast write to this bit is ignored.	
2	TRIG_2	0	No		Write to a '1' loads trigger registers with last written value TRIG_MSK_2 is cleared. Write to '0' has no effect.	
1	TRIG_1	0	No		Write to a '1' loads trigger registers with last written value TRIG_MSK_1 is cleared. Write to '0' has no effect.	
0	TRIG_0	0	No		Write to a '1' loads trigger registers with last written value TRIG_MSK_0 is cleared. Write to '0' has no effect.	

⁽²⁾ Trigger=Yes: When all PM_TRIG.TRIG_MSK_* bits are set '1', REGISTER_0 will be written immediately during a write operation. If any PM_TRIG.TRIG_MSK_* bits are cleared ('0'), REGISTER_0 will not be updated to the new value after a write operation only after an unmasked PM_TRIG.TRIG_* bit is subsequently written to a '1'.

Addr	Register Contents					
1Dh	PRODUCT ID					
	Bits	Function	Default	Trigger ⁽³⁾	R/W	Description
	7:0	PRODUCT_ID	82h	No	R	Product Identification Bits. Product ID default value cannot be overwritten.
1Eh	MANUFACTURER ID, LSB					
	Bits	Function	Default	Trigger ⁽³⁾	R/W	Description
	7:0	MANID[7:0]	02h	No	R	Manufacturer Identification, bits 7:0. Manufacturer ID default value cannot be overwritten.
1Fh	MANUFACTURER ID, MSB					
	Bits	Function	Default	Trigger ⁽³⁾	R/W	Description
	7:6	RSVD	00b	N/A	N/A	Reserved
	5:4	MANID[5:4]	01b	No	R	Manufacturer Identification, bits 5:4. Manufacturer ID default value cannot be overwritten.
	3:0	USID	010xb	No		Unique Slave Identifier. Bit 0 (x) of USID is tied to the state of the GPO1 pin. 0100b: GPO1= Low state or floating 0101b: GPO1= High state

⁽³⁾ Trigger=Yes: When all PM_TRIG.TRIG_MSK_* bits are set '1', REGISTER_0 will be written immediately during a write operation. If any PM_TRIG.TRIG_MSK_* bits are cleared ('0'), REGISTER_0 will not be updated to the new value after a write operation only after an unmasked PM_TRIG.TRIG_* bit is subsequently written to a '1'.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025