
1SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

Cortex is a registered trademark of ARM Limited.
Android is a trademark of Google Inc.
Linux is a registered trademark of Linus Torvalds.
All other trademarks are the property of their respective owners.

Application Report
SPRAC08A–December 2015–Revised January 2016

Modifying Memory Usage for IPUMM Applications Using
IPC 3.x for DRA7x

BuddyLiong

ABSTRACT
The default Image Processing Unit (IPU) image for DRA7x IPU provides numerous capabilities for a rich
multimedia experience. However, not all customers will want to use all of the capabilities, or may wish to
add new capabilities. If not all of the capabilities are used, then the memory usage can be reduced.
Similarly, if new capabilities are added, the memory usage can be increased.

This document provides the procedure for modifying the memory usage of the IPU in order to increase or
decrease the memory usage.

NOTE: All programming models and use cases presented in this document are provided for
educative purposes only and may differ from or be optimized for other applications.

All DRA7x peripheral devices presented in this document are provided for illustration
purposes and may be different from those in your system.

Contents
1 Introduction ... 2
2 Default Memory Segments ... 2
3 Memory Segment Configuration Files... 3
4 Modifying Memory Segments .. 4
5 Examples ... 5

List of Tables

1 Default Memory Segments ... 2
2 Memory Layout ... 18

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Introduction www.ti.com

2 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

1 Introduction
The default IPU Multimedia (IPUMM) image provides many features and algorithms including: video
decode and video encode processing algorithms. The default memory usage is configured to account for
all of these. In some user configurations, not all of the features and algorithms may be desired or used, in
which case, certain sections can be removed or reduced. In other cases, new features or algorithms can
be added, in which case, sections may need to be increased. Adding, removing, increasing or decreasing
memory usage requires modification of a few files in the IPUMM that is running on the Cortex®-M4 IPU,
and potentially the QNX board support package (BSP) build file (used to generate QNX startup) as
specified in Section 3. For Linux® or the Android™ HLOS platform, the section that talks about QNX BSP
IFS should be ignored.

This document details how to modify the memory usage by adding, removing, increasing, or decreasing
memory segments used by the IPC and Multimedia image.

NOTE: This document assumes that you are familiar with build procedures for QNX BSP IFS
images, and the QNX 6Q6x.x.x release package from TI. For QNX BSP IFS build
procedures, contact QNX support. For building IPC and IPUMM, see the QNX Distributed
Codec Engine (DCE) release notes document and the IPUMM build instructions document
located in the QNX 6Q6x.x.x release package.

2 Default Memory Segments
Table 1 shows an example of the default memory usage for the IPU image. A description concerning the
purpose of each segment is provided.

NOTE: These values are just an example. The actual values for any particular release can be found
by looking at the configuration files mentioned in Section 3.

Table 1. Default Memory Segments

Name Base Address Size Description
IPU_MEM_TEXT:L2_ROM 0x00000000 0x00004000 IPU Boot Code
IPU_MEM_TEXT:EXT_CODE 0x00004000 0x005FC000 Remote core IPC and Multimedia Code Section
IPU_MEM_DATA:EXT_DATA 0x80000000 0x00200000 IPC and Multimedia Data Section
IPU_MEM_DATA:EXT_HEAP 0x80200000 0x02900000 Multimedia Heap Section
IPU_MEM_IPC_DATA:TRACE_BUF 0x9F000000 0x00060000 Remote Core Traces
IPU_MEM_IPC_DATA:EXC_DATA 0x9F060000 0x00010000 Remote Core Exception Info (used in case of crash)
IPU_MEM_IPC_DATA:PM_DATA 0x9F070000 0x00020000 Remote Core PM Data
IPU_MEM_IPC_DATA 0x9F090000 0x00070000 Extra memory data bandwidth for IPC on IPU.

IPU_MEM_IPC_DATA is 1MB
IPU_MEM_IPC_VRING 0x60000000 0x00100000 IPC Communication VirtQueues and Buffers
IPU_MEM_IOBUFS 0x90000000 0x05A00000 Shared Memory IO Bufs. Used in certain use-cases for non-

Tiler IO buffers, such as shmemallocator in QNX.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A
http://www.qnx.com/

www.ti.com Memory Segment Configuration Files

3SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

3 Memory Segment Configuration Files
There are four files that are used to configure all the memory used by the IPU image:
• QNX BSP IFS build file to define the static memory carve out:

– <qnx_bsp_dir>/src/hardware/startup/boards/<your_board>/build
• IPUMM custom resource table where the memory resource table is defined:

– For DRA7x (QNX HLOS), ipumm/platform/ti/dce/baseimage/qnx_custom_rsc_table_vayu_ipu.h
– For DRA7x (Linux or Android HLOS),

ipumm/platform/ti/dce/baseimage/custom_rsc_table_vayu_ipu.h
• IPUMM config file where the memory map configuration for IPUMM is defined:

– For DRA7x (differentiate by the value of hdw_type), ipumm/build/config.bld
• DCE config file where the DCE heap memory size is configured is defined:

– For DRA7x, ipumm/platform/ti/dce/baseimage/dce_ipu.cfg

Each of the four files and their purpose are described below.

3.1 QNX BSP IFS Build File
Memory sections with pre-defined physical addresses (excluding register or TILER addresses) must be
set aside in the QNX BSP IFS build file so that the memory is not given to other programs and can be
used solely by the IPU.

The QNX build file for the DRA7x BSP is located in the QNX BSP package in this path:

<qnx_bsp_dir>/src/hardware/startup/boards/<your_board>/build

Specify a section to be set aside by modifying the startup line to use the “-r” option. For example, to
reserve 0x5A0000 bytes, at physical address 0xBA30000, on DRA7x QNX BSP build file the startup-
dra74xevm arguments would be (highlighted below):

startup-dra74xevm -r 0xBA300000,0x5A00000 -vvv -n852,668

3.2 IPUMM Custom Resource Table
The IPUMM custom resource table, located in the IPUMM code, is responsible for defining all the memory
used by the IPU. The information in the custom resource table is used by the IPC 3.x for allocating
memory sections, programming the MMU, verifying the availability of segments with pre-defined physical
addresses, and setting up the IPC communication.

The IPUMM custom resource table is located in the following path in the IPUMM code:

For DRA7x (QNX HLOS), ipumm/platform/ti/dce/baseimage/qnx_custom_rsc_table_vayu_ipu.h
For DRA7x (Linux or Android HLOS), ipumm/platform/ti/dce/baseimage/custom_rsc_table_vayu_ipu.h

If any changes are made to the number, size, or addresses of memory used by the IPU, they must be
reflected in the IPUMM custom resource table. This includes carveouts, device mem, and even register
addresses.

There are various types of entries that the resource table can contain, but the two that are important when
considering increasing, decreasing, adding or removing memory are the following:
• TYPE_CARVEOUT (Carveout Memory entries)
• TYPE_DEVMEM (Device Memory entries)

TYPE_CARVEOUT entries are used for the IPU code, data, and heap memory, and the physical memory
for these is allocated dynamically by the IPC 3.x when loading the IPUMM image.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Memory Segment Configuration Files www.ti.com

4 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

TYPE_DEVMEM entries are used for memory entries with pre-defined physical addresses. For all the
device memory entries that are not register or TILER addresses (with the exception of the VRING entry),
the physical addresses must be set aside and made known to the QNX BSP IFS build file.

CAUTION
When changing memory section sizes, the addresses of adjacent sections may
be affected and may need to be adjusted accordingly.

3.3 IPUMM Config File
The IPUMM config file, located in the IPUMM code, is used when compiling the IPUMM image to specify
the memory sections containing the code, data, and heap. These sections can be reduced if the total is
not used or increased if more room is needed.

The IPUMM config file is located in the IPUMM code - in the following path:

ipumm/build/config.bld

CAUTION
When changing memory section sizes, the addresses of adjacent sections may
be affected and may need to be adjusted accordingly.

if addresses and sizes are changed here, the updates need to be reflected in the IPUMM custom resource
table.

3.4 DCE Config File
The DCE config file, located in the IPUMM code, is used to define the heap memory size for DCE. These
sections can be reduced based on the needed configuration.

The DCE config file is located in the IPUMM code, in the following path:

ipumm/platform/ti/dce/baseimage/dce_ipu.cfg

CAUTION
When changing memory section sizes, the addresses of adjacent sections may
be affected and may need to be adjusted accordingly.

If addresses and sizes are changed here, the updates need to be reflected in the IPUMM custom resource
table and IPUMM config file.

4 Modifying Memory Segments
To modify the memory sections, all or some combination of the configuration files need to be updated. The
IPUMM custom resource table definitely has to be modified. Then, depending on which segment is
modified, the other files may need to be modified as well. If the segment that is modified is
TYPE_CARVEOUT (Carveout Memory Entry) in the resource table, then the IPUMM config file may also
need to be modified. If the segment that is modified is TYPE_DEVMEM (Device Memory Entry), then the
QNX BSP IFS build file may need to be modified.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

www.ti.com Examples

5SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

The steps are as follows:
1. Modify the memory entry in the IPUMM config.bld file (if required).

If it is an existing segment that is being changed, check the config.bld file to see if the segment or part
of the segment exists in the externalMemoryMap. If it exists, the entry in the config.bld file needs to be
updated.
Carefully check for any adjacent memory sections listed in the config.bld file. Increasing or reducing
the size of a memory section can affect the base address of other sections.

2. Modify the IPUMM custom resource table.
Whether adding, removing, increasing, or decreasing memory usage, the IPUMM custom resource
table needs to be updated. All memory used by the IPUMM is represented in the IPUMM custom
resource table.

3. Modify the QNX BSP IFS build file (if required).
If the modification resulted in a change to a TYPE_DEVMEM entry, or the addition of a
TYPE_DEVMEM entry in the DDR memory range, the QNX BSP IFS build file must be updated to set
aside the memory.

4. Rebuild
After modifying the files, rebuild the IPUMM code to generate a new binary that takes the changes.
If the QNX BSP IFS build file was modified, rebuild the QNX BSP IFS image also.

5 Examples

5.1 Example 1. Decreasing the Size of a Memory Segment
If there is a memory segment that is too large, it can be reduced by modifying the configuration files.

Consider, for an example, that the complete set of use cases requires a smaller heap than the default
heap size of the image. The default heap size is 41MB, but you know that you only need 34MB to satisfy
your use cases. You are aware that the IPUMM image is putting the heap in the
IPU_MEM_DATA:EXT_HEAP section, so that is the section you will want to reduce.
1. Modify the heap memory size in the DCE dce_ipu.cfg file (if required).

The heapMemParams.size was found when checking the dce_ipu.cfg file :

/* Heap Memory is set to 40 MB.
* This is considering 2 1080p instances of Mpeg4 Decoders, each
* requiring 14 MBs and a single instance of H264 Encode requiring
* 8 MBs running parallely.
*/

var heapMemParams = new HeapMem.Params;
heapMemParams.size = 0x2800000; // 40MB
heapMemParams.sectionName = ".systemHeap";
var heap0 = HeapMem.create(heapMemParams);
Memory.defaultHeapInstance = heap0;
Program.global.heap0 = heap0;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Examples www.ti.com

6 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

By default, the heapMemParams.size is set to 40MB within the available IPU_MEM_DATA:EXT_HEAP
section of 41MB. The heapMemParams.size needs to be modified to 33MB to satisfy the use cases
within the available IPU_MEM_DATA:EXT_HEAP section of 34MB.
The size of heapMemParams.size is modified as shown below:

/* Heap Memory is modified to 33 MB from the default 40 MB configuration.
*/
var heapMemParams = new HeapMem.Params;
heapMemParams.size = 0x02100000; // 33 MB
heapMemParams.sectionName = ".systemHeap";
var heap0 = HeapMem.create(heapMemParams);
Memory.defaultHeapInstance = heap0;
Program.global.heap0 = heap0;

2. Modify the memory entry in the IPUMM config.bld file (if required).
The externalMemoryMap was found when checking the config.bld file:

var evmDRA7x_ExtMemMapIpu2 = {
EXT_CODE: { name: "EXT_CODE", base: 0x00004000, len: 0x005FC000, space: "code",

access: "RWX" },
EXT_DATA: { name: "EXT_DATA", base: 0x80000000, len: 0x00200000, space: "data",

access: "RW" },
EXT_HEAP: { name: "EXT_HEAP", base: 0x80200000, len: 0x02900000, space: "data",

access: "RW" },
TRACE_BUF: { name: "TRACE_BUF", base: 0x9F000000, len: 0x00060000, space: "data",

access: "RW" },
EXC_DATA: { name: "EXC_DATA", base: 0x9F060000, len: 0x00010000, space: "data",

access: "RW" },
PM_DATA: { name: "PM_DATA", base: 0x9F070000, len: 0x00020000, space: "data",

access: "RWX" }
};

The EXT_HEAP section is presented in the config.bld file. So, the EXT_HEAP entry needs to be
modified.
Carefully check for any adjacent memory sections listed in the config.bld file. Increasing or reducing
the size of a memory section can affect the base address of other sections. In this case, only the
EXT_HEAP section needs to be modified.
The length of the EXT_HEAP section is modified as shown below:

var evmDRA7x_ExtMemMapIpu2 = {
EXT_CODE: { name: "EXT_CODE", base: 0x00004000, len: 0x005FC000, space: "code",

access: "RWX" },
EXT_DATA: { name: "EXT_DATA", base: 0x80000000, len: 0x00200000, space: "data",

access: "RW" },
EXT_HEAP: { name: "EXT_HEAP", base: 0x80200000, len: 0x02200000, space: "data",

access: "RW" },
TRACE_BUF: { name: "TRACE_BUF", base: 0x9F000000, len: 0x00060000, space: "data",

access: "RW" },
EXC_DATA: { name: "EXC_DATA", base: 0x9F060000, len: 0x00010000, space: "data",

access: "RW" },
PM_DATA: { name: "PM_DATA", base: 0x9F070000, len: 0x00020000, space: "data",

access: "RWX" }
};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

www.ti.com Examples

7SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

3. Modify the resource table.

Now, the IPUMM custom resource table is modified to reflect the change in the section size. Inspecting
the resource table, it was determined that the entry for the EXT_HEAP is based on the base address
and length. The base address for EXT_HEAP is located in the “IPU_MEM_DATA” entry, so this entry
needs to be modified.
If the original entry in the resource table looks like the following:

#define IPU_MEM_DATA 0x80000000

[...]

/*
* IPU_MEM_DATA_SIZE contains the size of EXT_DATA + EXT_HEAP
* defined in the dce_ipu.cfg
*/

#define IPU_MEM_DATA_SIZE (SZ_1M * 43)

[...]

struct my_resource_table ti_ipc_remoteproc_ResourceTable = {
[...]

{
TYPE_CARVEOUT,
IPU_MEM_DATA, 0,
IPU_MEM_DATA_SIZE, 0, 0, "IPU_MEM_DATA",

},

[...]
};

The address and size are defined by IPU_MEM_DATA and IPU_MEM_DATA_SIZE. The starting
address of the heap was not modified, so no need to change that, but the size of the heap has been
reduced from 41MB to 34MB, a reduction of 7MB.
So, the size of the IPU_MEM_DATA_SIZE was reduced by 7MB:

#define IPU_MEM_DATA 0x80000000

[...]

/*
* IPU_MEM_DATA_SIZE contains the size of EXT_DATA + EXT_HEAP
* defined in the dce_ipu.cfg
*/

#define IPU_MEM_DATA_SIZE (SZ_1M * 36)

[...]

struct my_resource_table ti_ipc_remoteproc_ResourceTable = {
[...]

{
TYPE_CARVEOUT,
IPU_MEM_DATA, 0,
IPU_MEM_TEXT_SIZE, 0, RPROC_MEMREGION_CODE, “IPU_MEM_TEXT”,

},

[...]
};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Examples www.ti.com

8 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

4. Modify the QNX BSP IFS build file (if required).
To tell whether the QNX BSP IFS build file needs to be modified, look at the type of resource that was
modified. If it was a resource table TYPE_CARVEOUT memory entry, then do not modify the build file.
If it was a resource table TYPE_DEVMEM memory entry in the DDR memory range, then you must
modify the build file.
In this example, a resource table TYPE_CARVEOUT memory entry was modified. TYPE_CARVEOUT
memory entries do not have pre-defined physical addresses, so there is no need to modify the build
file.

5. Rebuild
Rebuild the IPUMM code to generate a new binary that takes the changes.
There is no need to rebuild the QNX BSP IFS, because the build file was not modified.

5.2 Example 2. Removing a Memory Segment
If there is a memory segment that is not being used, it can be removed by modifying the configuration
files.

Take for an example that the complete set of use cases never used the IPU_MEM_IOBUFS section. In
that case, you can completely remove this section.
1. Modify the IPUMM config.bld file (if required).

When checking the config.bld file, you will see the following:

var evmDRA7x_ExtMemMapIpu2 = {
EXT_CODE: { name: "EXT_CODE", base: 0x00004000, len: 0x005FC000, space: "code",

access: "RWX" },
EXT_DATA: { name: "EXT_DATA", base: 0x80000000, len: 0x00600000, space: "data",

access: "RW" },
EXT_HEAP: { name: "EXT_HEAP", base: 0x80600000, len: 0x02900000, space: "data",

access: "RW" },
TRACE_BUF: { name: "TRACE_BUF", base: 0x9F000000, len: 0x00060000, space: "data",

access: "RW" },
EXC_DATA: { name: "EXC_DATA", base: 0x9F060000, len: 0x00010000, space: "data",

access: "RW" },
PM_DATA: { name: "PM_DATA", base: 0x9F070000, len: 0x00020000, space: "data",

access: "RWX" }
};

The IPU_MEM_IOBUFS section is not seen in the config.bld file. So, you do not need to modify this
file.

2. Modify the resource table.
The resource table can be modified to remove the IPU_MEM_IOBUFS section. Inspecting the resource
table, you will find the entry for the IPU_MEM_IOBUFS.
The original entry in the IPUMM custom resource table looks like the following:

#define IPU_MEM_IOBUFS 0x90000000
#define IPU_MEM_IOBUFS_SIZE (SZ_1M * 90)
#define PHYS_MEM_IOBUFS 0xBA300000

[...]

struct my_resource_table {
struct resource_table base;

UInt32 offset[18]; /* Should match 'num' in actual definition */

/* rpmsg vdev entry */
struct fw_rsc_vdev rpmsg_vdev;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

www.ti.com Examples

9SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

[...]

/* devmem entry */
struct fw_rsc_devmem devmem0;

/* devmem entry */
struct fw_rsc_devmem devmem1;

[...]
};

[...]

struct my_resource_table ti_ipc_remoteproc_ResourceTable = {
1, /* we’re the first version that implements this */
18, /* number of entries in the table */
0, 0, /* reserved, must be zero */
/* offsets to entries */
{

offsetof(struct my_resource_table, rpmsg_vdev),

[...]

offsetof(struct my_resource_table, devmem0),
offsetof(struct my_resource_table, devmem1),

[...]
},

[...]

{
TYPE_DEVMEM,
IPU_MEM_IPC_VRING, PHYS_MEM_IPC_VRING,
IPU_MEM_IPC_VRING_SIZE, 0, 0, "IPU_MEM_IPC_VRING",

},

{
TYPE_DEVMEM,
IPU_MEM_IOBUFS, PHYS_MEM_IOBUFS,
IPU_MEM_IOBUFS_SIZE, 0, 0, "IPU_MEM_IOBUFS",

},

[...]
};

After finding the IPU_MEM_IOBUFS entry, a TYPE_DEVMEM can be seen. All the TYPE_DEVMEM
entries are grouped together and you also see that, in this example, the entry is the second
TYPE_DEVMEM entry in the resource table.
Delete the IPU_MEM_IOBUFS entry from the resource table. Once that is done, update the offsets
array need to be updated to remove the corresponding devmem1 entry. Also, update the ‘num’
parameter of the resource table by reducing it by 1, indicating that an entry has been removed.
Additionally, update the definition of the resource table struct. The size of the offset array should be
reduced by 1 and the corresponding devmem entry should be removed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Examples www.ti.com

10 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

The updated example will look like the following:

struct my_resource_table {
struct resource_table base;

UInt32 offset[17]; /* Should match ‘num’ in actual definition */

/* rpmsg vdev entry */
struct fw_rsc_vdev rpmsg_vdev;

[...]

/* devmem entry */
struct fw_rsc_devmem devmem0;

/* removed devmem entry 1 */

/* devmem entry */
struct fw_rsc_devmem devmem2;

[...]
};

[...]

struct my_resource_table ti_ipc_remoteproc_ResourceTable = {
1, /* we’re the first version that implements this */
17, /* number of entries in the table */
0, 0, /* reserved, must be zero */
/* offsets to entries */
{

offsetof(struct my_resource_table, rpmsg_vdev),

[...]

offsetof(struct my_resource_table, devmem0),

/* removed devmem entry 1 */

offsetof(struct my_resource_table, devmem2),

[...]
},

[...]
};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

www.ti.com Examples

11SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

3. Modify the QNX BSP IFS build file (if required).

To tell whether the QNX BSP IFS build file needs to be modified, look at the type of resource that was
modified. If it was a resource table TYPE_CARVEOUT (Carveout Memory entry), the build file does
not need to be modified. If it was a resource table TYPE_DEVMEM (Device Memory entry) in the DDR
memory range, the build file must be modified.
In this example, the entry was a resource table TYPE_DEVMEM, which had a pre-defined physical
address. So, the build file needs to be modified.
If, in the QNX BSP IFS build file, memory is being set aside for the IPU that corresponds to the
physical address of the TYPE_DEVMEM entry, then it should be modified so that the memory is no
longer set aside for the IPU.
For example, if the QNX BSP IFS build file was setting aside the memory for the IPU_MEM_IOBUFS
entry (as shown in the following example):

startup-dra74xevm -r 0xBA300000,0x5A00000 -vvv -n852,668

Then, it should be changed to the following:

startup-dra74xevm –vvv -n852,668

4. Rebuild
Rebuild the IPUMM code to generate a new binary that takes the changes. Note that since only a
header file was modified in this case, you have to clean and build the IPUMM.
Rebuild the QNX BSP IFS, since the build file was modified.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Examples www.ti.com

12 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

5.3 Example 3. Modifying IPUMM to Support H.264 Decode and Encode Only
By default, the IPUMM memory configuration is based on simultaneously running two instances of 1080p
MPEG4 decoding (requires 14MB HEAP memory for each instance) and one instance of 1080p H.264
encoding (requires 8MB HEAP memory). The default IPUMM memory configuration is also configured to
support five decoder codecs (H.264, MPEG4/H.263, VC1, MPEG2, and MJPEG) and two encoder codecs
(H.264 and MPEG4/H.263).

When starting IPC with the default IPUMM firmware image on IPU2, the default heap memory will be
52MB.

ipc IPU2 /sd/stage/usr/lib/DRA7x-m4-ipu2.xem4
pidin -p ipc mem

pid tid name prio STATE code data stack
200732 1 sd/stage/bin/ipc 10r SIGWAITINFO 0 52M 12K(516K)*
200732 2 sd/stage/bin/ipc 10r CONDVAR 0 52M 4096(132K)
200732 3 sd/stage/bin/ipc 29r CONDVAR 0 52M 4096(132K)
200732 4 sd/stage/bin/ipc 29r RECEIVE 0 52M 4096(132K)
200732 5 sd/stage/bin/ipc 29r CONDVAR 0 52M 8192(132K)
200732 6 sd/stage/bin/ipc 30r RECEIVE 0 52M 4096(132K)
200732 7 sd/stage/bin/ipc 29r CONDVAR 0 52M 4096(132K)
200732 8 sd/stage/bin/ipc 29r RECEIVE 0 52M 4096(132K)
200732 9 sd/stage/bin/ipc 29r CONDVAR 0 52M 4096(132K)
200732 10 sd/stage/bin/ipc 29r RECEIVE 0 52M 4096(132K)
200732 11 sd/stage/bin/ipc 29r CONDVAR 0 52M 4096(132K)
200732 12 sd/stage/bin/ipc 29r CONDVAR 0 52M 4096(132K)
200732 13 sd/stage/bin/ipc 10r RECEIVE 0 52M 4096(132K)
200732 14 sd/stage/bin/ipc 10r RECEIVE 0 52M 4096(132K)
200732 15 sd/stage/bin/ipc 10r RECEIVE 0 52M 4096(132K)

ipc @ 8048000 240K 24K
libc.so.3 @ 1000000 560K 16K
/dev/mem @28000000 (48200000) 4096
/dev/mem @28100000 (0) 1024K
/dev/mem @28200000 (0) 6144K
/dev/mem @28800000 (0) 43M
/dev/mem @2b300000 (0) 1024K
/dev/mem @28001000 (48840000) 4096
/dev/mem @28002000 (48842000) 4096
/dev/mem @28003000 (4a002000) 4096
/dev/mem @28004000 (4a0f6000) 4096
/dev/mem @28005000 (4a0f6000) 4096
/dev/mem @28006000 (4a005000) 4096
/dev/mem @28007000 (48036000) 4096
/dev/mem @28008000 (4803e000) 4096
/dev/mem @28009000 (4ae06000) 12K
/dev/mem @2800c000 (55082000) 4096
/dev/mem @2800d000 (4a008000) 12K
/dev/mem @28010000 (a4300000) 288K
/dev/mem @28058000 (aaa00000) 32K

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

www.ti.com Examples

13SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

For an example, the complete set of use cases is used to support a single instance of decoding H.264
1080p L4.1 or encoding H.264 1080p L4.1.
1. Modify the heap memory size in the DCE dce_ipu.cfg file (if required).

Checking the dce_ipu.cfg file, the heapMemParams.size and the loaded codec lists are shown:

/* Heap Memory is set to 40 MB.
* This is considering 2 1080p instances of Mpeg4 Decoders, each
* requiring 14 MBs and a single instance of H264 Encode requiring
* 8 MBs running parallely.
*/

var heapMemParams = new HeapMem.Params;
heapMemParams.size = 0x2800000; // 40MB
heapMemParams.sectionName = ".systemHeap";
var heap0 = HeapMem.create(heapMemParams);
Memory.defaultHeapInstance = heap0;
Program.global.heap0 = heap0;
[...]
loadCodec('ti.sdo.codecs.mpeg4vdec.ce.MPEG4VDEC', 'ivahd_mpeg4dec');
loadCodec('ti.sdo.codecs.h264vdec.ce.H264VDEC', 'ivahd_h264dec');
loadCodec('ti.sdo.codecs.jpegvdec.ce.JPEGVDEC', 'ivahd_jpegvdec');
loadCodec('ti.sdo.codecs.vc1vdec.ce.VC1VDEC', 'ivahd_vc1vdec');
loadCodec('ti.sdo.codecs.mpeg2vdec.ce.MPEG2VDEC', 'ivahd_mpeg2vdec');
loadCodec('ti.sdo.codecs.h264enc.ce.H264ENC', 'ivahd_h264enc');
loadCodec('ti.sdo.codecs.mpeg4enc.ce.MPEG4ENC', 'ivahd_mpeg4enc');
[...]

This shows, by default, that the heapMemParams.size is set to 40MB. Modify the
heapMemParams.size to 10MB because 1080p H.264 Level 4.1 requires around 9MB, and 1080p
H.264 Level 4.1 requires around 8MB.
The size of heapMemParams.size is modified to the following:

/* Heap Memory is modified to 10 MB from the default 40 MB configuration.
*/
var heapMemParams = new HeapMem.Params;
heapMemParams.size = 0x00A00000; // 10MB
heapMemParams.sectionName = ".systemHeap";
var heap0 = HeapMem.create(heapMemParams);
Memory.defaultHeapInstance = heap0;
Program.global.heap0 = heap0;
[...]
/* removed 'ivahd_mpeg4dec'*/
loadCodec('ti.sdo.codecs.h264vdec.ce.H264VDEC', 'ivahd_h264dec');
/* removed 'ivahd_jpegvdec'*/
/* removed 'ivahd_vc1vdec'*/
/* removed 'ivahd_mpeg2vdec'*/
loadCodec('ti.sdo.codecs.h264enc.ce.H264ENC', 'ivahd_h264enc');
/* removed 'ivahd_mpeg4enc'*/

[...]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Examples www.ti.com

14 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

2. Modify the memory entry in the IPUMM config.bld file (if required).

When checking the config.bld file, you will see the externalMemoryMap:

var evmDRA7x_ExtMemMapIpu2 = {
EXT_CODE: { name: "EXT_CODE", base: 0x00004000, len: 0x005FC000, space: "code",

access: "RWX" },
EXT_DATA: { name: "EXT_DATA", base: 0x80000000, len: 0x00200000, space: "data",

access: "RW" },
EXT_HEAP: { name: "EXT_HEAP", base: 0x80200000, len: 0x02900000, space: "data",

access: "RW" },
TRACE_BUF: { name: "TRACE_BUF", base: 0x9F000000, len: 0x00060000, space: "data",

access: "RW" },
EXC_DATA: { name: "EXC_DATA", base: 0x9F060000, len: 0x00010000, space: "data",

access: "RW" },
PM_DATA: { name: "PM_DATA", base: 0x9F070000, len: 0x00020000, space: "data",

access: "RWX" }
};

The EXT_CODE, EXT_DATA, and EXT_HEAP sections are included in the config.bld file. Due to
removal of codec libraries on DCE config file (dce_ipu.cfg) the EXT_CODE and EXT_DATA where the
codec libraries are loaded and configured can be reduced. The EXT_DATA memory usage can be
reduced based on the used information after building the IPUMM firmware and checking the generated
map files at:
• ipumm/platform/ti/dce/baseimage/package/cfg/out/ipu/release/ipu.xem4.map
The example of the default memory configuration is shown below:
MEMORY CONFIGURATION

name origin length used unused attr fill
---------------------- -------- --------- -------- -------- ---- --------

L2_ROM 00000000 00004000 00000664 0000399c RWIX
EXT_CODE 00004000 005fc000 003327ee 002c9812 RW X
L2_RAM 20000000 00010000 00000000 00010000 RWIX
OCMC_RAM1 40300000 00080000 00000000 00080000 RWIX
OCMC_RAM2 40400000 00100000 00000000 00100000 RWIX
OCMC_RAM3 40500000 00100000 00000000 00100000 RWIX
EXT_DATA 80000000 00200000 0005732c 001a8cd4 RW
EXT_HEAP 80200000 02900000 02800000 00100000 RW
TRACE_BUF 9f000000 00060000 00008000 00058000 RW
EXC_DATA 9f060000 00010000 00000200 0000fe00 RW
PM_DATA 9f070000 00020000 0001027c 0000fd84 RW X

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

www.ti.com Examples

15SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

The EXT_HEAP can be reduced because the heap memory size on the DCE config file (dce_ipu.cfg)
is being reduced from 40MB to 10MB.
Carefully check for any adjacent memory sections listed in the config.bld file. Increasing or reducing
the size of a memory section can affect the base address of other sections.
The length of the EXT_CODE, EXT_DATA, and EXT_HEAP sections are modified as shown below:

var evmDRA7x_ExtMemMapIpu2 = {
EXT_CODE: { name: "EXT_CODE", base: 0x00004000, len: 0x001FC000, space: "code",

access: "RWX" },
EXT_DATA: { name: "EXT_DATA", base: 0x80000000, len: 0x00100000, space: "data",

access: "RW" },
EXT_HEAP: { name: "EXT_HEAP", base: 0x80200000, len: 0x00A00000, space: "data",

access: "RW" },
TRACE_BUF: { name: "TRACE_BUF", base: 0x9F000000, len: 0x00060000, space: "data",

access: "RW" },
EXC_DATA: { name: "EXC_DATA", base: 0x9F060000, len: 0x00010000, space: "data",

access: "RW" },
PM_DATA: { name: "PM_DATA", base: 0x9F070000, len: 0x00020000, space: "data",

access: "RWX" }
};

3. Modify the resource table.
Modify the IPUMM custom resource table to reflect the change in the section size. When inspecting the
resource table, it was determined that the entry for the EXT_HEAP is based on the base address and
length. The base address for EXT_HEAP is located in the “IPU_MEM_DATA” entry, which is is the
entry that needs modification.
Consider that the original entry in the resource table looks like the following:

#define IPU_MEM_DATA 0x80000000

[...]

#define IPU_MEM_TEXT_SIZE (SZ_1M * 6)

/*
* IPU_MEM_DATA_SIZE contains the size of EXT_DATA + EXT_HEAP
* defined in the dce_ipu.cfg
*/

#define IPU_MEM_DATA_SIZE (SZ_1M * 43)

[...]

struct my_resource_table ti_ipc_remoteproc_ResourceTable = {
[...]

{
TYPE_CARVEOUT,
IPU_MEM_TEXT, 0,
IPU_MEM_TEXT_SIZE, 0, 0, "IPU_MEM_TEXT",

},

{
TYPE_CARVEOUT,
IPU_MEM_DATA, 0,
IPU_MEM_DATA_SIZE, 0, 0, "IPU_MEM_DATA",

},

[...]
};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Examples www.ti.com

16 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

The address and size are defined by IPU_MEM_DATA, IPU_MEM_DATA_SIZE and
IPU_MEM_TEXT_SIZE. The starting address of the heap was not modified; there is no need to
change that, but the size of the heap “EXT_HEAP” has been reduced from 41MB to 10MB (a reduction
of 31MB). The size of the “EXT_DATA” has been reduced as well from 2MB to 1MB (a reduction of
1MB).
The size of the IPU_MEM_DATA_SIZE, which is a combination of EXT_HEAP and EXT_DATA to
11MB, needs to be reduced.
The size of “EXT_CODE” has been reduced from approximately 6MB (0x005FC000) to approximately
2MB (0x001FC000), a reduction of 4MB. Reduce the size of the IPU_MEM_TEXT_SIZE from 6MB to
2MB.

#define IPU_MEM_DATA 0x80000000

[...]

#define IPU_MEM_TEXT_SIZE (SZ_1M * 2)

/*
* IPU_MEM_DATA_SIZE contains the size of EXT_DATA + EXT_HEAP
* defined in the dce_ipu.cfg
*/

#define IPU_MEM_DATA_SIZE (SZ_1M * 11)

[...]

struct my_resource_table ti_ipc_remoteproc_ResourceTable = {
[...]

{
TYPE_CARVEOUT,
IPU_MEM_TEXT, 0,
IPU_MEM_TEXT_SIZE, 0, 0, "IPU_MEM_TEXT",

},

{
TYPE_CARVEOUT,
IPU_MEM_DATA, 0,
IPU_MEM_DATA_SIZE, 0, 0, "IPU_MEM_DATA",

},

[...]
};

4. Modify the QNX BSP IFS build file (if required).
To tell whether the QNX BSP IFS build file needs to be modified, look at the type of resource that was
modified. If it was a resource table TYPE_CARVEOUT memory entry, no modification to the build file
is necessary. If it was a resource table TYPE_DEVMEM memory entry in the DDR memory range,
then you must modify the build file.
In this example, a resource table TYPE_CARVEOUT memory entry is modified. TYPE_CARVEOUT
memory entries do not have pre-defined physical addresses, so there is no need to modify the build
file.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

www.ti.com Examples

17SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

5. Rebuild

Rebuild the IPUMM code to generate a new binary that takes the changes.
There is no need to rebuild the QNX BSP IFS, because the build file was not modified.
Checking the generated map files at:
• ipumm/platform/ti/dce/baseimage/package/cfg/out/ipu/release/ipu.xem4.map
The example of memory configuration after the modification is shown, see below:
MEMORY CONFIGURATION

name origin length used unused attr fill
---------------------- -------- --------- -------- -------- ---- --------

L2_ROM 00000000 00004000 00000664 0000399c RWIX
EXT_CODE 00004000 001fc000 0017935c 00082ca4 RW X
L2_RAM 20000000 00010000 00000000 00010000 RWIX
OCMC_RAM1 40300000 00080000 00000000 00080000 RWIX
OCMC_RAM2 40400000 00100000 00000000 00100000 RWIX
OCMC_RAM3 40500000 00100000 00000000 00100000 RWIX
EXT_DATA 80000000 00100000 00056ba8 000a9458 RW
EXT_HEAP 80100000 00a00000 00a00000 00000000 RW
TRACE_BUF 9f000000 00060000 00008000 00058000 RW
EXC_DATA 9f060000 00010000 00000200 0000fe00 RW
PM_DATA 9f070000 00020000 0001027c 0000fd84 RW X

When starting IPC with the modified IPUMM firmware image on IPU2, the modified heap memory will
be around 16MB.

pidin -p ipc mem
pid tid name prio STATE code data stack

221212 1 sd/stage/bin/ipc 10r SIGWAITINFO 360K 16M 20K(516K)*
221212 2 sd/stage/bin/ipc 10r CONDVAR 360K 16M 4096(132K)
221212 3 sd/stage/bin/ipc 29r CONDVAR 360K 16M 4096(132K)
221212 4 sd/stage/bin/ipc 29r RECEIVE 360K 16M 4096(132K)
221212 5 sd/stage/bin/ipc 29r CONDVAR 360K 16M 8192(132K)
221212 6 sd/stage/bin/ipc 30r RECEIVE 360K 16M 4096(132K)
221212 7 sd/stage/bin/ipc 29r CONDVAR 360K 16M 4096(132K)
221212 8 sd/stage/bin/ipc 29r RECEIVE 360K 16M 4096(132K)
221212 9 sd/stage/bin/ipc 29r CONDVAR 360K 16M 4096(132K)
221212 10 sd/stage/bin/ipc 29r RECEIVE 360K 16M 4096(132K)
221212 11 sd/stage/bin/ipc 29r CONDVAR 360K 16M 4096(132K)
221212 12 sd/stage/bin/ipc 29r CONDVAR 360K 16M 4096(132K)
221212 13 sd/stage/bin/ipc 10r RECEIVE 360K 16M 4096(132K)
221212 14 sd/stage/bin/ipc 10r RECEIVE 360K 16M 4096(132K)

libc.so.3 @ 1000000 464K 16K
/dev/mem @28000000 (48200000) 4096
/dev/mem @28100000 (0) 1024K
/dev/mem @28200000 (0) 2048K
/dev/mem @28400000 (0) 11M
/dev/mem @28f00000 (0) 1024K
/dev/mem @28001000 (48840000) 4096
/dev/mem @28002000 (48842000) 4096
/dev/mem @28003000 (4a002000) 4096
/dev/mem @28004000 (4a0f6000) 4096
/dev/mem @28005000 (4a0f6000) 4096
/dev/mem @28006000 (4a005000) 4096
/dev/mem @28007000 (48036000) 4096
/dev/mem @28008000 (4803e000) 4096
/dev/mem @28009000 (4ae06000) 12K
/dev/mem @2800c000 (55082000) 4096
/dev/mem @2800d000 (4a008000) 12K
/dev/mem @28010000 (d1000000) 288K
/dev/mem @28058000 (d0f00000) 32K

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

Examples www.ti.com

18 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

5.4 Example 4 (QNX only): Modifying Shared Memory IO Bufs
QNX IPC provides carved out memory through the shmemallocator component. For more information, see
http://processors.wiki.ti.com/index.php/IPC_3.x_FAQ#QNX_Build.

An example is to reduce the Shared IO Buffer size from 90MB to 8MB.

Table 2 shows the memory layout in 1GB DRR address space for 8MB Shared IO Buffer.

Table 2. Memory Layout

Start of 1GB DDR 0x80000000
DDR Memory

size 0x3F500000
(1013MB)

Start at 0x80000000

IPU_MEM_IOBUFS
size 0x800000

(8MB)

Start at 0xBF500000

Unreserved
size 0x300000

(3MB)

Start at 0xBFD00000

End of 1GB DDR 0xC0000000

1GB DRR end address is 0xC0000000. There should be an 3MB (0x300000) should be un reserved
memory.

Shared IO Buffer Physical address start: 0xC0000000 – 0x300000 (3 MB) – 0x800000 (8MB)
=>0xBF50000

Below are the modifications required for 8 MB Shared IO Buffers.
1. Modify the resource table.

The QNX custom resource table has to be modified to change the IPU_MEM_IOBUFS section. On
inspection of the resource table, the entry for the IPU_MEM_IOBUFS was found.

For DRA7x (QNX HLOS), ipumm/platform/ti/dce/baseimage/qnx_custom_rsc_table_vayu_ipu.h

Consider that the original entry in the resource table looks like the below:

#define IPU_MEM_IOBUFS 0x90000000
#define PHYS_MEM_IOBUFS 0xBA300000
#define IPU_MEM_IOBUFS_SIZE (SZ_1M * 90)

After modifications for 8 MB:

#define IPU_MEM_IOBUFS 0x90000000
#define PHYS_MEM_IOBUFS 0xBF500000
#define IPU_MEM_IOBUFS_SIZE (SZ_1M * 8)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A
http://processors.wiki.ti.com/index.php/IPC_3.x_FAQ#QNX_Build

www.ti.com Examples

19SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x

2. Modify the shared memory allocator.

Modify the shared memory block start address and block size in SharedMemoryAllocator.c.
SharedMemoryAllocator.c is located at
/ipc_3_xx_xx_xx/qnx/src/ipc3x_dev/sharedmemallocator/resmgr/SharedMemoryAllocator.c

#define SH_MEM_BLOCK1_START 0xBA300000
#define SH_MEM_BLOCK1_SIZE 0x5A00000

After modifications for 8MB:

#define SH_MEM_BLOCK1_START 0xBF500000
#define SH_MEM_BLOCK1_SIZE 0x800000

3. Modify the QNX IFS build file.
Modify the QNX IFS build file to change the carve out address and size.
For example, if the QNX IFS build file was setting aside the memory for the IPU_MEM_IOBUFS entry,
as below:

startup-dra74xevm -r 0xBA300000,0x5A00000 -vvv -n852,668

It should be changed to this:

startup-dra74xevm -r 0xBF500000,0x800000 -vvv -n852,668

4. Rebuild.
Rebuild the QNX IPC (http://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX#Build) since
SharedMemoryAllocator.c is modified.
Rebuild the IPUMM code to generate a new firmware binary that takes the changes. Note that since
only a header file was modified in this case, you have to clean and build the IPUMM
Rebuild the QNX BSP IFS, since the build file was modified.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A
http://processors.wiki.ti.com/index.php/IPC_Install_Guide_QNX#Build

Revision History www.ti.com

20 SPRAC08A–December 2015–Revised January 2016
Submit Documentation Feedback

Copyright © 2015–2016, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (December 2015) to A Revision .. Page

• Added new Section 5.4.. 18

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC08A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Modifying Memory Usage for IPUMM Applications Using IPC 3.x for DRA7x
	1 Introduction
	2 Default Memory Segments
	3 Memory Segment Configuration Files
	3.1 QNX BSP IFS Build File
	3.2 IPUMM Custom Resource Table
	3.3 IPUMM Config File
	3.4 DCE Config File

	4 Modifying Memory Segments
	5 Examples
	5.1 Example 1. Decreasing the Size of a Memory Segment
	5.2 Example 2. Removing a Memory Segment
	5.3 Example 3. Modifying IPUMM to Support H.264 Decode and Encode Only
	5.4 Example 4 (QNX only): Modifying Shared Memory IO Bufs

	Revision History
	Important Notice

