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About This Manual

This document describes the C64x+ digital signal processor little-endian
(DSP) Library, or DSPLIB for short.

Notational Conventions

This document uses the following conventions:

� Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

� Registers in this document are shown in figures and described in tables.

Related Documentation From Texas Instruments

The following books describe the C6000 devices and related support tools.
Copies of these documents are available on the Internet at www.ti.com. Tip:
Enter the literature number in the search box provided at www.ti.com.

SPRU732 — TMS320C64x/C64x+ DSP CPU and Instruction Set
Reference Guide. Describes the CPU architecture, pipeline, instruction
set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The
C64x/C64x+ DSP generation comprises fixed-point devices in the
C6000 DSP platform. The C64x+ DSP is an enhancement of the C64x
DSP with added functionality and an expanded instruction set.

SPRAA84  — TMS320C64x to TMS320C64+ CPU Migration Guide.
Describes migrating from the Texas Instruments TMS320C64x digital
signal processor (DSP) to the TMS320C64x+ DSP. The objective of this
document is to indicate differences between the two cores. Functionality
in the devices that is identical is not included.

Trademarks

C6000, TMS320C64x+, TMS320C64x, C64x are trademarks of Texas
Instruments.

http://www-s.ti.com/sc/techlit/spru732
http://www-s.ti.com/sc/techlit/spraa84
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This chapter provides a brief introduction to the TI C64x+ DSP Library (DSPLIB), shows the
organization of the routines contained in the library, and lists the features and benefits of the
DSPLIB.
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1.1 Introduction to the TI C64x+ DSPLIB

The TI C64x+ DSPLIB is an optimized DSP Function Library for C programmers using devices that
include the C64x+ megamodule. It includes many C-callable, optimized, general-purpose
signal-processing routines. These routines are typically used in computationally intensive
real-time applications where optimal execution speed is critical. By using these routines, you can
achieve execution speeds considerably faster than equivalent code written in standard ANSI C
language. In addition, by providing ready-to-use DSP functions, TI DSPLIB can significantly
shorten your DSP application development time.

The TI DSPLIB includes commonly used DSP routines. Source code is provided that allows you to
modify functions to match your specific needs.

The routines contained in the library are organized into the following seven different functional
categories: 

� Adaptive filtering

� DSP_firlms2

� Correlation

� DSP_autocor

� FFT

� DSP_fft16x16
� DSP_fft16x16_imre
� DSP_fft16x16r
� DSP_fft16x32
� DSP_fft32x32
� DSP_fft32x32s
� DSP_ifft16x16
� DSP_ifft16x16_imre
� DSP_ifft16x32
� DSP_ifft32x32

� Filtering and convolution
� DSP_fir_cplx
� DSP_fir_cplx_hM4X4
� DSP_fir_gen
� DSP_fir_gen_hM17_rA8X8
� DSP_fir_r4
� DSP_fir_r8
� DSP_fir_r8_hM16_rM8A8X8
� DSP_fir_sym
� DSP_iir
� DSP_iir_lat
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� Math
� DSP_dotp_sqr
� DSP_dotprod
� DSP_maxval
� DSP_maxidx
� DSP_minval
� DSP_mul32
� DSP_neg32
� DSP_recip16
� DSP_vecsumsq
� DSP_w_vec

� Matrix
� DSP_mat_mul
� DSP_mat_trans

� Miscellaneous
� DSP_bexp
� DSP_blk_eswap16
� DSP_blk_eswap32
� DSP_blk_eswap64
� DSP_blk_move
� DSP_fltoq15
� DSP_minerror
� DSP_q15tofl
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1.2 Features and Benefits

� Natural C Source Code
� Optimized C code with Intrinsics
� C−callable routines, fully compatible with the TI C6x compiler
� Fractional Q.15−format operands supported on some benchmarks
� Benchmarks (cycle and code size)
� Tested against C model
� The provided precompiled library was compiled using Code Generation

Tools v6.0.16
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1.3 Optimization Techniques

Many of the optimization techniques used throughout the DSPLIB is described in the
”Hand−Tuning Loops and Control Code on the TMS320C6000” (SPRA666) application note. For
a complete list of optimization techniques please refer to the “TMS320C6000 Optimizing Compiler
v 6.0 Beta User’s Guide (Rev. N)” (SPRU187N) user’s guide. The precompiled library that comes
with the package is compiled using the source code in the “c64plus\dsplib\src\” directory and Code
Generation Tools v6.0.16. The source code is provided to allow the user to do further optimizations
for their specific application.

http://www-s.ti.com/sc/techlit/spra666
http://www-s.ti.com/sc/techlit/spru187
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This chapter provides information on how to install and rebuild the TI C64x+ DSPLIB.

Topic Page

2.1 How to Install DSPLIB 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Using DSPLIB 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 How to Rebuild DSPLIB 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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2.1 How to Install DSPLIB

Note:

You should read the README.txt file for specific details of the release.

The DSPLIB installation provides the directory structure below:

c64plus
|

+−−dsplib

|

+−−docs Library documentation

|

+−−example Example to show DSPLIB usage

|

+−−src Source code with CCS project
examples

| |+−−[Kernels]

|

|−−dsplib64plus.h Header file containing kernel 
definitions

|

|−−dsplib64plus.lib Precompiled library

|

|−−dsplib64plus.pjt Provided project to rebuild
library

|

|−−README.txt Top−level README file

After completing the installation of DSPLIB, follow the instructions in sections 2.2.2 and 2.2.3 on
how to call the functions from your source code.



Using DSPLIB

2-3Installing and Using DSPLIB

2.2 Using DSPLIB

2.2.1 DSPLIB Arguments and Data Types

2.2.1.1 DSPLIB Types

Table 2−1 shows the data types handled by the DSPLIB.

Table 2−1. DSPLIB Data Types

Name
Size
(bits) Type Minimum Maximum

short 16 integer −32768 32767

int 32 integer −2147483648 2147483647

long 40 integer −549755813888 549755813887

pointer 32 address 0000:0000h FFFF:FFFFh

Q.15 16 fraction −0.9999694824... 0.9999694824...

Q.31 32 fraction −0.99999999953... 0.99999999953...

IEEE float 32 floating point 1.17549435e−38 3.40282347e+38

IEEE double 64 floating point 2.2250738585072014e−308 1.7976931348623157e+308

Unless specifically noted, DSPLIB operates on Q.15-fractional data type elements. Appendix A
presents an overview of Fractional Q formats.

2.2.1.2 DSPLIB Arguments

TI DSPLIB functions typically operate over vector operands for greater efficiency. Even though
these routines can be used to process short arrays, or even scalars (unless a minimum size
requirement is noted), they will be slower for those cases.

� Vector stride is always equal to 1: Vector operands are composed of vector
elements held in consecutive memory locations (vector stride equal to 1).

� Complex elements are assumed to be stored in consecutive memory
locations with Real data followed by Imaginary data, unless specifically
noted.

� In-place computation is not allowed, unless specifically noted: Source
operand cannot be equal to destination operand.
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2.2.2 Calling a DSPLIB Function From C

In addition to installing the DSPLIB software, follow these steps to include a DSPLIB function to the
code:

� Include the dsplib64plus.h header file
� Link the code with the dsplib64plus.lib
� Use a correct linker command file for the platform used

The source code and CCS project in the “c64plus\dsplib\example\” directory shows how to use the
DSPLIB in a Code Composer Studio C environment.

2.2.3 Calling a DSP Function From Assembly

The C64x+ DSPLIB functions were written to be used from C. Calling the functions from assembly
language source code is possible as long as the calling function conforms to the Texas
Instruments C64x+ C compiler calling conventions. For more information, see Section 8 (Runtime
Environment) of TMS320C6000 Optimizing C Compiler User’s Guide (SPRU187).

2.2.4 DSPLIB Testing − Allowable Error

DSPLIB is tested under the Code Composer Studio environment against a reference C
implementation. You can expect identical results between Reference C implementation and its
Optimized C implementation when using test routines that focus on fixed point type results.

2.2.5 DSPLIB Overflow and Scaling Issues

The DSPLIB functions implement the same functionality of the reference C code. You must
conform to the range requirements specified in the API function, and in addition, restrict the input
range so that the outputs do not overflow.

In FFT functions, twiddle factors are generated with a fixed scale factor; i.e., 32767(=215−1) for all
16-bit FFT functions, 1073741823(=230−1) for DSP_fft32x32s, 2147483647(=231−1) for all other
32-bit FFT functions. Because DSP_fft16x16r and DSP_fft32x32s perform scaling by 2 at each
radix-4 stage, the input data must be scaled by 2(log2(nx)−cei[log4(nx)−1]) to completely prevent
overflow. In all other FFT functions, the input data must be scaled by 2(log2(nx)) because no scaling
is done by the functions.

Using DSPLIB

http://www-s.ti.com/sc/techlit/spru187
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2.2.6 Interrupt Behavior of DSPLIB Functions

All of the functions in this library are designed to be used in systems with interrupts. Thus, it is not
necessary to disable interrupts when calling any of these functions. The functions in the library will
disable interrupts as needed to protect the execution of code in tight loops and so on. Library
functions have three categories:

� Fully-interruptible:  These functions do not disable interrupts. Interrupts
are blocked by at most 5 to 10 cycles at a time (not counting stalls) by
branch delay slots.

� Partially-interruptible:  These functions disable interrupts for long
periods of time, with small windows of interruptibility. Examples include a
function with a nested loop, where the inner loop is non-interruptible and
the outer loop permits interrupts between executions of the inner loop.

� Non-interruptible:  These functions disable interrupts for nearly their
entire duration. Interrupts may happen for a short time during the setup
and exit sequence.

Note that all three function categories tolerate interrupts. That is, an interrupt can occur at any time
without affecting the function correctness. The interruptibility of the function only determines how
long the kernel might delay the processing of the interrupt.

2.3 How to Rebuild DSPLIB

If you would like to rebuild DSPLIB, follow these steps:

1.  Start Code Composer Studio (version 3.2 or later).

2.  Open the ’dsplib64plus.pjt’ project by clicking Project −> Open in the menu
and browse to the ’c64plus\dsplib\’ directory.

3.  Rebuild the project by clicking on Project−> Build in the menu.

Once CCS has finished compiling the new library you will find the file ’dsplib64plus_rebuild.lib’ in
the ’c64plus\dsplib\Release\’ directory.
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This chapter provides tables containing all DSPLIB functions, a brief description of each, and a
page reference for more detailed information.

Topic Page

3.1 Arguments and Conventions Used 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 DSPLIB Functions 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 DSPLIB Function Tables 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 3
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3.1 Arguments and Conventions Used

The following convention has been used when describing the arguments for each individual
function:

Table 3−1. Argument Conventions

Argument Description

x,y Argument reflecting input data vector

r Argument reflecting output data vector

nx,ny,nr Arguments reflecting the size of vectors x,y, and r, respectively. For
functions in the case nx = ny = nr, only nx has been used across.

h Argument reflecting filter coefficient vector (filter routines only)

nh Argument reflecting the size of vector h

w Argument reflecting FFT coefficient vector (FFT routines only)

Some C64x+ functions have additional restrictions due to optimization using new features such as
higher multiply throughput. While these new functions perform better, they can also lead to
problems if not carefully used. Therefore, the new functions are named with any additional
restrictions. Three types of restrictions are specified to a pointer: minimum buffer size (M), buffer
alignment (A), and the number of elements in the buffer to be a multiple of an integer (X).The
following convention has been used when describing the arguments for each individual function:

A kernel function foo with two parameters, m and n, with the following restrictions:

m −>  Minimum buffer size = 8, buffer alignment = double word, buffer
needs to be a multiple of 8 elements

n −>  Minimum buffer size = 32, buffer alignment = word , buffer needs to be
a multiple of 16 elements

This function would be named:  foo_mM8A8X8_nM32A4X16.
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3.2 DSPLIB Functions

The routines included in the DSP library are organized into seven functional categories and listed
below in alphabetical order.

� Adaptive filtering
� Correlation
� FFT
� Filtering and convolution
� Math
� Matrix functions
� Miscellaneous
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3.3 DSPLIB Function Tables

Table 3−2. Adaptive Filtering

Functions Description Page

long DSP_firlms2(short *h, short *x, short b, int nh) LMS FIR 4-2

Table 3−3. Correlation

Functions Description Page

void DSP_autocor(short *r,short *x, int nx, int nr) Autocorrelation 4-4

Table 3−4. FFT 

Functions Description Page

void DSP_fft16x16(short *w, int nx, short *x, short *y) Complex out of place, Forward
FFT mixed radix with digit
reversal. Input/Output data in
Re/Im order.

4-8

void DSP_fft16x16_imre(short *w, int nx, short *x, short
*y)

Complex out of place, Forward
FFT mixed radix with digit
reversal. Input/Output data in
Im/Re order.

4-11

void DSP_fft16x16r(int nx, short *x, short *w, unsigned
char *brev, short *y, int offset, int n_max)

Mixed radix FFT with scaling and
rounding, digit reversal, out of
place. Input and output: 16 bits,
Twiddle factor: 16 bits.

4-12

void DSP_fft16x32(short *w, int nx, int *x, int *y) Extended precision, mixed radix
FFT, rounding, digit reversal, out
of place. Input and output: 32 bits,
Twiddle factor: 16 bits.

4-22

void DSP_fft32x32(int *w, int nx, int *x, int *y) Extended precision, mixed radix
FFT, rounding, digit reversal, out
of place. Input and output: 32 bits,
Twiddle factor: 32 bits.

4-24

void DSP_fft32x32s(int *w, int nx, int *x, int *y) Extended precision, mixed radix
FFT, digit reversal, out of place.,
with scaling and rounding. Input
and output: 32 bits, Twiddle
factor: 32 bits.

4-26
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Table 3−4. FFT (Continued)

Functions PageDescription

void DSP_ifft16x16(short *w, int nx, short *x, short *y) Complex out of place, Inverse
FFT mixed radix with digit
reversal. Input/Output data in
Re/Im order.

4-26

void DSP_ifft16x16_imre(short *w, int nx, short *x, short
*y)

Complex out of place, Inverse
FFT mixed radix with digit
reversal. Input/Output data in
Re/Im order.

4-26

void DSP_ifft16x32(short *w, int nx, int *x, int *y) Extended precision, mixed radix
IFFT, rounding, digit reversal, out
of place. Input and output: 32 bits,
Twiddle factor: 16 bits.

4-32

void DSP_ifft32x32(int *w, int nx, int *x, int *y) Extended precision, mixed radix
IFFT, digit reversal, out of place,
with scaling and rounding. Input
and output: 32 bits, Twiddle
factor: 32 bits.

4-34

Table 3−5. Filtering and Convolution  

Functions Description Page

void DSP_fir_cplx(short *x, short *h, short *r, int nh, int nr) Complex FIR Filter (nh is a
multiple of 2)

4-36

void DSP_fir_cplx_hM4X4(short *x, short *h, short *r, int
nh, int nr)

Complex FIR Filter (nh is a
multiple of 4)

4-36

void DSP_fir_gen (short *x, short *h, short *r, int nh, int nr) FIR Filter (any nh) 4-40

void DSP_fir_gen_hM17_rA8X8 (short *x, short *h, short
*r, int nh, int nr)

FIR Filter (r[] must be double
word aligned, nr must be multiple
of 8)

4-40

void DSP_fir_r4 (short *x, short *h, short *r, int nh, int nr) FIR Filter (nh is a multiple of 4) 4-44

void DSP_fir_r8 (short *x, short *h, short *r, int nh, int nr) FIR Filter (nh is a multiple of 8) 4-48

void DSP_fir_r8_hM16_rM8A8X8 (short *x, short *h, short
*r, int nh, int nr)

FIR Filter (r[] must be double
word aligned, nr is a multiple of 8)

4-48

void DSP_fir_sym (short *x, short *h, short *r, int nh, int nr,
int s)

Symmetric FIR Filter (nh is a
multiple of 8)

4-50
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Table 3−5. Filtering and Convolution (Continued)

Functions PageDescription

void DSP_iir(short Input, short *Coefs, int nCoefs, short
State)

IIR Filter 4-52

void DSP_iir_lat(short *x, int nx, short *k, int nk, int *b,
short *r)

All−pole IIR Lattice Filter 4-54

Table 3−6. Math

Functions Description Page

int DSP_dotp_sqr(int G, short *x, short *y, int *r, int nx) Vector Dot Product and Square 4-56

int DSP_dotprod(short *x, short *y, int nx) Vector Dot Product 4-58

short DSP_maxval (short *x, int nx) Maximum Value of a Vector 4-60

int DSP_maxidx (short *x, int nx) Index of the Maximum Element of
a Vector

4-61

short DSP_minval (short *x, int nx) Minimum Value of a Vector 4-63

void DSP_mul32(int *x, int *y, int *r, short nx) 32-bit Vector Multiply 4-64

void DSP_neg32(int *x, int *r, short nx) 32-bit Vector Negate 4-66

void DSP_recip16 (short *x, short *rfrac, short *rexp, short
nx)

16-bit Reciprocal 4-67

int DSP_vecsumsq (short *x, int nx) Sum of Squares 4-69

void DSP_w_vec(short *x, short *y, short m, short *r, short
nr)

Weighted Vector Sum 4-70

Table 3−7. Matrix

Functions Description Page

void DSP_mat_mul(short *x, int r1, int c1, short *y, int c2,
short *r, int qs)

Matrix Multiplication 4-71

void DSP_mat_trans(short *x, short rows, short columns,
short *r)

Matrix Transpose 4-73
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Table 3−8. Miscellaneous

Functions Description Page

short DSP_bexp(int *x, short nx) Max Exponent of a Vector (for
scaling)

4-74

void DSP_blk_eswap16(void *x, void *r, int nx) Endian-swap a block of 16-bit
values

4-76

void DSP_blk_eswap32(void *x, void *r, int nx) Endian-swap a block of 32-bit
values

4-78

void DSP_blk_eswap64(void *x, void *r, int nx) Endian-swap a block of 64-bit
values

4-80

void DSP_blk_move(short *x, short *r, int nx) Move a Block of Memory 4-82

void DSP_fltoq15 (float *x,short *r, short nx) Float to Q15 Conversion 4-83

int DSP_minerror (short *GSP0_TABLE,short *errCoefs,
int *savePtr_ret)

Minimum Energy Error Search 4-85

void DSP_q15tofl (short *x, float *r, short nx) Q15 to Float Conversion 4-87
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This chapter provides a list of the functions within the DSP library (DSPLIB) organized into
functional categories. The functions within each category are listed in alphabetical order and
include arguments, descriptions, algorithms, benchmarks, and special requirements.

Topic Page

4.1 Adaptive Filtering 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 Correlation 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 FFT 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4 Filtering and Convolution 4-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.5 Math 4-56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.6 Matrix 4-71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.7 Miscellaneous 4-74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4
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4.1 Adaptive Filtering

LMS FIRDSP_firlms2

Function long DSP_firlms2(short * restrict h, short * restrict x, short b, int nh) 

Arguments h[nh] Coefficient Array

x[nh+1] Input Array

b Error from previous FIR

nh Number of coefficients. Must be multiple of 4.

return long Return value

Description The Least Mean Square Adaptive Filter computes an update of all nh
coefficients by adding the weighted error times the inputs to the original
coefficients. The input array includes the last nh inputs followed by a new
single sample input. The coefficient array includes nh coefficients.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

long DSP_firlms2(short h[ ],short x[ ], short b,

int nh)

{

int             i;

long         r = 0;

for (i = 0; i < nh; i++) {

h[i] += (x[i] * b) >> 15;

r += x[i + 1] * h[i];

}

return r;

}

Special Requirements

� This routine assumes 16-bit input and output.
� The number of coefficients nh must be a multiple of 4.
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Implementation Notes
� Interruptibility: The code is interruptible.
� The loop is unrolled 4 times.

Benchmarks Cycles 3 * nh/4 + 11
Codesize 192 bytes
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4.2 Correlation

AutoCorrelationDSP_autocor

Function void DSP_autocor(short * restrict r, short * restrict x, int nx, int nr) 

Arguments r[nr] Output array

x[nx+nr] Input array. Must be double-word aligned.

nx Length of autocorrelation. Must be a multiple of 8.

nr Number of lags. Must be a multiple of 4.

Description This routine accepts an input array of length nx + nr and performs nr
autocorrelations each of length nx producing nr output results. This is typically
used in VSELP code.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_autocor(short r[ ],short x[ ], int nx, int nr)

{

int i,k,sum;

for (i = 0; i < nr; i++){

sum = 0;

for (k = nr; k < nx+nr; k++)

sum += x[k] * x[k−i];

r[i] = (sum >> 15);

}

}

Special Requirements

� nx must be a multiple of 8.
� nr must be a multiple of 4.
� x[ ] must be double-word aligned.



DSP_autocor

4-5 C64x+ DSPLIB Reference

Implementation Notes

� Interruptibility: The code is interruptible.

Benchmarks Cycles 5/32 * nr * nx + 5 * nr + 20
Codesize 512 bytes
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4.3 FFT

Complex Forward Mixed Radix 16 x 16-bit FFTDSP_fft16x16

Function void DSP_fft16x16(short * restrict w, int nx, short * restrict x, short * restrict y)

Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients.

nx Length of FFT in complex samples. Must be a power of 2 or
4,

and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 16-bit data input.

y[2*nx] Pointer to complex 16-bit data output.

Description This routine computes a complex forward mixed radix FFT with rounding and
digit reversal. Input data x[ ], output data y[ ], and coefficients w[ ] are 16-bit.
The output is returned in the separate array y[ ] in normal order. Each complex
value is stored with interleaved real and imaginary parts. The code uses a
special ordering of FFT coefficients (also called twiddle factors) and memory
accesses to improve performance in the presence of cache.

Algorithm All stages are radix-4 except the last one, which can be radix-2 or radix-4,
depending on the size of the FFT. All stages except the last one scale by two
the stage output data.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4, and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the real/imaginary
components stored in adjacent locations in the array. The real
components are stored at even array indices, and the imaginary
components are stored at odd array indices. All data are in short precision
or Q.15 format.
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Implementation Notes

� Interruptibility: The code is interruptible.

The routine uses log4(nx) − 1 stages of radix-4 transform and performs either a radix-2 or radix-4
transform on the last stage depending on nx. If nx is a power of 4, then this last stage is also a
radix-4 transform, otherwise it is a radix-2 transform. The conventional Cooley Tukey FFT is
written using three loops. The outermost loop “k” cycles through the stages. There are log N to
the base 4 stages in all. The loop “j” cycles through the groups of butterflies with different twiddle
factors, and loop “i” reuses the twiddle factors for the different butterflies within a stage. Note the
following:

Stage Groups
Butterflies With Common

Twiddle Factors Groups*Butterflies

1 N/4 1 N/4

2 N/16 4 N/4

.. .. .. ..

logN 1 N/4 N/4

The following statements can be made based on above observations:

1) Inner loop “i0” iterates a variable number of times. In particular, the number
of iterations quadruples every time from 1..N/4. Hence, software pipelining
a loop that iterates a variable number of times is not profitable.

2) Outer loop “j” iterates a variable number of times as well. However, the
number of iterations is quartered every time from N/4 ..1. Hence, the
behavior in (a) and (b) are exactly opposite to each other.

3) If the two loops “i” and “j” are coalesced together then they will iterate for
a fixed number of times, namely N/4. This allows us to combine the “i” and
“j” loops into one loop. Optimized implementations will make use of this
fact.

In addition,, the Cooley Tukey FFT accesses three twiddle factors per iteration
of the inner loop, as the butterflies that reuse twiddle factors are lumped
together. This leads to accessing the twiddle factor array at three points, each
separated by “ie”. Note that “ie” is initially 1, and is quadrupled with every
iteration. Therefore, these three twiddle factors are not even contiguous in the
array.
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To vectorize the FFT, it is desirable to access the twiddle factor array using
double word wide loads and fetch the twiddle factors needed. To do this, a
modified twiddle factor array is created, in which the factors WN/4, WN/2,
W3N/4 are arranged to be contiguous. This eliminates the separation between
twiddle factors within a butterfly. However, this implies that we maintain a
redundant version of the twiddle factor array as the loop is traversed from one
stage to another. Hence, the size of the twiddle factor array increases as
compared to the normal Cooley Tukey FFT. The modified twiddle factor array
is of size “2 * N” where the conventional Cooley Tukey FFT is of size “3N/4”
where N is the number of complex points to be transformed. The routine that
generates the modified twiddle factor array was presented earlier. With the
above transformation of the FFT, both the input data and the twiddle factor
array can be accessed using double-word wide loads to enable packed data
processing.

The final stage is optimized to remove the multiplication as w0 = 1. This stage
also performs digit reversal on the data, so the final output is in natural order.
In addition, if the number of points to be transformed is a power of 2, the final
stage applies a radix-2 pass instead of a radix-4. In any case, the outputs are
returned in normal order.

The code performs the bulk of the computation in place. However, because
digit-reversal cannot be performed in-place, the final result is written to a
separate array, y[].

Benchmarks Codesize 0x300 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 303 106 104

32 644 177 162

64 1146 283 242

128 2789 588 518

256 5427 1158 934

512 13214 2559 2170

1024 26268 5369 4218

2048 62375 11922 9870

4096 124581 25228 19598

8192 288944 55461 45218

16384 577710 116895 90274
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Complex Forward Mixed Radix 16 x 16-bit FFT, With Im/Re OrderDSP_fft16x16_imre

Function void DSP_fft16x16_imre(short * restrict w, int nx, short * restrict x, short * re-
strict y)

Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients.

nx Length of FFT in complex samples. Must be a power of
2 or 4, and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 16-bit data input.

y[2*nx] Pointer to complex 16-bit data output.

Description This routine computes a complex forward mixed radix FFT with rounding and
digit reversal. Input data x[ ], output data y[ ], and coefficients w[ ] are 16-bit.
The output is returned in the separate array y[ ] in normal order. Each complex
value is stored with interleaved imaginary  and real  parts. The code uses a
special ordering of FFT coefficients (also called twiddle factors) and memory
accesses to improve performance in the presence of cache.

Algorithm All stages are radix-4 except the last one, which can be radix-2 or radix-4,
depending on the size of the FFT. All stages except the last one scale by two
the stage output data.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be power a of 2 or 4, and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the imaginary/real
components stored in adjacent locations in the array. The imaginary
components are stored at even array indices, and the real components are
stored at odd array indices. All data are in short precision or Q.15 format.

Implementation Notes
� Interruptibility: The code is interruptible.
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The routine uses log4(nx) − 1 stages of radix-4 transform and performs either
a radix-2 or radix-4 transform on the last stage depending on nx. If nx is a
power of 4, then this last stage is also a radix-4 transform, otherwise it is a
radix-2 transform. The conventional Cooley Tukey FFT is written using three
loops. The outermost loop “k” cycles through the stages. There are log N to
the base 4 stages in all. The loop “j” cycles through the groups of butterflies
with different twiddle factors, and loop “i” reuses the twiddle factors for the
different butterflies within a stage. Note the following:

Stage Groups
Butterflies With Common

Twiddle Factors Groups*Butterflies

1 N/4 1 N/4

2 N/16 4 N/4

.. .. .. ..

logN 1 N/4 N/4

The following statements can be made based on above observations:

1) Inner loop “i0” iterates a variable number of times. In particular, the number
of iterations quadruples every time from 1..N/4. Hence, software pipelining
a loop that iterates a variable number of times is not profitable.

2) Outer loop “j” iterates a variable number of times as well. However, the
number of iterations is quartered every time from N/4 ..1. Hence, the
behavior in (a) and (b) are exactly opposite to each other.

3) If the two loops “i” and “j” are coalesced together then they will iterate for
a fixed number of times, namely N/4. This allows us to combine the “i” and
“j” loops into one loop. Optimized implementations will make use of this
fact.

In addition, the Cooley Tukey FFT accesses three twiddle factors per iteration
of the inner loop, as the butterflies that reuse twiddle factors are lumped
together. This leads to accessing the twiddle factor array at three points, each
separated by “ie”. Note that “ie” is initially 1, and is quadrupled with every
iteration. Therefore these three twiddle factors are not even contiguous in the
array.
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To vectorize the FFT, it is desirable to access twiddle factor array using double
word wide loads and fetch the twiddle factors needed. To do this, a modified
twiddle factor array is created, in which the factors WN/4, WN/2, W3N/4 are
arranged to be contiguous. This eliminates the separation between twiddle
factors within a butterfly. However, this implies that we maintain a redundant
version of the twiddle factor array as the loop is traversed from one stage to
another. Hence, the size of the twiddle factor array increases as compared to
the normal Cooley Tukey FFT. The modified twiddle factor array is of size
“2 * N”, where the conventional Cooley Tukey FFT is of size “3N/4”, where N
is the number of complex points to be transformed. The routine that generates
the modified twiddle factor array was presented earlier. With the above
transformation of the FFT, both the input data and the twiddle factor array can
be accessed using double-word wide loads to enable packed data processing.

The final stage is optimized to remove the multiplication as w0 = 1. This stage
also performs digit reversal on the data, so the final output is in natural order.
In addition, if the number of points to be transformed is a power of 2, the final
stage applies a DSP_radix2 pass instead of a radix 4. In any case, the outputs
are returned in normal order.

The code performs the bulk of the computation in place. However, because
digit-reversal cannot be performed in-place, the final result is written to a
separate array, y[].

Benchmarks Codesize 0x2E0 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 316 131 104

32 688 194 162

64 1246 322 242

128 3046 669 518

256 5956 1325 934

512 14476 2944 2170

1024 28810 6144 4218

2048 68242 13715 9870

4096 136336 28819 19598

8192 315544 63654 45218

16384 630934 133286 90274
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Complex Forward Mixed Radix 16 x 16-bit FFT With RoundingDSP_fft16x16r

Function void DSP_fft16x16r(int nx, short * restrict x, short * restrict w, short * restrict y,
int radix, int offset, int nmax)

Arguments nx Length of FFT in complex samples. Must be power of 2 or 4, and
16 ≤ nx ≤ 65536

x[2*nx] Pointer to complex 16-bit data input

w[2*nx] Pointer to complex FFT coefficients

y[2*nx] Pointer to complex 16-bit data output

radix Smallest FFT butterfly used in computation used for
decomposing FFT into sub-FFTs. See notes.

offset Index in complex samples of sub-FFT from start of main FFT.

nmax Size of main FFT in complex samples.

Description This routine implements a complex forward mixed radix FFT with scaling,
rounding and digit reversal. Input data x[ ], output data y[ ], and coefficients w[ ]
are 16-bit. The output is returned in the separate array y[ ] in normal order.
Each complex value is stored as interleaved 16-bit real and imaginary parts.
The code uses a special ordering of FFT coefficients (also called twiddle
factors).

This redundant set of twiddle factors is size 2*N short samples. As pointed out
in subsequent sections, dividing these twiddle factors by 2 will give an effective
divide by 4 at each stage to guarantee no overflow. The function is accurate
to about 68dB of signal to noise ratio to the DFT function as follows.
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        void dft(int n, short x[], short y[])

        {

           int k,i, index;

           const double PI = 3.14159654;

           short * p_x;

           double arg, fx_0, fx_1, fy_0, fy_1, co, si;

 

           for(k = 0; k<n; k++)

           {

             p_x = x;

             fy_0 = 0;

             fy_1 = 0;

             for(i=0; i<n; i++)

             {

               fx_0 = (double)p_x[0];

               fx_1 = (double)p_x[1];

               p_x += 2;

               index = (i*k) % n;

               arg = 2*PI*index/n;

               co = cos(arg);

               si = −sin(arg);

               fy_0 += ((fx_0 * co) − (fx_1 * si));

               fy_1 += ((fx_1 * co) + (fx_0 * si));

             }

             y[2*k] = (short)2*fy_0/sqrt(n);

             y[2*k+1] = (short)2*fy_1/sqrt(n);

           }

        }

Scaling by 2 (i.e., >>1) takes place at each radix-4 stage except the last one.
A radix-4 stage could give a maximum bit-growth of 2 bits, which would require
scaling by 4. To completely prevent overflow, the input data must be scaled by
2(BT−BS), where BT (total number of bit growth) = log2(nx) and BS (number of
scales by the functions) = ceil[log4(nx)−1]. All shifts are rounded to reduce
truncation noise power by 3dB.
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The function takes the twiddle factors and input data, and calculates the FFT
producing the frequency domain data in the y[ ] array. As the FFT allows every
input point to affect every output point, which causes cache thrashing in a
cache based system. This is mitigated by allowing the main FFT of size N to
be divided into several steps, allowing as much data reuse as possible. For
example, see the following function:

DSP_fft16x16r(1024,&x[0],    &w[0],    y,4,    0,1024);

is equivalent to:

DSP_fft16x16r(1024,&x[2*0],  &w[0]    ,y,256,  0,1024);

DSP_fft16x16r(256, &x[2*0],  &w[2*768],y,4,    0,1024);

DSP_fft16x16r(256, &x[2*256],&w[2*768],y,4,  256,1024);

DSP_fft16x16r(256, &x[2*512],&w[2*768],y,4,  512,1024);

DSP_fft16x16r(256, &x[2*768],&w[2*768],y,4,  768,1024);

Notice how the first FFT function is called on the entire 1K data set. It covers
the first pass of the FFT until the butterfly size is 256.

The following 4 FFTs do 256-point FFTs 25% of the size. These continue down
to the end when the butterfly is of size 4. They use an index to the main twiddle
factor array of 0.75*2*N. This is because the twiddle factor array is composed
of successively decimated versions of the main array.

N not equal to a power of 4 can be used; i.e. 512. In this case, the following
would be needed to decompose the FFT:

DSP_fft16x16r(512, &x[0],    &w[0],    y,2,    0,512);

is equivalent to:

DSP_fft16x16r(512, &x[0],    &w[0],    y,128,  0,512);

DSP_fft16x16r(128, &x[2*0],  &w[2*384],y,2,    0,512);

DSP_fft16x16r(128, &x[2*128],&w[2*384],y,2,  128,512);

DSP_fft16x16r(128, &x[2*256],&w[2*384],y,2,  256,512);

DSP_fft16x16r(128, &x[2*384],&w[2*384],y,2,  384,512);

The twiddle factor array is composed of log4(N) sets of twiddle factors, (3/4)*N,
(3/16)*N, (3/64)*N, etc. The index into this array for each stage of the FFT is
calculated by summing these indices up appropriately. For multiple FFTs, they
can share the same table by calling the small FFTs from further down in the
twiddle factor array, in the same way as the decomposition works for more data
reuse.

Thus, the above decomposition can be summarized for a general N, radix “rad”
as follows.

DSP_fft16x16r(N,  &x[0],      &w[0],      y,N/4,0,    N)
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DSP_fft16x16r(N/4,&x[0],      &w[2*3*N/4],y,rad,0,    N)

DSP_fft16x16r(N/4,&x[2*N/4],  &w[2*3*N/4],y,rad,N/4,  N)

DSP_fft16x16r(N/4,&x[2*N/2],  &w[2*3*N/4],y,rad,N/2,  N)

DSP_fft16x16r(N/4,&x[2*3*N/4],&w[2*3*N/4],y,rad,3*N/4,N)

As discussed previously, N can be either a power of 4 or 2. If N is a power of
4, then rad = 4, and if N is a power of 2 and not a power of 4, then rad = 2. “rad”
controls how many stages of decomposition are performed. It also determines
whether a radix4 or DSP_radix2 decomposition should be performed at the
last stage. Hence, when “rad” is set to “N/4”, the first stage of the transform
alone is performed and the code exits. To complete the FFT, four other calls
are required to perform N/4 size FFTs. In fact, the ordering of these 4 FFTs
amongst themselves does not matter and, thus, from a cache perspective, it
helps to go through the remaining 4 FFTs in exactly the opposite order to the
first. This is illustrated as follows:

DSP_fft16x16r(N,  &x[0],      &w[0],      y,N/4,0,     N)

DSP_fft16x16r(N/4,&x[2*3*N/4],&w[2*3*N/4],y,rad,3*N/4, N)

DSP_fft16x16r(N/4,&x[2*N/2],  &w[2*3*N/4],y,rad,N/2,   N)

DSP_fft16x16r(N/4,&x[2*N/4],  &w[2*3*N/4],y,rad,N/4,   N)

DSP_fft16x16r(N/4,&x[0],      &w[2*3*N/4],y,rad,0,     N)

In addition, this function can be used to minimize call overhead by completing
the FFT with one function call invocation as shown below:

DSP_fft16x16r(N, &x[0], &w[0], y, rad, 0, N)

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void fft16x16r

(

    int             n,

    short           *ptr_x,

    short           *ptr_w,

    short           *y,

    int             radix,

    int             offset,

    int             nmax

)

{

    int   i, l0, l1, l2, h2, predj;

    int   l1p1,l2p1,h2p1, tw_offset, stride, fft_jmp;
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    short xt0, yt0, xt1, yt1, xt2, yt2;

    short si1,si2,si3,co1,co2,co3;

    short xh0,xh1,xh20,xh21,xl0,xl1,xl20,xl21;

    short x_0, x_1, x_l1, x_l1p1, x_h2 , x_h2p1, x_l2, x_l2p1;

    short *x,*w;

    short *ptr_x0, *ptr_x2, *y0;

    unsigned int j, k, j0, j1, k0, k1;

    short x0, x1, x2, x3, x4, x5, x6, x7;

    short xh0_0, xh1_0, xh0_1, xh1_1;

    short xl0_0, xl1_0, xl0_1, xl1_1;

    short yt3, yt4, yt5, yt6, yt7;

    unsigned a, num;

    stride = n;         /* n is the number of complex samples
*/

    tw_offset = 0;

    while (stride > radix)

    {

        j = 0;

        fft_jmp = stride + (stride>>1);

        h2 = stride>>1;

        l1 = stride;

        l2 = stride + (stride>>1);

        x = ptr_x;

        w = ptr_w + tw_offset;

        for (i = 0; i < n>>1; i += 2)

        {

            co1 = w[j+0];

            si1 = w[j+1];

            co2 = w[j+2];

            si2 = w[j+3];

            co3 = w[j+4];

            si3 = w[j+5];

            j += 6;

            x_0    = x[0];

            x_1    = x[1];

            x_h2   = x[h2];
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            x_h2p1 = x[h2+1];

            x_l1   = x[l1];

            x_l1p1 = x[l1+1];

            x_l2   = x[l2];

            x_l2p1 = x[l2+1];

 

            xh0  = x_0    + x_l1;

            xh1  = x_1    + x_l1p1;

            xl0  = x_0    − x_l1;

            xl1  = x_1    − x_l1p1;

            xh20 = x_h2   + x_l2;

            xh21 = x_h2p1 + x_l2p1;

            xl20 = x_h2   − x_l2;

            xl21 = x_h2p1 − x_l2p1;

            ptr_x0 = x;

            ptr_x0[0] = ((short)(xh0 + xh20))>>1;

            ptr_x0[1] = ((short)(xh1 + xh21))>>1;

            ptr_x2 = ptr_x0;

            x += 2;

            predj = (j − fft_jmp);

            if (!predj) x += fft_jmp;

            if (!predj) j = 0;

            xt0  = xh0 − xh20;

            yt0  = xh1 − xh21;

            xt1  = xl0 + xl21;

            yt2  = xl1 + xl20;

            xt2  = xl0 − xl21;

            yt1  = xl1 − xl20;

            l1p1 = l1+1;

            h2p1 = h2+1;

            l2p1 = l2+1;

            ptr_x2[l1  ] = (xt1 * co1 + yt1 * si1 + 
0x00008000) >> 16;

            ptr_x2[l1p1] = (yt1 * co1 − xt1 * si1 + 
0x00008000) >> 16;

            ptr_x2[h2  ] = (xt0 * co2 + yt0 * si2 +
 0x00008000) >> 16;
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            ptr_x2[h2p1] = (yt0 * co2 − xt0 * si2 + 
x00008000) >> 16;

            ptr_x2[l2  ] = (xt2 * co3 + yt2 * si3 + 
0x00008000) >> 16;

            ptr_x2[l2p1] = (yt2 * co3 − xt2 * si3 + 
0x00008000) >> 16;

        }

        tw_offset += fft_jmp;

        stride = stride>>2;

    } /* end while */

    j = offset>>2;

    ptr_x0 = ptr_x;

    y0 = y;

    /* determine _norm(nmax) − 17 */

    l0 = 31;

    if (((nmax>>31)&1)==1)

        num = ~nmax;

    else

        num = nmax;

    if (!num)

        l0 = 32;

    else

    {

        a=num&0xFFFF0000; if (a) { l0−=16; num=a; }

        a=num&0xFF00FF00; if (a) { l0−= 8; num=a; }

        a=num&0xF0F0F0F0; if (a) { l0−= 4; num=a; }

        a=num&0xCCCCCCCC; if (a) { l0−= 2; num=a; }

        a=num&0xAAAAAAAA; if (a) { l0−= 1; }

    }

    l0 −= 1;

    l0 −= 17;

    if(radix == 2 || radix  == 4)

        for (i = 0; i < n; i += 4)

        {

                /* reversal computation */

                j0 = (j     ) & 0x3F;

                j1 = (j >> 6) & 0x3F;
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                k0 = _bitr(j0) >> 10;

                k1 = _bitr(j1) >> 10;

                k = (k0 << 6) |  k1;

                if (l0 < 0)

                  k = k << −l0;

                else

                  k = k >> l0;

                j++;        /* multiple of 4 index */

                x0   = ptr_x0[0];  x1 = ptr_x0[1];

                x2   = ptr_x0[2];  x3 = ptr_x0[3];

                x4   = ptr_x0[4];  x5 = ptr_x0[5];

                x6   = ptr_x0[6];  x7 = ptr_x0[7];

                ptr_x0 += 8;

 

                xh0_0  = x0 + x4;

                xh1_0  = x1 + x5;

                xh0_1  = x2 + x6;

                xh1_1  = x3 + x7;

                if (radix == 2)

                {

                  xh0_0 = x0;

                  xh1_0 = x1;

                  xh0_1 = x2;

                  xh1_1 = x3;

                }

 

                yt0  = xh0_0 + xh0_1;

                yt1  = xh1_0 + xh1_1;

                yt4  = xh0_0 − xh0_1;

                yt5  = xh1_0 − xh1_1;

                xl0_0  = x0 − x4;

                xl1_0  = x1 − x5;

                xl0_1  = x2 − x6;

                xl1_1  = x3 − x7;

                if (radix == 2)

                {
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                  xl0_0 = x4;

                  xl1_0 = x5;

                  xl1_1 = x6;

                  xl0_1 = x7;

                }

                yt2  = xl0_0 + xl1_1;

                yt3  = xl1_0 − xl0_1;

                yt6  = xl0_0 − xl1_1;

                yt7  = xl1_0 + xl0_1;

                if (radix == 2)

                {

                  yt7  = xl1_0 − xl0_1;

                  yt3  = xl1_0 + xl0_1;

                }

                y0[k] = yt0; y0[k+1] = yt1;

                k += n>>1;

                y0[k] = yt2; y0[k+1] = yt3;

                k += n>>1;

                y0[k] = yt4; y0[k+1] = yt5;

                k += n>>1;

                y0[k] = yt6; y0[k+1] = yt7;

        }

}

Special Requirements

� In-place computation is not allowed.

� nx must be a power of 2 or 4.

� Complex input data x[ ], twiddle factors w[ ], and output array y[ ] must be
double-word aligned.

� Real values are stored in even word, imaginary in odd.

� All data are in short precision or Q.15 format. Allowed input dynamic range
is 16 − (log2(nx)−ceil[log4(nx)−1]).

� Output results are returned in normal order.

� The FFT coefficients (twiddle factors) are generated using the function
gen_twiddle_fft16x16 provided in the ’c64plus\dsplib\src\DSP_fft16x16r’
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directory. The scale factor must be 32767.5. The input data must be scaled
by 2(log2(nx)−ceil[log4(nx)−1]) to completely prevent overflow.

Implementation Notes

� Interruptibility: The code is interruptible.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

� A special sequence of coefficients used as generated above produces the
FFT. This collapses the inner 2 loops in the traditional Burrus and Parks
implementation.

� The revised FFT uses a redundant sequence of twiddle factors to allow a
linear access through the data. This linear access enables data and
instruction level parallelism.

� The butterfly is bit reversed; i.e. the inner 2 points of the butterfly are
crossed over. This makes the data come out in bit reversed rather than in
radix 4 digit reversed order. This simplifies the last pass of the loop. The
BITR instruction does the bit reversal out of place.

Benchmarks Codesize 0x240 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 293 126 103

32 625 199 175

64 1111 336 263

128 2721 715 557

256 5295 1396 1005

512 12953 3199 2307

1024 25751 6536 4483

2048 61345 14995 10393

4096 122527 30876 20633

8192 284841 69799 47279

16384 569511 143536 94383
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Complex Forward Mixed Radix 16 x 32-bit FFT With RoundingDSP_fft16x32

Function void DSP_fft16x32(short * restrict w, int nx, int * restrict x, int * restrict y)

Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients.

nx Length of FFT in complex samples. Must be power of 2 or 4,
and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 32-bit data input.

y[2*nx] Pointer to complex 32-bit data output.

Description This routine computes an extended precision complex forward mixed radix
FFT with rounding and digit reversal. Input data x[ ] and output data y[ ] are
32-bit, coefficients w[ ] are 16-bit. The output is returned in the separate array
y[ ] in normal order. Each complex value is stored with interleaved real and
imaginary parts. The code uses a special ordering of FFT coefficients (also
called twiddle factors) and memory accesses to improve performance in the
presence of cache. The C code to generate the twiddle factors is provided with
this library in the ’c64plus\dsplib\src\DSP_fft16x32’ directory.

Algorithm For further details, see the source code of the C and Optimized C version of
this function that is provided in the ’c64plus\dsplib\src\DSP_fft16x32’
directory.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4 and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the real/imaginary
components stored in adjacent locations in the array. The real
components are stored at even array indices, and the imaginary
components are stored at odd array indices.

� The FFT coefficients (twiddle factors) are generated using the function
gen_twiddle_fft16x32 provided in the ’c64plus\dsplib\src\DSP_fft16x32’
directory. The scale factor must be 32767.5. No scaling is done with the
function; thus the input data must be scaled by 2(log2(nx)−ceil[log4(nx)−1]) to
completely prevent overflow.
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Implementation Notes

� Interruptibility: The code is interruptible.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

� See the fft16x16t implementation notes, as similar ideas are used.

Benchmarks Codesize 0x5A0

MIPS (CPU Cycles)

N Nat C INT C SA

16 372 161 140

32 884 296 246

64 1622 457 382

128 4182 978 857

256 8212 1827 1577

512 20572 4204 3748

1024 40986 8429 7332

2048 98978 19478 17343

4096 197792 39703 34495

8192 464040 90432 80090

16384 927910 184641 159962
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Complex Forward Mixed Radix 32 x 32-bit FFT With RoundingDSP_fft32x32

Function void DSP_fft32x32(int * restrict w, int nx, int * restrict x, int * restrict y)

Arguments w[2*nx] Pointer to complex 32-bit FFT coefficients.

nx Length of FFT in complex samples. Must be power of 2 or 4,
and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 32-bit data input.

y[2*nx] Pointer to complex 32-bit data output.

Description This routine computes an extended precision complex forward mixed radix
FFT with rounding and digit reversal. Input data x[ ], output data y[ ], and
coefficients w[ ] are 32-bit. The output is returned in the separate array y[ ] in
normal order. Each complex value is stored with interleaved real and
imaginary parts. The code uses a special ordering of FFT coefficients (also
called twiddle factors) and memory accesses to improve performance in the
presence of cache. The C code to generate the twiddle factors is provided with
this library in the ’c64plus\dsplib\src\DSP_fft32x32’ directory.

Algorithm For further details, see the source code of the C and Optimized C version of
this function that is provided in the ’c64plus\dsplib\src\DSP_fft32x32’
directory.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4 and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the real/imaginary
components stored in adjacent locations in the array. The real
components are stored at even array indices, and the imaginary
components are stored at odd array indices.

� The FFT coefficients (twiddle factors) are generated using the function
gen_twiddle_fft32x32 provided in the ’c64plus\dsplib\src\DSP_fft32x32’
directory. The scale factor must be 2147483647.5 No scaling is done with
the function; thus the input data must be scaled by 2log2(nx) to completely
prevent overflow.
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Implementation Notes

� Interruptibility: The code is interruptible.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

Benchmarks Codesize 0x380 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 417 150 149

32 1132 288 270

64 2146 492 422

128 5813 1132 966

256 11507 2208 1782

512 29430 5264 4278

1024 58740 10644 8374

2048 143479 24996 19926

4096 286837 50856 39638

8192 678008 116920 92406

16384 1355894 237756 184566
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Complex Forward Mixed Radix 32 x 32-bit FFT With ScalingDSP_fft32x32s

Function void DSP_fft32x32s(int * restrict w, int nx, int * restrict x, int * restrict y)

Arguments w[2*nx] Pointer to complex 32-bit FFT coefficients.

nx Length of FFT in complex samples. Must be power of 2 or 4,
and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 32-bit data input.

y[2*nx] Pointer to complex 32-bit data output.

Description This routine computes an extended precision complex forward mixed radix
FFT with scaling, rounding and digit reversal. Input data x[ ], output data y[ ],
and coefficients w[ ] are 32-bit. The output is returned in the separate array y[ ]
in normal order. Each complex value is stored with interleaved real and
imaginary parts. The code uses a special ordering of FFT coefficients (also
called twiddle factors) and memory accesses to improve performance in the
presence of cache. The C code to generate the twiddle factors is provided with
this library in the ’c64plus\dsplib\src\DSP_fft32x32s’ directory.

Algorithm For further details, see the source code of the C and Optimized C version of
this function that is provided in the ’c64plus\dsplib\src\DSP_fft32x32s’
directory.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4 and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the real/imaginary
components stored in adjacent locations in the array. The real
components are stored at even array indices, and the imaginary
components are stored at odd array indices.
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� The FFT coefficients (twiddle factors) are generated using the function
gen_twiddle_fft32x32s provided in the ’c64plus\dsplib\src\DSP_fft32x3s’
directory. The scale factor must be 1073741823.5. No scaling is done with
the function; thus the input data must be scaled by 2(log2(nx) − ceil[log4(nx)−1])

to completely prevent overflow.

Implementation Notes

� Interruptibility: The code is interruptible.

� Scaling is performed at each stage by shifting the results right by 1,
preventing overflow.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

Benchmarks Codesize 0x3C0 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 404 150 133

32 1086 284 271

64 2052 506 423

128 5530 1220 971

256 10936 2410 1787

512 27902 5876 4287

1024 55676 11898 8383

2048 135810 28292 19939

4096 271488 57482 39651

8192 6411158 133268 92423

16384 1282180 270490 184583
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Complex Inverse Mixed Radix 16 x 16-bit FFT With RoundingDSP_ifft16x16

Function void DSP_ifft16x16(short * restrict w, int nx, short * restrict x, short * restrict y)

Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients.

nx Length of FFT in complex samples. Must be power of 2 or 4,
and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 16-bit data input.

y[2*nx] Pointer to complex 16-bit data output.

Description This routine computes a complex inverse mixed radix IFFT with rounding and
digit reversal. Input data x[ ], output data y[ ], and coefficients w[ ] are 16-bit.
The output is returned in the separate array y[ ] in normal order. Each complex
value is stored with interleaved real and imaginary parts. The code uses a
special ordering of IFFT coefficients (also called twiddle factors) and memory
accesses to improve performance in the presence of cache.

The fft16x16 can be used to perform IFFT, by first conjugating the input,
performing the FFT, and conjugating again. This allows fft16x16 to perform the
IFFT as well. However, if the double conjugation needs to be avoided, then this
routine uses the same twiddle factors as the FFT and performs an IFFT. The
change in the sign of the twiddle factors is adjusted for in the routine. Hence,
this routine uses the same twiddle factors as the fft16x16 routine.

Algorithm For further details, see the source code of the C and Optimized C version of
this function that is provided in the ’c64plus\dsplib\src\DSP_ifft16x16’
directory.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4 and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the real/imaginary
components stored in adjacent locations in the array. The real
components are stored at even array indices, and the imaginary
components are stored at odd array indices.

� Scaling by two is performed after each radix-4 stage except the last one.

Implementation Notes
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� Interruptibility: The code is interruptible.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

Benchmarks Codesize 0x2E0

MIPS (CPU Cycles)

N Nat C INT C SA

16 302 193 99

32 654 403 157

64 1172 724 237

128 2878 1735 513

256 5612 3464 929

512 13718 8347 2165

1024 27284 17052 4213

2048 64926 40111 9865

4096 129692 82096 19593

8192 301222 188611 45213

16384 602276 385220 90269
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Complex Inverse Mixed Radix 16 x 16-bit FFT With Im/Re OrderDSP_ifft16x16_imre

Function void DSP_ifft16x16_imre(short * restrict w, int nx, short * restrict x, short *
restrict y)

Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients.

nx Length of FFT in complex samples. Must be power of 2 or 4,
and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex data input.

y[2*nx] Pointer to complex data output.

Description This routine computes a complex inverse mixed radix IFFT with rounding and
digit reversal. Input data x[ ], output data y[ ], and coefficients w[ ] are 16-bit.
The output is returned in the separate array y[ ] in normal order. Each complex
value is stored with interleaved imaginary and real parts. The code uses a
special ordering of IFFT coefficients (also called twiddle factors) and memory
accesses to improve performance in the presence of cache.

The fft16x16_imre can be used to perform IFFT, by first conjugating the input,
performing the FFT, and conjugating again. This allows fft16x16_imre to
perform the IFFT as well. However, if the double conjugation needs to be
avoided, then this routine uses the same twiddle factors as the FFT and
performs an IFFT. The change in the sign of the twiddle factors is adjusted for
in the routine. Hence, this routine uses the same twiddle factors as the
fft16x16_imre routine.

Algorithm For further details, see the source code of the C and Optimized C version of
this function that is provided in the ’c64plus\dsplib\src\DSP_ifft16x16_imre’
directory.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4, and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the imaginary/real
components stored in adjacent locations in the array. The imaginary
components are stored at even array indices, and the real components are
stored at odd array indices.

� Scaling by two is performed after each radix-4 stage except the last one.
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Implementation Notes

� Interruptibility: The code is interruptible.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

Benchmarks Codesize 0x400 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 319 198 112

32 690 415 175

64 1252 734 255

128 3043 1751 536

256 5953 3478 952

512 14408 8367 2193

1024 28678 17070 4241

2048 67725 40135 9898

4096 135307 82118 19626

8192 312466 188639 45251

16384 624784 385246 90307
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Complex Inverse Mixed Radix 16 x 32-bit FFT With RoundingDSP_ifft16x32

Function void DSP_ifft16x32(short * restrict w, int nx, int * restrict x, int * restrict y)

Arguments w[2*nx] Pointer to complex Q.15 FFT coefficients.

nx Length of FFT in complex samples. Must be power of 2 or 4,
and 16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 32-bit data input.

y[2*nx] Pointer to complex 32-bit data output.

Description This routine computes an extended precision complex inverse mixed radix
FFT with rounding and digit reversal. Input data x[ ] and output data y[ ] are
32-bit, coefficients w[ ] are 16-bit. The output is returned in the separate array
y[ ] in normal order. Each complex value is stored with interleaved real and
imaginary parts. The code uses a special ordering of FFT coefficients (also
called twiddle factors) and memory accesses to improve performance in the
presence of cache.

fft16x32 can be reused to perform IFFT, by first conjugating the input,
performing the FFT, and conjugating again. This allows fft16x32 to perform the
IFFT as well. However, if the double conjugation needs to be avoided, then this
routine uses the same twiddle factors as the FFT and performs an IFFT. The
change in the sign of the twiddle factors is adjusted for in the routine. Hence,
this routine uses the same twiddle factors as the fft16x32 routine.

Algorithm For further details, see the source code of the C and Optimized C version of
this function that is provided in the ’c64plus\dsplib\src\DSP_ifft16x32’
directory.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4 and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the real/imaginary
components stored in adjacent locations in the array. The real
components are stored at even array indices, and the imaginary
components are stored at odd array indices.
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� The FFT coefficients (twiddle factors) are generated using the function
gen_twiddle_ifft16x32 provided in the ’c64plus\dsplib\src\DSP_ifft16x32’
directory. The scale factor must be 32767.5. No scaling is done with the
function; thus the input data must be scaled by 2log2(nx) to completely
prevent overflow.

Implementation Notes

� Interruptibility: The code is interruptible.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

Benchmarks Codesize 0x360 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 326 190 133

32 725 297 247

64 1311 453 391

128 3264 986 901

256 6382 1794 1669

512 15703 4255 4003

1024 31253 8295 7843

2048 74654 19716 18625

4096 149148 39180 37057

8192 347301 91433 86239

16384 694435 182577 172255
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Complex Inverse Mixed Radix 32 x 32-bit FFT With RoundingDSP_ifft32x32

Function void DSP_ifft32x32(int * restrict w, int nx, int * restrict x, int * restrict y)

Arguments w[2*nx] Pointer to complex 32-bit FFT coefficients.

nx Length of FFT in complex samples. Must be power of 2 or 4, and
16 ≤ nx ≤ 65536.

x[2*nx] Pointer to complex 32-bit data input.

y[2*nx] Pointer to complex 32-bit data output.

Description This routine computes an extended precision complex inverse mixed radix
FFT with rounding and digit reversal. Input data x[ ], output data y[ ], and
coefficients w[ ] are 32-bit. The output is returned in the separate array y[ ] in
normal order. Each complex value is stored with interleaved real and
imaginary parts. The code uses a special ordering of FFT coefficients (also
called twiddle factors) and memory accesses to improve performance in the
presence of cache.

fft32x32 can be reused to perform IFFT, by first conjugating the input,
performing the FFT, and conjugating again. This allows fft32x32 to perform the
IFFT as well. However, if the double conjugation needs to be avoided, then this
routine uses the same twiddle factors as the FFT and performs an IFFT. The
change in the sign of the twiddle factors is adjusted for in the routine. Hence,
this routine uses the same twiddle factors as the fft32x32 routine.

Algorithm For further details, see the source code of the C and Optimized C version of
this function that is provided in the ’c64plus\dsplib\src\DSP_ifft32x32’
directory.

Special Requirements

� In-place computation is not allowed.

� The size of the FFT, nx, must be a power of 2 or 4 and 16 ≤ nx ≤ 65536.

� The arrays for the complex input data x[ ], complex output data y[ ], and
twiddle factors w[ ] must be double-word aligned.

� The input and output data are complex, with the real/imaginary
components stored in adjacent locations in the array. The real
components are stored at even array indices, and the imaginary
components are stored at odd array indices.
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� The FFT coefficients (twiddle factors) are generated using the function
gen_twiddle_ifft32x32 provided in the ’c64plus\dsplib\src\DSP_ifft32x32’
directory. The scale factor must be 2147483647.5. No scaling is done with
the function; thus the input data must be scaled by 2log2(nx) to completely
prevent overflow.

Implementation Notes

� Interruptibility: The code is interruptible.

� The routine uses log4(nx) − 1 stages of radix-4 transform and performs
either a radix-2 or radix-4 transform on the last stage depending on nx. If
nx is a power of 4, then this last stage is also a radix-4 transform, otherwise
it is a radix-2 transform.

Benchmarks Codesize 0x3A0 bytes

MIPS (CPU Cycles)

N Nat C INT C SA

16 380 148 145

32 968 297 264

64 1810 451 416

128 4812 1036 958

256 9498 1894 1774

512 24124 4559 4268

1024 48122 8905 8364

2048 117116 21234 19914

4096 234106 42220 39626

8192 552060 98581 92392

16384 1103994 196879 184552
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4.4 Filtering and Convolution

Complex FIR FilterDSP_fir_cplx

Function void DSP_fir_cplx (short * restrict x, short * restrict h, short * restrict r, int nh,
int nr)  

Arguments x[2*(nr+nh−1)] Complex input data. x must point to x[2*(nh−1)].

h[2*nh] Complex coefficients (in normal order).

r[2*nr] Complex output data.

nh Number of complex coefficients. Must be a multiple of 2.

nr Number of complex output samples. Must be a multiple of 4.

Description This function implements the FIR filter for complex input data. The filter has
nr output samples and nh coefficients. Each array consists of an even and odd
term with even terms representing the real part and the odd terms the
imaginary part of the element. The pointer to input array x must point to the
(nh)th complex sample; i.e., element 2*(nh−1), upon entry to the function. The
coefficients are expected in normal order.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_cplx(short *x, short *h, short *r,short nh, short
nr)

{

short i,j;

int imag, real;

for (i = 0; i < 2*nr; i += 2){

imag = 0;

real = 0;

for (j = 0; j < 2*nh; j += 2){

real += h[j] * x[i−j] − h[j+1] * x[i+1−j];

imag += h[j] * x[i+1−j] + h[j+1] * x[i−j];

}

r[i] = (real >> 15);
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r[i+1] = (imag >> 15);

}

}

Special Requirements

� The number of coefficients nh must be a multiple of 2.
� The number of output samples nr must be a multiple of 4.

Implementation Notes

� Interruptibility: The code is interrupt-tolerant but not interruptible.

Benchmarks Cycles nr * (nh + 1.5) + 65
Codesize 960 bytes
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Complex FIR FilterDSP_fir_cplx_hM4X4

Function void DSP_fir_cplx _hM4X4(short * restrict x, short * restrict h, short * restrict
r, int nh, int nr)  

Arguments x[2*(nr+nh−1)] Complex input data. x must point to x[2*(nh−1)].

h[2*nh] Complex coefficients (in normal order).

r[2*nr] Complex output data.

nh Number of complex coefficients. Must be a multiple of 4.

nr Number of complex output samples. Must be a multiple of 4.

Description This function implements the FIR filter for complex input data. The filter has
nr output samples and nh coefficients. Each array consists of an even and odd
term with even terms representing the real part and the odd terms the
imaginary part of the element. The pointer to input array x must point to the
(nh)th complex sample; i.e., element 2*(nh−1), upon entry to the function. The
coefficients are expected in normal order.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_cplx(short *x, short *h, short *r,short nh, short
nr)

{

short i,j;

int imag, real;

for (i = 0; i < 2*nr; i += 2){

imag = 0;

real = 0;

for (j = 0; j < 2*nh; j += 2){

real += h[j] * x[i−j] − h[j+1] * x[i+1−j];

imag += h[j] * x[i+1−j] + h[j+1] * x[i−j];

}

r[i] = (real >> 15);

r[i+1] = (imag >> 15);

}

}
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Special Requirements

� The number of coefficients nh must be larger or equal to 4 and a multiple
of 4.

� The number of output samples nr must be a multiple of 4.

Implementation Notes

� Interruptibility: The code is fully interruptible.

Benchmarks Cycles nr * (nh* 3) + 62
Codesize 960 bytes
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FIR FilterDSP_fir_gen

Function void DSP_fir_gen (short * restrict x, short * restrict h, short * restrict r, int nh,
int nr) 

Arguments x[nr+nh−1] Pointer to input array of size nr + nh − 1.

h[nh] Pointer to coefficient array of size nh (coefficients must be in
reverse order).

r[nr] Pointer to output array of size nr. Must be word aligned.

nh Number of coefficients. Must be ≥5.

nr Number of samples to calculate. Must be a multiple of 4.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[ ].
The real data input is stored in vector x[ ]. The filter output result is stored in
vector r[ ]. It operates on 16-bit data with a 32-bit accumulate. The filter
calculates nr output samples using nh coefficients.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_gen(short *x, short *h, short *r, int nh, int nr)

{

int i, j, sum;

 

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}
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Special Requirements

� The number of outputs computed, nr, must be a multiple of 4 and greater
than or equal to 4.

� Array r[ ] must be word aligned.

Implementation Notes

� Interruptibility: The code is interruptible.

� Load double-word instruction is used to simultaneously load four values
in a single clock cycle.

Benchmarks Cycles: 1/2* nr * (1/2* nh + 9) + 26
Codesize: 416 bytes
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FIR FilterDSP_fir_gen_hM17_rA8X8

Function void DSP_fir_gen_hM17_rA8X8 (short * restrict x, short * restrict h, short * re-
strict r, int nh, int nr) 

Arguments x[nr+nh−1] Pointer to input array of size nr + nh − 1.

h[nh] Pointer to coefficient array of size nh (coefficients must be in
reverse order).

r[nr] Pointer to output array of size nr. Must be double word 
aligned.

nh Number of coefficients.

nr Number of samples to calculate. Must be a multiple of 8.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[ ].
The real data input is stored in vector x[ ]. The filter output result is stored in
vector r[ ]. It operates on 16-bit data with a 32-bit accumulate. The filter
calculates nr output samples using nh coefficients.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_gen(short *x, short *h, short *r, int nh, int nr)

{

int i, j, sum;

 

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}
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Special Requirements

� The number of outputs computed, nr, must be a multiple of 8 and greater
than or equal to 8.

� Array r[ ] must be word aligned.

Implementation Notes

� Interruptibility: The code is fully interruptible.

� Load double-word instruction is used to simultaneously load four values
in a single clock cycle.

Benchmarks Cycles: nr * (1/4* nh + 5) + 45
Codesize: 800 bytes
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FIR Filter (when the number of coefficients is a multiple of 4)DSP_fir_r4

Function void DSP_fir_r4 (short  * restrict x, short  * restrict h, short * restrict r, int nh,
int nr)

Arguments x[nr+nh−1] Pointer to input array of size nr + nh – 1.

h[nh] Pointer to coefficient array of size nh (coefficients must be in
reverse order).

r[nr] Pointer to output array of size nr.

nh Number of coefficients. Must be multiple of 4 and ≥8.

nr Number of samples to calculate. Must be multiple of 4.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[ ].
The real data input is stored in vector x[ ]. The filter output result is stored in
vector r[ ]. This FIR operates on 16-bit data with a 32-bit accumulate. The filter
calculates nr output samples using nh coefficients.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_r4(short *x, short *h, short *r, int nh, int nr)

{

int i, j, sum;

 

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}
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Special Requirements

� The number of coefficients, nh, must be a multiple of 4 and greater than
or equal to 8. Coefficients must be in reverse order.

� The number of outputs computed, nr, must be a multiple of 4 and greater
than or equal to 4.

Implementation Notes

� Interruptibility: The code is interruptible.

� The load double-word instruction is used to simultaneously load four
values in a single clock cycle.

Benchmarks Cycles nr * (1/4 * nh + 4) + 15
Codesize 320 bytes
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FIR Filter (when the number of coefficients is a multiple of 8)DSP_fir_r8

Function void DSP_fir_r8 (short * restrict x, short * h, short * restrict r, int nh, int nr)

Arguments x[nr+nh−1] Pointer to input array of size nr + nh – 1.

h[nh] Pointer to coefficient array of size nh (coefficients must be in
reverse order).

r[nr] Pointer to output array of size nr. Must be word aligned.

nh Number of coefficients. Must be multiple of 8, ≥ 8.

nr Number of samples to calculate. Must be multiple of 4.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[ ].
The real data input is stored in vector x[ ]. The filter output result is stored in
vector r[ ]. This FIR operates on 16-bit data with a 32-bit accumulate. The filter
calculates nr output samples using nh coefficients.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_r8 (short *x, short *h, short *r, int nh, int nr)

{

int i, j, sum;

 

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}

Special Requirements

� The number of coefficients, nh, must be a multiple of 8 and greater than
or equal to 8. Coefficients must be in reverse order.

� The number of outputs computed, nr, must be a multiple of 4 and greater
than or equal to 4.
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� Array r[ ] must be word aligned.

Implementation Notes

� Interruptibility: The code is interruptible.

� The load double-word instruction is used to simultaneously load four
values in a single clock cycle.

Benchmarks Cycles nr * (1/4* nh + 5.25) + 16
Codesize 544 bytes
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FIR Filter (the number of coefficients is a multiple of 8)DSP_fir_r8_hM16_rM8A8X8

Function void DSP_fir_r8_hM16_rM8A8X8 (short * restrict x, short * h, short * restrict
r, int nh, int nr)

Arguments x[nr+nh−1] Pointer to input array of size nr + nh – 1.

h[nh] Pointer to coefficient array of size nh (coefficients must be in
reverse order).

r[nr] Pointer to output array of size nr. Must be double word 
aligned.

nh Number of coefficients. Must be multiple of 8, ≥ 16.

nr Number of samples to calculate. Must be multiple of 8, ≥.8.

Description Computes a real FIR filter (direct-form) using coefficients stored in vector h[ ].
The real data input is stored in vector x[ ]. The filter output result is stored in
vector r[ ]. This FIR operates on 16-bit data with a 32-bit accumulate. The filter
calculates nr output samples using nh coefficients.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_r8 (short *x, short *h, short *r, int nh, int nr)

{

int i, j, sum;

 

for (j = 0; j < nr; j++) {

sum = 0;

for (i = 0; i < nh; i++)

sum += x[i + j] * h[i];

r[j] = sum >> 15;

}

}
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Special Requirements

� The number of coefficients, nh, must be a multiple of 8 and greater than
or equal to 16. Coefficients must be in reverse order.

� The number of outputs computed, nr, must be a multiple of 8 and greater
than or equal to 8.

� Array r[ ] must be double word aligned.

Implementation Notes

� Interruptibility: The code is interruptible.

� The load double-word instruction is used to simultaneously load four
values in a single clock cycle.

Benchmarks Cycles 1/2 * nr * (1/2* nh + 9) + 19
Codesize 544 bytes
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Symmetric FIR FilterDSP_fir_sym

Function void DSP_fir_sym (short  * restrict x, short  * restrict h, short * restrict r, int nh,
int nr, int s) 

Arguments x[nr+2*nh] Pointer to input array of size nr + 2*nh. Must be double-word
aligned.

h[nh+1] Pointer to coefficient array of size nh + 1. Coefficients are in
normal order and only half (nh+1 out of 2*nh+1) are required.
Must be double-word aligned.

r[nr] Pointer to output array of size nr. Must be word aligned.

nh Number of coefficients. Must be multiple of 8. The number of
original symmetric coefficients is 2*nh+1.

nr Number of samples to calculate. Must be multiple of 4.

s Number of insignificant digits to truncate; e.g., 15 for Q.15 
input data and coefficients.

Description This function applies a symmetric filter to the input samples. The filter tap array
h[] provides ‘nh+1’ total filter taps. The filter tap at h[nh] forms the center point
of the filter. The taps at h[nh − 1] through h[0] form a symmetric filter about this
central tap. The effective filter length is thus 2*nh+1 taps.

The filter is performed on 16-bit data with 16-bit coefficients, accumulating
intermediate results to 40-bit precision. The accumulator is rounded and
truncated according to the value provided in ‘s’. This allows a variety of
Q-points to be used.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_fir_sym(short *x, short *h, short *r, int nh, int nr,
int s)

{

int i, j;

long y0;

long round = (long) 1 << (s − 1);

for (j = 0; j < nr; j++) {

y0 = round;
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for (i = 0; i < nh; i++)

y0 += (short) (x[j + i] + x[j + 2 * nh − i]) * h[i];

y0 += x[j + nh] * h[nh];

r[j] = (int) (y0 >> s);

}

}

Special Requirements

� nh must be a multiple of 8. The number of original symmetric coefficients
is 2*nh+1. Only half (nh+1) are required.

� nr must be a multiple of 4.

� x[ ] and h[ ] must be double-word aligned.

� r[ ] must be word aligned.

Implementation Notes

� Interruptibility: The code is interruptible.

� The load double-word instruction is used to simultaneously load four
values in a single clock cycle.

Benchmarks Cycles 3/4 * nr + 33
Codesize 576 bytes
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IIR With 5 CoefficientsDSP_iir

Function short DSP_iir(short x, short * restrict h, int nh, short * restrict b) 

Arguments x Input value (16−bit).

h[nh] Coefficient input vector.

nh Number of coefficients.

b[nh] State vector.

Description This function implements an IIR filter, with a number of biquad stages given
by nh / 4. It accepts a single sample of input and returns a single sample of
output. Coefficients are expected to be in the range [−2.0, 2.0) with Q14
precision.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

short DSP_iir (short Input, const short * Coefs, int
nCoefs, short * State)

{

int x, p0, p1, i, j;

x = (int) Input;

for (i = j = 0; i < nCoefs; i += 4, j += 2) {

p0 = Coefs[i + 2] * State[j] + Coefs[i + 3] * State[j +
1];

p1 = Coefs[i] * State[j] + Coefs[i + 1] * State[j + 1];

State[j + 1] = State[j];

State[j] = x + (p0 >> 14);

x += (p0 + p1) >> 14;

}

return x;

}



DSP_iir

4-53 C64x+ DSPLIB Reference

Special Requirements

� nh must be a multiple of 8 and greater than or equal to 8.

Implementation Notes

� Interruptibility: The code is interruptible.

Benchmarks Cycles 4 * nr + 15 
Codesize 192 bytes
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All-Pole IIR Lattice Filter DSP_iir_lat

Function void DSP_iir_lat(short * restrict x, int nx, short * restrict k, int nk, int * restrict
b, short * restrict r)

Arguments x[nx] Input vector (16-bit).

nx Length of input vector.

k[nk] Reflection coefficients in Q.15 format.

nk Number of reflection coefficients/lattice stages. Must be >=4.
Make multiple of 2 to avoid bank conflicts.

b[nk+1] Delay line elements from previous call. Should be initialized to
all zeros prior to the first call.

r[nx] Output vector (16-bit).

Description This routine implements a real all-pole IIR filter in lattice structure (AR lattice).
The filter consists of nk lattice stages. Each stage requires one reflection
coefficient k and one delay element b. The routine takes an input vector x[] and
returns the filter output in r[]. Prior to the first call of the routine, the delay
elements in b[] should be set to zero. The input data may have to be pre-scaled
to avoid overflow or achieve better SNR. The reflections coefficients lie in the
range −1.0 < k < 1.0. The order of the coefficients is such that k[nk−1]
corresponds to the first lattice stage after the input and k[0] corresponds to the
last stage.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void iirlat(short *x, int nx, short *k, int nk, int *b,
short *r)

{

    int rt;     /* output       */

    int i, j;

 

    for (j=0; j<nx; j++)

    {

        rt = x[j] << 15;

        for (i = nk − 1; i >= 0; i−−)
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        {

            rt       = rt   − (short)(b[i] >> 15) * k[i];

            b[i + 1] = b[i] + (short)(rt   >> 15) * k[i];

        }

        b[0] = rt;

        r[j] = rt >> 15;

    }

}

Special Requirements

� nk must be >= 4.
� No special alignment requirements

Implementation Notes

� Interruptibility: The code is interruptible.

Benchmarks Cycles nx * (1.25 * nk + 24) + 15
Codesize 288 bytes
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4.5 Math

Vector Dot Product and SquareDSP_dotp_sqr

Function int DSP_dotp_sqr(int G, short * restrict x, short * restrict y, int * restrict r, int nx)

Arguments G Calculated value of G (used in the VSELP coder).

x[nx] First vector array

y[nx] Second vector array

r Result of vector dot product of x and y.

nx Number of elements. Must be multiple of 4, and ≥12.

return int New value of G.

Description This routine performs an nx element dot product of x[ ] and y[ ] and stores it
in r. It also squares each element of y[ ] and accumulates it in G. G is passed
back to the calling function in register A4. This computation of G is used in the
VSELP coder.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

int DSP_dotp_sqr (int G,short *x,short *y,int *r,

int nx)

{

short *y2;

short *endPtr2;

y2 = x;

for (endPtr2 = y2 + nx; y2 < endPtr2; y2++){

*r += *y * *y2;

G += *y * *y;

y++;

}

return(G);

}
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Special Requirements nx must be a multiple of 4 and greater than or equal to 12.

Implementation Notes
� Interruptibility: The code is interruptible.

Benchmarks Cycles nx/2 + 19
Codesize 128 bytes
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Vector Dot ProductDSP_dotprod

Function int DSP_dotprod(short * restrict x, short * restrict y, int nx)

Arguments x[nx] First vector array. Must be double-word aligned.

y[nx] Second vector array. Must be double word-aligned.

nx Number of elements of vector. Must be multiple of 4.

return int Dot product of x and y.

Description This routine takes two vectors and calculates their dot product. The inputs are
16-bit short data and the output is a 32-bit number.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

int DSP_dotprod(short x[ ],short y[ ], int nx)

{

int sum;

int i;

sum = 0;

for(i=0; i<nx; i++){

sum += (x[i] * y[i]);

}

return (sum);

}

Special Requirements

� The input length must be a multiple of 4.

� The input data x[ ] and y[ ] are stored on double-word aligned boundaries.
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Implementation Notes

� Interruptibility: The code is fully interruptible.

� The code is unrolled 4 times to enable full memory and multiplier
bandwidth to be utilized.

Benchmarks Cycles nx / 4 + 19
Codesize 96 bytes
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Maximum Value of VectorDSP_maxval

Function short DSP_maxval (short *x, int nx)

Arguments x[nx] Pointer to input vector of size nx.

nx Length of input data vector. Must be multiple of 8 and ≥32.

return short Maximum value of a vector.

Description This routine finds the element with maximum value in the input vector and
returns that value.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

short DSP_maxval(short x[ ], int nx)

{

int i, max;

max = −32768;

for (i = 0; i < nx; i++)

if (x[i] > max)

max = x[i];

return max;

}

Special Requirements nx is a multiple of 8 and greater than or equal to 32.

Implementation Notes
� Interruptibility: The code is interruptible.

Benchmarks Cycles nx / 8 + 13
Codesize 125 bytes
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Index of Maximum Element of VectorDSP_maxidx

Function int DSP_maxidx (short *x, int nx)

Arguments x[nx] Pointer to input vector of size nx. Must be double-word aligned.

nx Length of input data vector. Must be multiple of 16 and ≥ 48.

return int Index for vector element with maximum value.

Description This routine finds the max value of a vector and returns the index of that value.

The input array is treated as 16 separate columns that are interleaved
throughout the array. If values in different columns are equal to the maximum
value, then the element in the leftmost column is returned. If two values within
a column are equal to the maximum, then the one with the lower index is
returned. Column takes precedence over index.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

int DSP_maxidx(short x[ ], int nx)

{

int max, index, i;

max = −32768;

for (i = 0; i < nx; i++)

if (x[i] > max) {

max = x[i];

index = i;

}

return index;

}

Special Requirements

� nx must be a multiple of 16 and greater than or equal to 32.
� The input vector x[ ] must be double-word aligned.
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Implementation Notes

� Interruptibility: The code is interruptible.

� The code is unrolled 16 times to enable the full bandwidth of LDDW and
MAX2 instructions to be utilized. This splits the search into 16 sub-ranges.
The global maximum is then found from the list of maximums of the
sub-ranges. Then, using this offset from the sub-ranges, the global
maximum and the index of it are found using a simple match. For common
maximums in multiple ranges, the index will be different to the above C
code.

Benchmarks Cycles 9 * nx / 64 + 70
Codesize 320 bytes
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Minimum Value of VectorDSP_minval

Function short DSP_minval (short *x, int nx)

Arguments x [nx] Pointer to input vector of size nx.

nx Length of input data. Must be a multiple of 4 and ≥ 8.

return short Maximum value of a vector.

Description This routine finds the minimum value of a vector and returns the value.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

short DSP_minval(short x[ ], int nx)

{

int i, min;

min = 32767;

for (i = 0; i < nx; i++)

if (x[i] < min)

min = x[i];

return min;

}

Special Requirements nx is a multiple of 4 and greater than or equal to 8.

Implementation Notes

� Interruptibility: The code is interruptible.

� The input data is loaded using double word wide loads, and the MIN2
instruction is used to get to the minimum.

Benchmarks Cycles nx / 8 +16
Codesize 128 bytes
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32-Bit Vector MultiplyDSP_mul32

Function void DSP_mul32(int * restrict x, int * restrict y, int * restrict r, short nx)

Arguments x[nx] Pointer to input data vector 1 of size nx. Must be double-word
aligned.

y[nx] Pointer to input data vector 2 of size nx. Must be double-word
aligned.

r[nx] Pointer to output data vector of size nx. Must be double-word
aligned.

nx Number of elements in input and output vectors. Must be multiple
of 8 and ≥16.

Description The function performs a Q.31 x Q.31 multiply and returns the upper 32 bits of
the result. The result of the intermediate multiplies are accumulated into a
40-bit long register pair, as there could be potential overflow. The contribution
of the multiplication of the two lower 16-bit halves are not considered. The
output is in Q.30 format. Results are accurate to least significant bit.

Algorithm In the comments below, X and Y are the input values. Xhigh and Xlow
represent the upper and lower 16 bits of X. This is the natural C equivalent of
the optimized intrinsic C code without restrictions. Note that the intrinsic C
code is optimized and restrictions may apply.

void DSP_mul32(const int *x, const int *y, int *r,

short nx)

{

short i;

int a,b,c,d,e;

for(i=nx;i>0;i−−)

{

a=*(x++);

b=*(y++);

c=_mpyluhs(a,b); /* Xlow*Yhigh */

d=_mpyhslu(a,b); /* Xhigh*Ylow */

e=_mpyh(a,b); /* Xhigh*Yhigh */

d+=c;  /* Xhigh*Ylow+Xlow*Yhigh */

d=d>>16;   /* (Xhigh*Ylow+Xlow*Yhigh)>>16 */
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e+=d;   /* Xhigh*Yhigh + */

  /* (Xhigh*Ylow+Xlow*Yhigh)>>16 */

*(r++)=e;

}

}

Special Requirements

� nx must be a multiple of 4 and greater than or equal to 4.
� Input and output vectors must be double-word aligned.

Implementation Notes

� Interruptibility: The code is interruptible.

Benchmarks Cycles 3 * nx/4 + 12
Codesize 128 bytes
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32-Bit Vector NegateDSP_neg32

Function void DSP_neg32(int * restrict x, int * restrict r, short nx)

Arguments x[nx] Pointer to input data vector 1 of size nx with 32-bit elements.
Must be double-word aligned.

r[nx] Pointer to output data vector of size nx with 32-bit elements.
Must be double-word aligned.

nx Number of elements of input and output vectors. Must be a
multiple of 4 and ≥8.

Description This function negates the elements of a vector (32-bit elements). The input and
output arrays must not be overlapped except for where the input and output
pointers are exactly equal.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_neg32(int *x, int *r, short nx)

{

short i;

for(i=nx; i>0; i−−)

*(r++)=−*(x++);

}

Special Requirements

� nx must be a multiple of 4 and greater than or equal to 4.
� The arrays x[ ] and r[ ] must be double-word aligned.

Implementation Notes
� Interruptibility: The code is interruptible.

Benchmarks Cycles nx/2 + 11
Codesize 96 bytes
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16-Bit ReciprocalDSP_recip16

Function void DSP_recip16(short * restrict x, short * restrict rfrac, short * restrict rexp,
short nx)

Arguments x[nx] Pointer to Q.15 input data vector of size nx.

rfrac[nx] Pointer to Q.15 output data vector for fractional values.

rexp[nx] Pointer to output data vector for exponent values.

nx Number of elements of input and output vectors.

Description This routine returns the fractional and exponential portion of the reciprocal of
an array x[ ] of Q.15 numbers. The fractional portion rfrac is returned in Q.15
format. Since the reciprocal is always greater than 1, it returns an exponent
such that:

(rfrac[i] * 2rexp[i]) = true reciprocal

The output is accurate up to the least significant bit of rfrac, but note that this
bit could carry over and change rexp. For a reciprocal of 0, the procedure will
return a fractional part of 7FFFh and an exponent of 16.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_recip16(short *x, short *rfrac, short *rexp, short
nx)

{

int i,j,a,b;

short neg, normal;

for(i=nx; i>0; i−−)

{

a=*(x++);

if(a<0) /* take absolute value */

{

a=−a;

neg=1;

}

else neg=0;

normal=_norm(a); /* normalize number */
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a=a<<normal;

*(rexp++)=normal−15; /* store exponent */

b=0x80000000; /* dividend = 1 */

for(j=15;j>0;j−−)

b=_subc(b,a); /* divide */

b=b&0x7FFF; /* clear remainder

/* (clear upper half) */

if(neg) b=−b; /* if originally

/* negative, negate */

*(rfrac++)=b; /* store fraction */

}

}

Special Requirements None

Implementation Notes

� Interruptibility: The code is interruptible.

� The conditional subtract instruction, SUBC, is used for division. SUBC is
used once for every bit of quotient needed (15).

Benchmarks Cycles 9 * nx + 22 
Codesize 224 bytes
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Sum of SquaresDSP_vecsumsq

Function int DSP_vecsumsq (short *x, int nx)

Arguments x[nx] Input vector

nx Number of elements in x. Must be multiple of 4 and ≥8.

return int Sum of the squares

Description This routine returns the sum of squares of the elements contained in the vector
x[ ].

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

int DSP_vecsumsq(short x[ ], int nx)

{

int i, sum=0;

for(i=0; i<nx; i++)

{

sum += x[i]*x[i];

}

return(sum);

}

Special Requirements

� nx must be a multiple of 4 and greater than or equal to 4.

Implementation Notes

� Interruptibility: The code is interruptible.

� The code is unrolled 4 times to enable full memory and multiplier
bandwidth to be utilized.

Benchmarks Cycles nx/4 + 12 
Codesize 64 bytes
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Weighted Vector SumDSP_w_vec

Function void DSP_w_vec(short * restrict x, short * restrict y, short m, short * restrict r,
short nr)

Arguments x[nr] Vector being weighted. Must be double-word aligned.

y[nr] Summation vector. Must be double-word aligned.

m Weighting factor

r[nr] Output vector

nr Dimensions of the vectors. Must be multiple of 8 and ≥8.

Description This routine is used to obtain the weighted vector sum. Both the inputs and
output are 16-bit numbers.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_w_vec(short x[ ],short y[ ],short m,

short r[ ],short nr)

{

short i;

 

for (i=0; i<nr; i++) {

r[i] = ((m * x[i]) >> 15) + y[i];

}

}

Special Requirements

� nr must be a multiple of 8 and ≥ 8.
� Vectors x[ ] and y[ ] must be double-word aligned.

Implementation Notes
� Interruptibility: The code is interruptible.
� Input is loaded in double-words.
� Use of packed data processing to sustain throughput.

Benchmarks Cycles 3 * nx/8 + 20
Codesize 160 bytes



DSP_mat_mul

4-71 C64x+ DSPLIB Reference

4.6 Matrix

Matrix MultiplicationDSP_mat_mul

Function void DSP_mat_mul(short * restrict x, int r1, int c1, short * restrict y, int c2, short
* restrict r, int qs)

Arguments x [r1*c1] Pointer to input matrix of size r1*c1.

r1 Number of rows in matrix x.

c1 Number of columns in matrix x. Also number of rows in y.

y [c1*c2] Pointer to input matrix of size c1*c2.

c2 Number of columns in matrix y.

r [r1*c2] Pointer to output matrix of size r1*c2.

qs Final right−shift to apply to the result.

Description This function computes the expression “r = x * y” for the matrices x and y. The
columnar dimension of x must match the row dimension of y. The resulting
matrix has the same number of rows as x and the same number of columns as
y.

The values stored in the matrices are assumed to be fixed-point or integer
values. All intermediate sums are retained to 32-bit precision, and no overflow
checking is performed. The results are right-shifted by a user-specified
amount, and then truncated to 16 bits.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_mat_mul(short *x, int r1, int c1, short *y, int c2,
short *r, int qs)

{

    int i, j, k;

    int sum;

 

    /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

    /*  Multiply each row in x by each column in y.  The  */
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    /*  product of row m in x and column n in y is placed */

    /*  in position (m,n) in the result.                  */

    /* −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

    for (i = 0; i < r1; i++)

        for (j = 0; j < c2; j++)

        {

            sum = 0;

 

            for (k = 0; k < c1; k++)

                sum += x[k + i*c1] * y[j + k*c2];

 

            r[j + i*c2] = sum >> qs;

        }

}

Special Requirements

� The arrays x[], y[], and r[] are stored in distinct arrays. That is, in-place
processing is not allowed.

� The input matrices have minimum dimensions of at least 1 row and 1
column, and maximum dimensions of 32767 rows and 32767 columns.

Implementation Notes

� Interruptibility: This code blocks interrupts during its innermost loop.
Interrupts are not blocked otherwise. As a result, interrupts can be blocked
for up to 0.25*c1’ + 16 cycles at a time.

� The ‘i’ loop and ‘k’ loops are unrolled 2x. The ’j’ loop is unrolled 4x. For
dimensions that are not multiples of the various loops’ unroll factors, this
code calculates extra results beyond the edges of the matrix. These extra
results are ultimately discarded. This allows the loops to be unrolled for
efficient operation on large matrices while not losing flexibility.

Benchmarks
Cycles 0.25 * ( r1’ * c2’ * c1’ ) + 2.25 * ( r1’ * c2’ ) + 11, where:

r1’ = 2 * ceil(r1/2.0)   (r1 rounded up to next even)
c1’ = 2 * ceil(c1/2.0)   (c1 rounded up to next even)
c2’ = 4 * ceil(c2/4.0)   (c2 rounded up to next mult of 4)
For r1= 1, c1= 1, c2= 1: 33 cycles 
For r1= 8, c1=20, c2= 8: 475 cycles 

Codesize 512 bytes
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Matrix TransposeDSP_mat_trans

Function void DSP_mat_trans(short * restrict x, short rows, short columns, short * re-
strict r)

Arguments x[rows*columns] Pointer to input matrix.

rows Number of rows in the input matrix. Must be a multiple
of 4.

columns Number of columns in the input matrix. Must be a multiple
of 4.

r[columns*rows] Pointer to output data vector of size rows*columns.

Description This function transposes the input matrix x[ ] and writes the result to matrix r[ ].

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_mat_trans(short *x, short rows, short columns, short
*r)

{

short i,j;

for(i=0; i<columns; i++)

for(j=0; j<rows; j++)

*(r+i*rows+j)=*(x+i+columns*j);

}

Special Requirements

� Rows and columns must be a multiple of 4.

� Matrices are assumed to have 16-bit elements.

Implementation Notes

� Interruptibility: The code is interruptible.

� Data from four adjacent rows, spaced “columns” apart are read, and a
local 4x4 transpose is performed in the register file. This leads to four
double words, that are “rows” apart. These loads and stores can cause
bank conflicts; hence, non-aligned loads and stores are used.

Benchmarks Cycles (columns * rows / 16) * 9 + 17
Codesize 352 bytes
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4.7 Miscellaneous

Block Exponent ImplementationDSP_bexp

Function short DSP_bexp(const int *x, short nx)

Arguments x[nx] Pointer to input vector of size nx. Must be double-word
aligned.

nx Number of elements in input vector. Must be multiple of 8.

return short Return value is the maximum exponent that may be used in
scaling.

Description Computes the exponents (number of extra sign bits) of all values in the input
vector x[ ] and returns the minimum exponent. This will be useful in
determining the maximum shift value that may be used in scaling a block of
data.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

short DSP_bexp(const int *x, short nx)

{

int min_val =_norm(x[0]);

short n;

int i;

for(i=1;i<nx;i++)

{

n =_norm(x[i]); /* _norm(x) = number of */

/* redundant sign bits  */

if(n<min_val) min_val=n;

}

return min_val;

}

Special Requirements

� nx must be a multiple of 8.
� The input vector x[ ] must be double-word aligned.
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Implementation Notes
� Interruptibility: The code is interruptible.

Benchmarks Cycles 5/8 * nx + 8
Codesize 256 bytes
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Endian-Swap a Block of 16-Bit ValuesDSP_blk_eswap16

Function void blk_eswap16(void * restrict x, void * restrict r, int  nx)

Arguments x [nx] Source data. Must be double-word aligned.

r [nx] Destination array. Must be double-word aligned.

nx Number of 16-bit values to swap. Must be multiple of 8.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each half-word of the r[] array is reversed. This facilitates moving
big-endian data to a little-endian system or vice-versa.

When the r pointer is non-NULL, the endian-swap occurs out-of-place, similar
to a block move. When the r pointer is NULL, the endian-swap occurs in-place,
allowing the swap to occur without using any additional storage.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_blk_eswap16(void *x, void *r, int  nx)

{

    int i;

    char *_x, *_r;

    if (r)

    {

        _x = (char *)x;

        _r = (char *)r;

    } else

    {

        _x = (char *)x;

        _r = (char *)r;

    }

    for (i = 0; i < nx; i++)

    {

        char t0, t1;

        t0 = _x[i*2 + 1];

        t1 = _x[i*2 + 0];

        _r[i*2 + 0] = t0;

        _r[i*2 + 1] = t1;

    }

}
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Special Requirements

� Input and output arrays do not overlap, except when “r == NULL” so that
the operation occurs in-place.

� The input array and output array are expected to be double-word aligned,
and a multiple of 8 half-words must be processed.

Implementation Notes
� Interruptibility: The code is interruptible.

Benchmarks Cycles nx / 4 + 8
Codesize 192 bytes
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Endian-Swap a Block of 32-Bit ValuesDSP_blk_eswap32

Function void blk_eswap32(void * restrict x, void * restrict r, int  nx)

Arguments x [nx] Source data. Must be double-word aligned.

r [nx] Destination array. Must be double-word aligned.

nx Number of 32-bit values to swap. Must be multiple of 4.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each word of the r[] array is reversed. This facilitates moving
big-endian data to a little-endian system or vice-versa.

When the r pointer is non-NULL, the endian-swap occurs out-of-place, similar
to a block move. When the r pointer is NULL, the endian-swap occurs in-place,
allowing the swap to occur without using any additional storage.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_blk_eswap32(void *x, void *r, int  nx)

{

    int i;

    char *_x, *_r;

    if (r)

    {

        _x = (char *)x;

        _r = (char *)r;

    } else

    {

        _x = (char *)x;

        _r = (char *)r;

    }

    for (i = 0; i < nx; i++)

    {

        char t0, t1, t2, t3;

        t0 = _x[i*4 + 3];

        t1 = _x[i*4 + 2];
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        t2 = _x[i*4 + 1];

        t3 = _x[i*4 + 0];

        _r[i*4 + 0] = t0;

        _r[i*4 + 1] = t1;

        _r[i*4 + 2] = t2;

        _r[i*4 + 3] = t3;

    }

}

Special Requirements

� Input and output arrays do not overlap, except where “r == NULL” so that
the operation occurs in-place.

� The input array and output array are expected to be double-word aligned,
and a multiple of 4 words must be processed.

Implementation Notes
� Interruptibility: The code is interruptible.

Benchmarks Cycles nx / 2 + 11
Codesize 224 bytes
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Endian-Swap a Block of 64-Bit ValuesDSP_blk_eswap64

Function void blk_eswap64(void * restrict x, void * restrict r, int  nx)

Arguments x[nx] Source data. Must be double-word aligned.

r[nx] Destination array. Must be double-word aligned.

nx Number of 64-bit values to swap. Must be multiple of 2.

Description The data in the x[] array is endian swapped, meaning that the byte-order of the
bytes within each double-word of the r[] array is reversed. This facilitates
moving big-endian data to a little-endian system or vice-versa.

When the r pointer is non-NULL, the endian-swap occurs out-of-place, similar
to a block move. When the r pointer is NULL, the endian-swap occurs in-place,
allowing the swap to occur without using any additional storage.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_blk_eswap64(void *x, void *r, int  nx)

{

    int i;

    char *_x, *_r;

    if (r)

    {

        _x = (char *)x;

        _r = (char *)r;

    } else

    {

        _x = (char *)x;

        _r = (char *)r;

    }

    for (i = 0; i < nx; i++)

    {

        char t0, t1, t2, t3, t4, t5, t6, t7;

        t0 = _x[i*8 + 7];

        t1 = _x[i*8 + 6];
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        t2 = _x[i*8 + 5];

        t3 = _x[i*8 + 4];

        t4 = _x[i*8 + 3];

        t5 = _x[i*8 + 2];

        t6 = _x[i*8 + 1];

        t7 = _x[i*8 + 0];

        _r[i*8 + 0] = t0;

        _r[i*8 + 1] = t1;

        _r[i*8 + 2] = t2;

        _r[i*8 + 3] = t3;

        _r[i*8 + 4] = t4;

        _r[i*8 + 5] = t5;

        _r[i*8 + 6] = t6;

        _r[i*8 + 7] = t7;

    }

}

Special Requirements

� Input and output arrays do not overlap, except when “r == NULL” so that
the operation occurs in-place.

� The input array and output array are expected to be double-word aligned,
and a multiple of 2 double-words must be processed.

Implementation Notes
� Interruptibility: The code is interruptible.

Benchmarks Cycles nx + 11
Codesize 224 bytes
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Block Move (Overlapping)DSP_blk_move

Function void DSP_blk_move(short * restrict x, short * restrict r, int nx)

Arguments x [nx] Block of data to be moved.

r [nx] Destination of block of data.

nx Number of elements in block. Must be multiple of 8 and ≥32.

Description This routine moves nx 16-bit elements from one memory location pointed to
by x to another pointed to by r. The source and destination blocks can be
overlapped.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_blk_move(short *x, short *r, int nx)
{
    int i;

    if( r < x )
    {
        for (I = 0; I < nx; i++)
            r[i] = x[i];
    } else
    {
        for (I = nx−1; I >= 0; i−−)
            r[i] = x[i];
    }
}

Special Requirements

� nx must be a multiple of 8 and greater than or equal to 8.

Implementation Notes

� Twin input and output pointers are used.
� Interruptibility: The code is fully interruptible.

Benchmarks Cycles nx / 4 + 6
Codesize 64 bytes
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Float to Q15 ConversionDSP_fltoq15

Function void DSP_fltoq15(float * restrict x, short * restrict r, short nx)

Arguments x[nx] Pointer to floating-point input vector of size nx. x should contain
the numbers normalized between [−1,1).

r[nx] Pointer to output data vector of size nx containing the Q.15
equivalent of vector x.

nx Length of input and output data vectors. Must be multiple of 2.

Description Convert the IEEE floating point numbers stored in vector x[ ] into Q.15 format
numbers stored in vector r[ ]. Results are truncated toward zero. Values that
exceed the size limit will be saturated to 0x7fff if value is positive and 0x8000
if value is negative. All values too small to be correctly represented will be
truncated to 0.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void fltoq15(float x[], short r[], short nx)

{

    int i, a;

    for(i = 0; i < nx; i++)

    {

        a = 32768 * x[i];

        // saturate to 16−bit //

        if (a>32767)  a =  32767;

        if (a<−32768) a = −32768;

        r[i] = (short) a;

    }

}

Special Requirements nx must be a multiple of 2.
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Implementation Notes

� Loop is unrolled twice.
� Interruptibility: The code is interruptible.

Benchmarks Cycles 2 * nx + 10
Codesize 192 bytes
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Minimum Energy Error SearchDSP_minerror

Function int minerror (short * restrict GSP0_TABLE, short * restrict errCoefs, int * restrict
max_index)

Arguments GSP0_TABLE[9*256] GSP0 terms array. Must be double-word aligned.

errCoefs[9] Array of error coefficients.

max_index Pointer to GSP0_TABLE[max_index] found.

return int Maximum dot product result.

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

int minerr

(

    const short *restrict GSP0_TABLE,

    const short *restrict errCoefs,

    int         *restrict max_index

)

{

    int val, maxVal = −50;

    int i, j;

    for (i = 0; i < GSP0_NUM; i++)

    {

        for (val = 0, j = 0; j < GSP0_TERMS; j++)

            val += GSP0_TABLE[i*GSP0_TERMS+j] * errCoefs[j];

 

        if (val > maxVal)

        {

            maxVal = val;

            *max_index = i*GSP0_TERMS;

        }

    }

    return (maxVal);

}
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Special Requirements Array GSP0_TABLE[] must be double-word aligned.

Implementation Notes

� Interruptibility: The code is interruptible.

� The load double-word instruction is used to simultaneously load four
values in a single clock cycle.

� The inner loop is completely unrolled.

� The outer loop is 4 times unrolled.

Benchmarks Cycles 2 * nx + 10
Codesize 1120 bytes
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Q15 to Float ConversionDSP_q15tofl

Function void DSP_q15tofl(short * restrict x, float * restrict r, short nx)

Arguments x[nx] Pointer to Q.15 input vector of size nx.

r[nx] Pointer to floating-point output data vector of size nx containing
the floating-point equivalent of vector x.

nx Length of input and output data vectors. Must be multiple of 2.

Description Converts the values stored in vector x[ ] in Q.15 format to IEEE floating point
numbers in output vector r[ ].

Algorithm This is the natural C equivalent of the optimized intrinsic C code without
restrictions. Note that the intrinsic C code is optimized and restrictions may
apply.

void DSP_q15tofl(short *x, float *r, int nx)

{

int i;

for (i=0;i<nx;i++)

r[i] = (float) x[i] / 0x8000;

}

Special Requirements nx must be a multiple of 2.

Implementation Notes
� Interruptibility: The code is interruptible.
� Loop is unrolled twice

Benchmarks Cycles 9 * nx / 4 + 12
Codesize 704 bytes
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This appendix describes performance considerations related to the C64x+ DSPLIB and provides
information about the Q format used by DSPLIB functions.
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A.1 Performance Considerations

The ceil( ) is used in some benchmark formulas to accurately describe the number of cycles. It
returns a number rounded up, away from zero, to the nearest integer. For example, ceil(1.1)
returns 2.

Although DSPLIB can be used as a first estimation of processor performance for a specific
function, you should be aware that the generic nature of DSPLIB might add extra cycles not
required for customer specific usage.

Benchmark cycles presented assume best case conditions, typically assuming all code and data
are placed in L1 memory. Any extra cycles due to placement of code or data in L2/external memory
or cache-associated effects (cache-hits or misses) are not considered when computing the cycle
counts.

You should also be aware that execution speed in a system is dependent on where the different
sections of program and data are located in memory. You should account for such differences
when trying to explain why a routine is taking more time than the reported DSPLIB benchmarks.

Many considerations need to be taken when designing an overall system. The DSPLIB bench-
marks are tested in a standalone environment to test the functions. Better performance may be
achieved by tuning the function(s) for an overall system

For more information on additional stall cycles due to memory hierarchy, see the Signal
Processing Examples Using TMS320C64x Digital Signal Processing Library (SPRA884). The
TMS320C6000 DSP Cache User’s Guide (SPRU656A) presents how to optimize algorithms and
function calls for better cache performance.

http://www-s.ti.com/sc/techlit/spra884
http://www-s.ti.com/sc/techlit/spru656


Fractional Q Formats

A-3Performance/Fractional Q Formats

A.2 Fractional Q Formats
Unless specifically noted, DSPLIB functions use Q15 format, or to be more exact, Q0.15. In a
Qm.n format, there are m bits used to represent the two’s complement integer portion of the
number, and n bits used to represent the two’s complement fractional portion. m+n+1 bits are
needed to store a general Qm.n number. The extra bit is needed to store the sign of the number in
the most-significant bit position. The representable integer range is specified by (−2m,2m) and the
finest fractional resolution is 2−n.

For example, the most commonly used format is Q.15. Q.15 means that a 16-bit word is used to
express a signed number between positive and negative one. The most-significant binary digit is
interpreted as the sign bit in any Q format number. Thus, in Q.15 format, the decimal point is placed
immediately to the right of the sign bit. The fractional portion to the right of the sign bit is stored in
regular two’s complement format.

A.2.1 Q3.12 Format

Q.3.12 format places the sign bit after the fourth binary digit from the right, and the next 12 bits
contain the two’s complement fractional component. The approximate allowable range of
numbers in Q.3.12 representation is (−8,8) and the finest fractional resolution is 2−12 = 2.441 ×
10−4.

Table A−1. Q3.12 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S I3 I2 I1 Q11 Q10 Q9 … Q0

A.2.2 Q.15 Format

Q.15 format places the sign bit at the leftmost binary digit, and the next 15 leftmost bits contain the
two’s complement fractional component. The approximate allowable range of numbers in Q.15
representation is (−1,1) and the finest fractional resolution is 2−15 = 3.05 × 10−5.

Table A−2. Q.15 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S Q14 Q13 Q12 Q11 Q10 Q9 … Q0

A.2.3 Q.31 Format

Q.31 format spans two 16-bit memory words. The 16-bit word stored in the lower memory location
contains the 16 least significant bits, and the higher memory location contains the most significant
15 bits and the sign bit. The approximate allowable range of numbers in Q.31 representation is
(−1,1) and the finest fractional resolution is 2−31 = 4.66 × 10−10.

Table A−3. Q.31 Low Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value Q15 Q14 Q13 Q12 … Q3 Q2 Q1 Q0
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Table A−4. Q.31 High Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value S Q30 Q29 Q28 … Q19 Q18 Q17 Q16
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This appendix provides information about software updates and customer support.
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B.1 DSPLIB Software Updates

C64x+ DSPLIB software updates may be periodically released incorporating product
enhancements and fixes as they become available. You should read the README.TXT available
in the root directory of every release.

B.2 DSPLIB Customer Support

If you have questions or want to report problems or suggestions regarding the C64x+ DSPLIB,
contact Texas Instruments at softwaresupport@ti.com.

DSPLIB Software Updates / DSPLIB Customer Support
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A
address: The location of program code or data stored; an individually

accessible memory location. 

A-law companding: See compress and expand (compand). 

API: See application programming interface. 

application programming interface (API): Used for proprietary
application programs to interact with communications software or to
conform to protocols from another vendor’s product. 

assembler: A software program that creates a machine language program
from a source file that contains assembly language instructions,
directives, and macros. The assembler substitutes absolute operation
codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses. 

assert: To make a digital logic device pin active. If the pin is active low, then
a low voltage on the pin asserts it. If the pin is active high, then a high
voltage asserts it. 

B
bit: A binary digit, either a 0 or 1. 

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower
numbered addresses. Endian ordering is specific to hardware and is
determined at reset. See also little endian. 

block: The three least significant bits of the program address. These
correspond to the address within a fetch packet of the first instruction
being addressed. 

Appendix C
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board support library (BSL): The BSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control board level peripherals. 

boot: The process of loading a program into program memory. 

boot mode: The method of loading a program into program memory. The
C6x DSP supports booting from external ROM or the host port interface
(HPI). 

BSL: See board support library. 

byte: A sequence of eight adjacent bits operated upon as a unit. 

C
cache: A fast storage buffer in the central processing unit of a computer. 

cache controller: System component that coordinates program accesses
between CPU program fetch mechanism, cache, and external memory.

CCS: Code Composer Studio. 

central processing unit (CPU): The portion of the processor involved in
arithmetic, shifting, and Boolean logic operations, as well as the
generation of data- and program-memory addresses. The CPU includes
the central arithmetic logic unit (CALU), the multiplier, and the auxiliary
register arithmetic unit (ARAU). 

chip support library (CSL): The CSL is a set of application programming
interfaces (APIs) consisting of target side DSP code used to configure
and control all on-chip peripherals. 

clock cycle: A periodic or sequence of events based on the input from the
external clock. 

clock modes: Options used by the clock generator to change the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal. 

code: A set of instructions written to perform a task; a computer program or
part of a program. 

coder-decoder or compression/decompression (codec): A device that
codes in one direction of transmission and decodes in another direction
of transmission. 

compiler: A computer program that translates programs in a high-level
language into their assembly-language equivalents. 
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compress and expand (compand): A quantization scheme for audio
signals in which the input signal is compressed and then, after
processing, is reconstructed at the output by expansion. There are two
distinct companding schemes: A-law (used in Europe) and µ-law (used
in the United States). 

control register: A register that contains bit fields that define the way a
device operates. 

control register file: A set of control registers. 

CSL: See chip support library. 

D
device ID: Configuration register that identifies each peripheral component

interconnect (PCI). 

digital signal processor (DSP): A semiconductor that turns analog
signals—such as sound or light—into digital signals, which are discrete
or discontinuous electrical impulses, so that they can be manipulated. 

direct memory access (DMA): A mechanism whereby a device other than
the host processor contends for and receives mastery of the memory bus
so that data transfers can take place independent of the host. 

DMA : See direct memory access. 

DMA source: The module where the DMA data originates. DMA data is read
from the DMA source. 

DMA transfer: The process of transferring data from one part of memory to
another. Each DMA transfer consists of a read bus cycle (source to DMA
holding register) and a write bus cycle (DMA holding register to
destination). 

DSP_autocor: Autocorrelation. 

DSP_bexp: Block exponent implementation. 

DSP_bitrev_cplx: Complex bit reverse. 

DSP_blk_eswap16: Endian-swap a block of 16-bit values.

DSP_blk_eswap32: Endian-swap a block of 32-bit values.

DSP_blk_eswap64: Endian-swap a block of 64-bit values.
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DSP_blk_move: Block move. 

DSP_dotp_sqr: Vector dot product and square. 

DSP_dotprod: Vector dot product. 

DSP_fft: Complex forward FFT with digital reversal.

DSP_fft16x16r: Complex forward mixed radix 16- x 16-bit FFT with
rounding.

DSP_fft16x16t: Complex forward mixed radix 16- x 16-bit FFT with
truncation.

DSP_fft16x32: Complex forward mixed radix 16- x 32-bit FFT with rounding.

DSP_fft32x32: Complex forward mixed radix 32- x 32-bit FFT with rounding.

DSP_fft32x32s: Complex forward mixed radix 32- x 32-bit FFT with scaling.

DSP_fir_cplx: Complex FIR filter (radix 2). 

DSP_fir_gen: FIR filter (general purpose). 

DSP_firlms2: LMS FIR (radix 2). 

DSP_fir_r4: FIR filter (radix 4). 

DSP_fir_r8: FIR filter (radix 8). 

DSP_fir_sym: Symmetric FIR filter (radix 8). 

DSP_fltoq15: Float to Q15 conversion. 

DSP_ifft16x32: Complex inverse mixed radix 16- x 32-bit FFT with
rounding.

DSP_ifft32x32: Complex inverse mixed radix 32- x 32-bit FFT with
rounding.

DSP_iir: IIR with 5 coefficients per biquad. 

DSP_mat_mul: Matrix multiplication. 

DSP_mat_trans: Matrix transpose. 

DSP_maxidx: Index of the maximum element of a vector. 

DSP_maxval: Maximum value of a vector. 

DSP_minerror: Minimum energy error search. 
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DSP_minval: Minimum value of a vector. 

DSP_mul32: 32-bit vector multiply. 

DSP_neg32: 32-bit vector negate. 

DSP_q15tofl: Q15 to float conversion. 

DSP_radix2: Complex forward FFT (radix 2). 

DSP_recip16: 16-bit reciprocal. 

DSP_r4fft: Complex forward FFT (radix 4). 

DSP_vecsumsq: Sum of squares. 

DSP_w_vec: Weighted vector sum. 

E
evaluation module (EVM): Board and software tools that allow the user to

evaluate a specific device. 

external interrupt: A hardware interrupt triggered by a specific value on a
pin. 

external memory interface (EMIF): Microprocessor hardware that is used
to read to and write from off-chip memory. 

F
fast Fourier transform (FFT): An efficient method of computing the discrete

Fourier transform algorithm, which transforms functions between the
time domain and the frequency domain. 

fetch packet: A contiguous 8-word series of instructions fetched by the CPU
and aligned on an 8-word boundary. 

FFT: See fast fourier transform.

flag: A binary status indicator whose state indicates whether a particular
condition has occurred or is in effect. 

frame: An 8-word space in the cache RAMs. Each fetch packet in the cache
resides in only one frame. A cache update loads a frame with the
requested fetch packet. The cache contains 512 frames. 

G
global interrupt enable bit (GIE): A bit in the control status register (CSR)

that is used to enable or disable maskable interrupts. 
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H
HAL: Hardware abstraction layer of the CSL. The HAL underlies the service

layer and provides it a set of macros and constants for manipulating the
peripheral registers at the lowest level. It is a low-level symbolic interface
into the hardware providing symbols that describe peripheral
registers/bitfields, and macros for manipulating them. 

host: A device to which other devices (peripherals) are connected and that
generally controls those devices. 

host port interface (HPI): A parallel interface that the CPU uses to
communicate with a host processor. 

HPI: See host port interface; see also HPI module. 

I
index: A relative offset in the program address that specifies which frame is

used out of the 512 frames in the cache into which the current access is
mapped. 

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data; this mode is prohibited in
RISC architecture. 

instruction fetch packet: A group of up to eight instructions held in memory
for execution by the CPU. 

internal interrupt: A hardware interrupt caused by an on-chip peripheral. 

interrupt: A signal sent by hardware or software to a processor requesting
attention. An interrupt tells the processor to suspend its current
operation, save the current task status, and perform a particular set of
instructions. Interrupts communicate with the operating system and
prioritize tasks to be performed. 

interrupt service fetch packet (ISFP): A fetch packet used to service
interrupts. If eight instructions are insufficient, you must branch out of this
block for additional interrupt service. If the delay slots of the branch do
not reside within the ISFP, execution continues from execute packets in
the next fetch packet (the next ISFP). 

interrupt service routine (ISR): A module of code that is executed in
response to a hardware or software interrupt. 
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interrupt service table (IST) A table containing a corresponding entry for
each of the 16 physical interrupts. Each entry is a single-fetch packet and
has a label associated with it. 

Internal peripherals: Devices connected to and controlled by a host device.
The C6x internal peripherals include the direct memory access (DMA)
controller, multichannel buffered serial ports (McBSPs), host port
interface (HPI), external memory-interface (EMIF), and runtime support
timers. 

IST: See interrupt service table. 

L
least significant bit (LSB): The lowest-order bit in a word. 

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed. 

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have
higher-numbered addresses. Endian ordering is specific to hardware
and is determined at reset. See also big endian. 

M
maskable interrupt : A hardware interrupt that can be enabled or disabled

through software. 

memory map: A graphical representation of a computer system’s memory,
showing the locations of program space, data space, reserved space,
and other memory-resident elements. 

memory-mapped register: An on-chip register mapped to an address in
memory. Some memory-mapped registers are mapped to data memory,
and some are mapped to input/output memory. 

most significant bit (MSB): The highest order bit in a word. 

�-law companding: See compress and expand (compand). 

multichannel buffered serial port (McBSP): An on-chip full-duplex circuit
that provides direct serial communication through several channels to
external serial devices. 

multiplexer: A device for selecting one of several available signals. 



Glossary

 C-8

N
nonmaskable interrupt (NMI): An interrupt that can be neither masked nor

disabled. 

O
object file: A file that has been assembled or linked and contains machine

language object code. 

off chip: A state of being external to a device. 

on chip: A state of being internal to a device. 

P
peripheral: A device connected to and usually controlled by a host device.

program cache: A fast memory cache for storing program instructions
allowing for quick execution. 

program memory: Memory accessed through the C6x’s program fetch
interface. 

PWR: Power; see PWR module. 

PWR module: PWR is an API module that is used to configure the
power-down control registers, if applicable, and to invoke various
power-down modes. 

R
random-access memory (RAM): A type of memory device in which the

individual locations can be accessed in any order. 

register: A small area of high speed memory located within a processor or
electronic device that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs. 

reduced-instruction-set computer (RISC): A computer whose instruction
set and related decode mechanism are much simpler than those of
microprogrammed complex instruction set computers. The result is a
higher instruction throughput and a faster real-time interrupt service
response from a smaller, cost-effective chip. 
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reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address. 

RTOS Real-time operating system. 

S
service layer: The top layer of the 2-layer chip support library architecture

providing high-level APIs into the CSL and BSL. The service layer is
where the actual APIs are defined and is the interface layer. 

synchronous-burst static random-access memory  (SBSRAM): RAM
whose contents do not have to be refreshed periodically. Transfer of data
is at a fixed rate relative to the clock speed of the device, but the speed
is increased. 

synchronous dynamic random-access memory  (SDRAM): RAM whose
contents are refreshed periodically so the data is not lost. Transfer of
data is at a fixed rate relative to the clock speed of the device. 

syntax: The grammatical and structural rules of a language. All higher-level
programming languages possess a formal syntax. 

system software: The blanketing term used to denote collectively the chip
support libraries and board support libraries. 

T
tag: The 18 most significant bits of the program address. This value

corresponds to the physical address of the fetch packet that is in that
frame.

timer: A programmable peripheral used to generate pulses or to time
events. 

TIMER module: TIMER is an API module used for configuring the timer
registers. 

W
word: A multiple of eight bits that is operated upon as a unit. For the C6x,

a word is 32 bits in length. 
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bit, defined C-1
block, defined C-1
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