
Application Report
SPRAA74A – December 2004

1

Creating Device Initialization GEL Files
Alan Campbell, Ki-Soo Lee, Dan Rinkes, Darian Sale SDS Applications Engineering

ABSTRACT

Startup GEL files are used to automate device initialization when Code Composer Studio
starts up. As devices become more complex, the startup GEL files also increase in
complexity, making it more difficult to write proper startup GEL files. This application note
describes how Code Composer Studio uses the startup GEL files and provides guidelines
on how to properly write such files.

This application note focuses on CCStudio versions 2.40 and greater.

Contents
1 Introduction .. 2
2 Code Composer Studio Startup Process.. 2
3 Using the GEL Callback functions .. 2

3.1 StartUp() Function .. 2
3.2 OnTargetConnect() Function .. 4
3.3 OnPreFileLoaded() Function... 6
3.4 OnFileLoaded() Function .. 6
3.5 OnReset() Function .. 6
3.6 OnRestart() Function .. 7
3.7 OnHalt() Function ... 7

4 Memory Mapping.. 8
4.1 GEL_MapAdd() Function .. 8
4.2 GEL_MapAddStr() Function.. 8
4.3 GEL_MapDelete() Function .. 8
4.4 GEL_MapOn() and GEL_MapOff() Functions ... 9
4.5 GEL_MapReset() Function ... 9

5 Avoiding GEL Initialization Entirely for Production Applications... 9
6 References.. 9
Appendix A: CCStudio Version Support Matrix... 10
Appendix B: GEL Guidelines .. 11

 Tables
Table 1. CCStudio Version Support Matrix .. 10

SPRAA74A

2 Creating Device Initialization GEL Files

1 Introduction
The General Extension Language (GEL) can be used to configure the Code Composer Studio
development environment and to initialize the target CPU. GEL is an interpreted language, and
its syntax is similar to that of C. A rich set of built-in GEL functions is available, or you can create
your own GEL functions.
This document describes ways to create well-written GEL startup files. For a summary of
recommendations, see Appendix B: GEL Guidelines.

2 Code Composer Studio Startup Process
In the CCStudio setup utility, you can associate a GEL startup file with each processor in your
system configuration. When CCStudio is launched, startup GEL files defined in the CCStudio
setup utility are loaded into the host PC's memory and the "StartUp()" function is executed (if
one is defined).

In older versions of CCStudio (v2.3 or earlier), both host and target initialization steps were often
performed in the StartUp() function to automate the initialization process. However in versions of
CCStudio that support Connect/Disconnect (see Appendix A: CCStudio Version Support Matrix),
such GEL files may not work properly since CCStudio starts up disconnected from the target.
This causes actions to fail in StartUp() if they attempt to access the target. A new built-in GEL
callback function called OnTargetConnect() has been provided to perform target initialization to
put the target in a good state. CCStudio calls this function after a connection with the target has
been established. Any initialization steps that do not access the target may remain in StartUp().

NOTE: If CCStudio v2.4 and v3.1+ are configured to use a simulator, OnTargetConnect() is
called right after StartUp() since CCStudio is always "connected" to the simulator target.
OnTargetConnect() is not automatically called in CCStudio v3.0 when using a simulator. See
Appendix B: GEL Guidelines for more details.

3 Using the GEL Callback functions
Proper use of the built-in GEL callback functions is essential for writing proper startup GEL files.
While StartUp() and OnTargetConnect() are the most commonly defined callback functions, it is
important to be aware of the functionality of all the callback functions described in the following
subsections.

3.1 StartUp() Function

The StartUp() GEL function is called by CCStudio whenever the GEL file containing it is loaded.
Since startup GEL files are loaded upon CCStudio startup, the StartUp() function is run at that
time. Versions of CCStudio before 2.40 performed both host and target initialization here. If you
are using a version of CCStudio that supports Connect/Disconnect, no actions that attempt to
access the target can be placed here since CCStudio starts disconnected from the target. Place
target initialization actions in the OnTargetConnect() callback described in Section 3.2.

Behavior recommended and not recommended for the StartUp() function is as follows:

SPRAA74A

 Creating Device Initialization GEL Files 3

Recommended:
• Setting up basic CCStudio memory map (that does not need target access to accomplish).

See Section 4 for more information on memory maps.

• Any basic initialization step that does not attempt to access the target.

Not Recommended:
• GEL_Reset() (This attempts to access the target, doing a device reset via emulation.)

• Setting Breakpoints via GEL_BreakPtAdd(). (This also tries to access the target.)

• GEL_TextOut() and GEL_OpenWindow(). Since StartUp() executes before any CCStudio
control window is open, this may cause an error depending on the version of CCStudio.

• Basically any action that attempts to access the target.

Here is an example of the StartUp() call in the DM642EVM.gel file before Connect/Disconnect
was supported:

/*--*/
/* The StartUp() function is called each time CCS is started. */
/* Customize this function to perform desired initialization. */
/*--*/

StartUp()
{
 setup_memory_map();
 GEL_Reset(); /* Do not call in StartUp() with CCStudio v2.4 or higher */
 init_emif(); /* Do not call in StartUp() with CCStudio v2.4 or higher */
}

Here is an example the StartUp() call in the DM642EVM.gel file modified to support versions of
CCStudio that support Connect/Disconnect:

/*--*/
/* The StartUp() function is called each time CCS is started. */
/* Customize this function to perform desired initialization */
/* that will not access the target. */
/*--*/

StartUp()
{
 setup_memory_map();
}

Note that both GEL_Reset() and the custom function init_emif() (which initializes the EMIF) must
be removed because both calls try to access the target. Remember that any actions that attempt
to access the target are not allowed in StartUp(). The first thought would be to move those calls
to OnTargetConnect(). But do they really belong there? The next section answers that question.

The custom function setup_memory_map() can remain since that call simply sets up the
CCStudio memory map and does not try to access the target in any way.

SPRAA74A

4 Creating Device Initialization GEL Files

3.2 OnTargetConnect() Function
With the introduction of Connect/Disconnect in CCStudio version 2.40, the OnTargetConnect()
callback was created with the intention that it perform the minimum target initialization needed to
access the target regularly (for example, to set PLLs and disable watchdog timers). Its execution
finishes before anything else occurs.

You might tend to view OnTargetConnect() as a location for all desired target initialization steps
that cannot be run in StartUp(). We would like to discourage this for the following reasons:

• If using CCS 2.40 and 3.0: Except for GEL_Reset() and GEL_IsInRealtimeMode(), calls to
any built-in GEL functions that access the target are not allowed. Calls to custom GEL
functions that do not call built-in GEL functions themselves are fine. These built-in GEL calls
are not recommended because some built-in calls can disrupt the Connect/Disconnect
process in CCStudio. If GEL built-in calls that access the target are needed for additional
initialization, it is recommended that they be called from a separate function after a target
connection has been established and after OnTargetConnect() has finished execution. For
example, such a function could be called from the GEL pull-down hotmenu.
NOTE: For CCStudio 3.1 (and higher), this limitation does not exist because the
OnTargetConnect() callback has been modified to be called later when it will not disrupt the
connect procedure. Any target initialization action can be made here if using CCStudio 3.1

• It is important to remember that OnTargetConnect() is called each time a target connection
is established. If you disconnect the target and do a power cycle, re-initialize the target upon
re-connecting. Treat every connection as a first connection—with the essential target
initialization actions always run. Otherwise, people may disconnect, power cycle the target,
try to connect, and run into problems. If any custom target initialization steps should not be
run every time a target connection is made, these steps should be placed in a custom GEL
function that can be called manually as described in the preceding paragraph.

If you connect to the target in real-time mode, you can connect unobtrusively and leave the
target in a running state. Issuing a command in OnTargetConnect() that modifies the target state
(such as GEL_Reset()), halts the target and defeats the ability to connect unobtrusively. Real-
Time mode is available on 'C27x, 'C28x, 'C55x and 'C64x processors.

There is a new built-in GEL function called GEL_IsInRealtimeMode(). (See Appendix A:
CCStudio Version Support Matrix.) This call returns a 1 if the target is started up in real-time
mode, and 0 if it not. This call can be used in OnTargetConnect() to perform different actions
depending on whether you are in real-time mode.

/* OnTargetConnect() is called each time a target is connected. */
/* Its execution finishes before anything else occurs. */
/* Customize this function to perform essential target initialization. */
OnTargetConnect()
{
 // Check to see if started up in real-time mode
 if (GEL_IsInRealtimeMode()) {
 // do real-time target init stuff
 } else {
 // do regular initialization
 GEL_Halt();
 GEL_Reset();
 }
}

SPRAA74A

 Creating Device Initialization GEL Files 5

NOTE: Even if you configure CCStudio to connect to the target automatically when you open a
control window, StartUp() is still called before the target is connected. OnTargetConnect() should
always be used to automate critical target initialization steps.

Behavior recommended and not recommended for the OnTargetConnect() function is as follows:

Recommended:
• Absolute minimum target initialization actions to get the target in a reliable state for

CCStudio. For example, disabling watchdog timers and pulling the DSP out of reset in
heterogeneous environments.

Not Recommended:
• If using CCS 2.40 and 3.0: Calls to any built-in GEL function that accesses the target (for

example, GEL_MemoryFill(), GEL_BreakPtAdd(), and GEL_Load()) with the exception of
GEL_Reset() and GEL_IsInRealtimeMode(). As mentioned earlier, CCStudio 3.1 does not
have this limitation.

• Non-critical actions that should not be repeatedly called each time there is a target
disconnect and connect.

• "Custom" non-essential target initialization steps.

In summary, the default OnTargetConnect() function should only call what is necessary. Give
users a baseline initialization.

The OnTargetConnect() call from the DM642EVM.gel is shown below. Note that both the
GEL_Reset() call and the init_emif() calls removed from StartUp() are performed here. This is
acceptable for CCStudio version 3.1 and greater.

/*--*/
/* OnTargetConnect() is called every time a target is connected.*/
/* Its execution finishes before anything else occurs. Customize*/
/* this function to perform essential target initialization. */
/*--*/
OnTargetConnect()
{
 // place critical target initialization steps here
 GEL_Reset();
 init_emif();
}

For some platforms, calling GEL_Reset() may be necessary to put CCStudio in a "good" state
for the target. You should test to see whether this call is necessary. It is recommended that you
minimize the complexity of GEL startup functions—including the number of calls to
GEL_Reset()—where possible.

SPRAA74A

6 Creating Device Initialization GEL Files

3.3 OnPreFileLoaded() Function

This callback function is called before a program/symbol (.out) file is loaded. This is a good place
to perform additional target initialization that needs to be done before the program can be loaded
and debugging done. For example, you can initialize external memory here.

/*--*/
/* OnPreFileLoaded() */
/* This function is called automatically when the 'Load Program'*/
/* Menu item is selected. */
/*--*/
OnPreFileLoaded()
{
 FlushCache();
 IER = 0;
 IFR = 0;
 init_emif();
}

3.4 OnFileLoaded() Function

This callback function is called after a program/symbol file has been loaded. Actions such as
setting up the debug source search path (if no CCStudio project file exists), setting breakpoints
and probepoints, performing a software reset and restart, and loading a saved profile
configuration can be done here. Note that the software reset and restart is a necessary common
step on many targets. See Appendix B: GEL Guidelines for an example that uses
OnFileLoaded().

3.5 OnReset() Function

This callback function is called after the target processor has been reset. If you need to restart
the program each time you do a software reset, the GEL_Restart() call can be made here. An
example from the DM642EVM.gel file that uses OnReset() is shown below:

/*---*/
/* OnReset() */
/* This function is called automatically after a SW Reset has been executed. */
/*---*/
OnReset(int nErrorCode)
{
 init_emif();
}

SPRAA74A

 Creating Device Initialization GEL Files 7

3.6 OnRestart() Function

This callback function is called after the program is restarted. The following is an example of
OnRestart() from the DM642EVM.gel file:

/*---*/
/* OnRestart() */
/* This function is called by CCS when you do Debug->Restart. The goal is to put the */
/* C6x into a known good state with respect to cache, edma and interrupts. Failure */
/* to do this can cause problems when you restart and run code multiple times. */
/*---*/
OnRestart(int nErrorCode)
{
 /* Turn off L2 for all EMIFA CE spaces. App should manage these for coherency */
 GEL_TextOut("Turn off cache segment\n");

 *(int *)0x1848200 = 0; /* MAR0 */
 *(int *)0x1848204 = 0; /* MAR1 */
 *(int *)0x1848208 = 0; /* MAR2 */
 *(int *)0x184820c = 0; /* MAR3 */

 /* Disable EDMA events and interrupts and clear any pending events. */
 GEL_TextOut("Disable EDMA event\n"); */

 *(int *)0x01A0FFA8 = 0; /* CIERH */
 *(int *)0x01A0FFB4 = 0; /* EERH */
 *(int *)0x01A0FFB8 = 0XFFFFFFFF; /* ECRH */

 *(int *)0x01A0FFE8 = 0; /* CIERL */
 *(int *)0x01A0FFF4 = 0; /* EERL */
 *(int *)0x01A0FFF8 = 0xFFFFFFFF; /* ECRL */

 /* Disable other interrupts */
 IER = 0;
 IFR = 0;
}

3.7 OnHalt() Function

This callback function is called each time the CPU is halted. You can use the OnHalt() callback
for actions such as logging the values of variables and registers to GEL_TextOut().

SPRAA74A

8 Creating Device Initialization GEL Files

4 Memory Mapping
The CCStudio memory map tells the debugger which areas of target memory it can and cannot
access. If accessing invalid memory causes problems on the hardware, memory mapping allows
you to tell the driver not to access it—making memory mapping an effective way to avoid
emulation errors. Setting up the CCStudio memory map is often done in the StartUp() callback
function of the device startup GEL file using the following built-in GEL functions.

4.1 GEL_MapAdd() Function

The GEL_MapAdd() function is the most common function used in startup GEL files. This
function adds a section of memory to the memory map. You can specify the starting address,
length, memory page (program/data/IO), and readable/writeable flags. Correct memory maps
can help avoid frustration during debugging. CCStudio knows what memory it can access and
what memory it cannot access exclusively through the memory map.

One of the most common problems that can be solved using memory mapping is a section that
is inadvertently linked to a location where no memory exists. If the memory map shows the hole
in memory, CCStudio can warn a user if an attempt is made to load code into this section.

If all memory is of the same type and access size, GEL_MapAdd() should be sufficient for
defining a memory map.

4.2 GEL_MapAddStr() Function

GEL_MapAddStr() is a superset of the GEL_MapAdd() function. It provides the same
readable/writable attributes that can be specified in GEL_MapAdd(). However, it also supports
additional parameters for memory access size, a “shared memory” tag, and specification of
memory wait states. With the addition of GEL_MapAddStr(), there is really no reason to use
GEL_MapAdd(). GEL_MapAdd() is maintained for compatibility purposes.

For example, one occasion where GEL_MapAddStr() is useful is when 32-bit accessible external
memory is being used, such as a 32-bit accessible SDRAM. If GEL_MapAddStr() is not used,
when CCStudio accesses this memory to fill memory and disassembly windows, it uses the
default access size is. By specifying in the GEL file that this memory is 32-bit addressable only,
the emulation driver will make the proper sized access.

GEL_MapAddStr(0x80000000, 0, 0x02000000, "R|W|AS4", 0); // 32 bits SDRAM

4.3 GEL_MapDelete() Function

GEL_MapDelete() allows a portion of the memory map to be removed. This can be useful if it is
necessary to have a “dynamic” memory map. If at certain points some portion of memory is not
available, you can remove these map sections so that the debugger does not try to access them.

GEL_MapDelete() accepts only two parameters: address and page. If there are two (or more)
adjacent memory sections on the same page with the same parameters, performing
GEL_MapDelete() on an address in either (any) of the sections will delete all of these sections.
CCStudio tracks adjacent memory sections created with the same parameters to
GEL_MapAdd() as a single memory section.

SPRAA74A

 Creating Device Initialization GEL Files 9

4.4 GEL_MapOn() and GEL_MapOff() Functions

If at some point you need to turn on or off the memory mapping feature, you can do so with the
GEL_MapOn() or GEL_MapOff() functions. When mapping is turned off, CCStudio does not
respect any of the settings in the memory map. It assumes that it has access to the entire
memory space.

4.5 GEL_MapReset() Function

GEL_MapReset() can be used to clear all of the settings in the memory map configuration. With
no memory map, the default setting is that none of the memory space is accessible.

5 Avoiding GEL Initialization Entirely for Production Applications
Relying on a GEL file to perform tasks such as EMIF initialization can become a crutch. When
your application nears production, the settings made in GEL—for example, to configure the
SDRAM timing and to refresh—need to be moved to your bootload code. For this reason, you
may want to consider creating a GEL file that sets up the memory map via GEL_MapAdd() to
enable CCStudio debugging, but that no longer performs peripheral settings such as EMIF
writes or watchdog disabling.

Since GEL syntax matches standard C syntax, much of a typical init_emif() GEL routine can be
moved to a .c file and linked with the application. However this approach has some caveats:

• Moving GEL syntax to C doesn’t work for initialized code (for example, in the .text
section) and data (for example, in the .const section). Thankfully the debugger lets you
know this. At load time CCStudio performs a data verification of any initialized code/data
(that is, anything that needs to be loaded) that was written to memory. The data
verification fails because the EMIF has not yet been set up.

• Moving GEL syntax to C works fine for un-initialized data such as heaps. However, you
need to ensure the init_emif() C function is called before the heap is used. In a
DSP/BIOS application, you can ensure this by plugging the GBL user init function since
this gets called early in the code startup sequence.

• It’s a good idea to add "volatile" qualifiers as follows to ensure that the Codegen
Optimizer doesn’t optimize the memory references out.

*(volatile int *)EMIFA_SDRAMTIM = 0x00000618; /* SDRAM timing (refresh) */

Finally, these tips are useful if you want to stay in a CCStudio build/debug environment but avoid
GEL file peripheral settings. When you do reach the production timeframe, you’ll need a smart
loader booting from flash or a host machine that sets up EMIF and then copies runtime-critical
initialized code/data sections via DMA or memcpy(). Several application notes describe how to
achieve this with new Codegen utilities, Hex converters etc. [Reference 2]

6 References
1. Code Composer Studio v3 Online Help (SPRH199 bundled with the software)
2. Creating a Second-Level Bootloader for FLASH Bootloading on C6000 (SPRA999)

SPRAA74A

10 Creating Device Initialization GEL Files

Appendix A: CCStudio Version Support Matrix
The chart below describes which versions of CCStudio supports various new GEL capabilities:

Table 1. CCStudio Version Support Matrix
CCStudio
Version

OnTargetConnect()
(and Connect/Disconnect)

GEL_IsInRealtimeMode() GEL Global
Variables

GEL Relative
Path Macro

Pre-2.40 1 No No No No

2.40 2 Yes 3 No No No

3.00 4 Yes No No No

3.10 5 Yes 6 Yes Yes Yes

If you are using a device or version of CCStudio that does not support OnTargetConnect() and
Connect/Disconnect, then essential target initialization actions can be called in StartUp() since
CCStudio always attempts to connect to the target before running StartUp().

GEL global variables and the relative path macro are briefly described in Appendix B: GEL
Guidelines.

1 Applies to all ISAs.
2 2.40 is an OMAP release for ARM7/9, 'C54x, and 'C55x only.
3 'C54x not supported with TI emulators. Supported by Spectrum Digital Emulators.
4 3.00 is a C6000 release only
5 Applies to all ISAs
6 Connect/Disconnect is not supported by TI emulators on 'C54x and 'C24x. Supported by Spectrum Digital
Emulators.

SPRAA74A

 Creating Device Initialization GEL Files 11

Appendix B: GEL Guidelines
It is recommended that you use the following guidelines when creating GEL files:

• Add well-written "C" style comments. As startup GEL files become more complex,
well-written comments describing exactly what is happening become even more
important. Without well-written comments, it is difficult for people to properly modify GEL
files without running into future errors. This includes both function-level comments and
source-level comments

• Ensure the GEL file is in "DOS" format. This means DOS-style carriage returns, etc.
Utilities such as unix2dos can be used to get rid of pesky ^M characters.

• Define all built-in GEL callback functions. Define functions even if the body of the
function is empty. This helps to clarify that when the callback occurs, nothing happens.
See Section 3 for all the GEL callback functions available.

• Notify users of all target initialization action done by CCStudio. Use GEL_TextOut()
to provide feedback for all target initialization done by CCStudio. This helps users keep
track of all target initialization actions.

• Avoid using absolute paths in your GEL files to allow for maximum portability
(CCStudio v3.1+). Relative paths are supported in versions of CCStudio 3.1 and higher
with the new GEL macro ‘$(GEL_file_dir)’. This macro contains the path to the current
GEL file. An example of proper macro usage is found below:

DebugSourceSearchPaths()
{
 // Source search paths
 GEL_SrcDirAdd("$(GEL_file_dir)\\..\\..\\sourcedir1");
 GEL_SrcDirAdd("$(GEL_file_dir)\\..\\..\\sourcedir2");
}

• Don't name a GEL global variable something a user might place in their code
(CCStudio v3.1+). Target symbol names take precedence over GEL global variables
names. It is recommend that you name GEL global variables using a format of
gGEL_variableName to avoid the risk of users placing the same variable name in their
code.

• Don’t put your "pet GEL stuff" in mainline board GEL file. Keep your <board>.gel file
clean and hence reusable. Don’t put user-specific preferences in the board GEL file. For
example, if you need to enable source-level debug of C files in many different directories,
it is best to put your calls to GEL_SrcDirAdd() in a myAppDebug.gel file and then simply
perform GEL_LoadGel() after loading the board GEL file. Note that you cannot have
multiple definitions of the same GEL function. So if you are loading a separate GEL file
(myAppDebug.gel), make sure that this GEL file does not redefine GEL functions in the
board GEL file (<board>.gel). If you want to automate custom actions using GEL
callbacks, add a single call to a custom GEL function in the callback found in the board
GEL file. This minimizes the impact to the main board GEL file.

SPRAA74A

12 Creating Device Initialization GEL Files

For example, suppose the <board>.gel file defines the GEL callback function
OnFileLoaded() as follows:

/*---*/
/* OnFileLoaded() is called after a program is loaded. */
/* Customize this function to automate actions before a */
/* program is loaded */
/*---*/
OnFileLoaded (int nErrorCode, int bSymbolsOnly)
{
 // check for errors in loading program
 if (nErrorCode) {
 GEL_TextOut("An error occurred while loading a file. -%d-\n",,,,, nErrorCode);
 } else {
 GEL_TextOut("File was loaded successfully. -%d-\n",,,,, nErrorCode);
 }

 // Check to see if only symbols are loaded
 if (bSymbolsOnly) {
 GEL_TextOut("Only symbols were loaded.\n");
 } else{
 GEL_TextOut("Full load.\n");
}

 // Add my source search paths
 DebugSourceSearchPaths(); // this function is defined in myAppDebug.gel
}

The myAppDebug.gel file then contains the custom action to add the debug source
search paths as follows.

hotmenu DebugSourceSearchPaths()
{
 // Source search paths
 GEL_SrcDirAdd("$(GEL_file_dir)\\..\\..\\sourcedir1");
 GEL_SrcDirAdd("$(GEL_file_dir)\\..\\..\\sourcedir2");
}

The myAppDebug.gel GEL file can be auto-loaded by calling GEL_LoadGel() in the
StartUp() callback function of the main <board>.gel file as follows:

GEL_LoadGel(“$(GEL_file_dir)\\..\\..\\myprojects\\customGEL\\myAppDebug.gel”)

• Place only the minimum necessary initialization actions in StartUp() and
OnTargetConnect() (CCStudio v2.40+). As discussed earlier, place just the minimum
actions to put both the host and target in a "good" state in StartUp() and
OnTargetConnect(). Also, since users can disconnect and re-connect to the target
several times during a debug session, do not put any actions on OnTargetConnect() that
should not automatically be executed each time a connection is established to the target.

• Create GEL hotmenu items for all automated target initialization actions. Even
though some target initialization actions are done in GEL callback functions, it is
recommended to create GEL hotmenu items to allow users to manually call these
actions. Users should always have the option to call all initialization actions manually.

SPRAA74A

 Creating Device Initialization GEL Files 13

• Use GEL_MapAddStr() instead of GEL_MapAdd(). GEL_MapAddStr() provides the
ability to define more attributes for the memory region being added—for example, the
access size and wait states. The more information provided to CCStudio about the
attributes of the memory regions, the less chance of error.

• Treat all GEL startup files as if connecting to an actual target (CCStudio v2.40+).
When using a simulator, CCStudio is always be "connected" to the simulated target.
Thus adding actions that touch this simulated target in StartUp() would work fine.
However we still strongly encourage people using a simulator to define such actions in
the OnTargetConnect() callback function as if they were using actual hardware. This
helps startup GEL files be consistent in behavior and makes GEL files more portable
between simulator and hardware. When using CCStudio v3.0, which does not
automatically call OnTargetConnect() when using a simulator, a good idea is to explicitly
call OnTargetConnect() in the StartUp() function. For example:

/*--*/
/* The StartUp() function is called each time CCS is started. */
/* Customize this function to perform desired initialization */
/* that will not access the target. */
/*--*/
StartUp()
{
 /* setup CCS memory map */
 setup_memory_map();

 /* This explicit call is needed for CCS v3.0 when using a simulator */
 OnTargetConnect(); /* comment out this call when using v2.40 and v3.1+ */
}

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

	Creating Device Initialization GEL Files
	Introduction
	Code Composer Studio Startup Process
	Using the GEL Callback functions
	StartUp() Function
	OnTargetConnect() Function
	OnPreFileLoaded() Function
	OnFileLoaded() Function
	OnReset() Function
	OnRestart() Function
	OnHalt() Function

	Memory Mapping
	GEL_MapAdd() Function
	GEL_MapAddStr() Function
	GEL_MapDelete() Function
	GEL_MapOn() and GEL_MapOff() Functions
	GEL_MapReset() Function

	Avoiding GEL Initialization Entirely for Production Applications
	References

