
User’s Guide
C7000 Host Emulation User's Guide

ABSTRACT

C7000™ Host Emulation lets you use C7000 compiler intrinsics and native vector types on a PC or Linux® host
system. This allows you to use different debugging tools and programming environments to prototype programs
targeted for C7000 hardware before using the C7000 compiler. The Host Emulation package does not attempt to
simulate the C7000 CPU.

Table of Contents
1 About This Document...2

1.1 Related Documentation..2
1.2 Disclaimer...2
1.3 Trademarks.. 2

2 Getting Started with Host Emulation.. 3
2.1 System Requirements..3
2.2 Installation Instructions...3
2.3 Summary of Differences: Host Emulation Coding vs. Native C7000 Coding... 3

3 General Coding Requirements.. 4
3.1 Required Header Files... 4
3.2 Package Dependencies... 4
3.3 Example Program.. 5

4 Intrinsics..6
4.1 OpenCL-Like Intrinsics...6
4.2 Load and Store Intrinsics... 7
4.3 Streaming Address Generator Intrinsics.. 8
4.4 C6000 Legacy Intrinsics...8
4.5 Memory System Intrinsics.. 8

5 Native Vector Types..9
5.1 Constructors...9
5.2 Accessors...10
5.3 Vector Operators.. 10
5.4 Vector Pointer and Storage Limitations.. 11
5.5 Print Debug Function... 13
5.6 Complex Vector Types... 14
5.7 Complex Element Types.. 15
5.8 Constant Vector Types and Constant Vector Type Pointers.. 15
5.9 Vector and Complex Element Pointer Types..15

6 Streaming Engine and Streaming Address Generator..18
6.1 Streaming Address Generator... 18

7 Lookup Table and Histogram Interface...19
7.1 Lookup Table and Histogram Data...19

8 C6000 Migration.. 20
8.1 __float2_t Legacy Data Type... 20

9 Matrix Multiply Accelerator (MMA) Interface..22
10 Compiler Errors and Warnings..23

10.1 Key Terms Found in Compiler Errors and Warnings.. 23
10.2 Host Emulation Specific Syntax... 23

11 Revision History..24

www.ti.com Table of Contents

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

1 About This Document
This document serves as a user’s guide for writing C7000 DSP programs using C7000 Host Emulation.
Included are examples that outline the key differences between programming with the C7000 compiler (cl7x)
and programming using the Host Emulation package on a desired host system. The purpose of this document is
to provide a reference of the key features and limitations of the C7000 Host Emulation package.

1.1 Related Documentation
The following documents provide related information for C7000:

• C7000 C/C++ Optimizing Compiler User's Guide (SPRUIG8)
• C7000 C/C++ Optimization Guide (SPRUIV4)
• C7000 Embedded Application Binary Interface (EABI) Reference Guide (SPRUIG4)
• C6000-to-C7000 Migration User's Guide (SPRUIG5)
• VCOP Kernel-C to C7000 Migration Tool User's Guide (SPRUIG3)
• C7x Instruction Guide (SPRUIU4, which is available through your TI Field Application Engineer)
• C71x DSP CPU, Instruction Set, and Matrix Multiply Accelerator (SPRUIP0, which is available through your

TI Field Application Engineer)
• C71x DSP Corepac Technical Reference Manual (SPRUIQ3, which is available through your TI Field

Application Engineer)

1.2 Disclaimer

The C7000 Host Emulation support is an experimental product. It is recommended that users read
and understand all of the limitations disclosed in this document. Additional limitations may exist that
are not disclosed in this document.

1.3 Trademarks
C7000™ and C6000™ are trademarks of Texas Instruments.
OpenCL™ is a trademark of Apple Inc. used with permission by Khronos.
Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® and Visual Studio® are registered trademarks of Microsoft.
All trademarks are the property of their respective owners.

About This Document www.ti.com

2 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUIG8
https://www.ti.com/lit/pdf/SPRUIV4
https://www.ti.com/lit/pdf/SPRUIG4
https://www.ti.com/lit/pdf/SPRUIG5
https://www.ti.com/lit/pdf/SPRUIG3
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

2 Getting Started with Host Emulation
The C7000 Host Emulation package consists of C++ source and header files used to drive the features provided
by the C7000 compiler.

Depending on the desired host, the source files may need to be built on the host prior to compiling a C7000
program. Detailed instructions on how to build source on different hosts are provided in the sections that follow.

Familiarity with the C7000 C/C++ Optimizing Compiler User's Guide (SPRUIG8) and the C7000 Runtime
Support Library is required to fully understand the content in this guide and to use Host Emulation successfully.

2.1 System Requirements
In general, system requirements for C7000 Host Emulation match the system requirements needed to install the
C7000 Code Generation Tools (CGT).

The pre-compiled libraries that are shipped with the C7000 Host Emulation package require the following
compiler installations:

• Linux (x86-64 bit)
– GNU g++ compiler version 5.4.0 or higher

• Microsoft Windows® (x86-64 bit)
– Visual C++ build tools version 2015 or higher (standalone or packaged with corresponding Visual Studio®

IDE installation)
– GNU g++ compiler version 6.3.0 or higher (MinGW)

Boost C++ libraries and headers are not required in order to use host emulation.

2.2 Installation Instructions
The C7000 Host Emulation package will be distributed as a part of the C7000 CGT. Installing C7000 CGT on a
desired platform will install the C7000 Host Emulation package as well.

Libraries for different platforms and compilers can be found in the host_emulation directory of the installed
tools. All header files associated with Host Emulation can be found in the host_emulation/include directory
of the installed tools.

For Visual C++, the <target>-host-emulation.lib library is compatible with the release version of the
static run-time library. The <target>-host-emulationd.lib library is compatible with the debug version of
the static run-time library.

2.3 Summary of Differences: Host Emulation Coding vs. Native C7000 Coding
When coding an application to run with C7000 Host Emulation, you should be aware of the following general
limitations:

• All source files must #include the c7x.h file. (See Section 3.1.)
• Use of standard integer types rather than built-in types is recommended for future portability. (See Section

3.2.)
• The code must use C++14 due to the underlying implementation, which relies heavily on C++14 constructs

and features. (See Section 3.2.)
• C7000 pragmas are not supported with Host Emulation. (See Section 3.2.)
• There are certain limitations and differences with intrinsics. (See Section 4.) For example, intrinsics that

operate directly on memory and the L1D cache cannot be used with C7000 Host Emulation. (See Section
4.5.)

See Section 10 for information about specific compiler errors and warnings and about syntax interpretation
differences between the C7000 compiler and the Host Emulation compiler.

www.ti.com Getting Started with Host Emulation

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

3 General Coding Requirements
3.1 Required Header Files
Regardless of your chosen host, certain prerequisites are required for every program written to be run with
C7000 Host Emulation.

All source files that use C7000 compiler features with Host Emulation need to #include the c7x.h or
c6x_migration.h file, as appropriate. These files in turn include all other required header files. When
compiling for Host Emulation, do not #include any of the other header files provided in the C7000 Run Time
Support Library.

When compiling for Host Emulation, do not #include any of the headers found in the C7000 Run Time Support
library. This includes the c7x.h and c6x_migration.h files. Instead, use preprocessor symbols to control
which header files are included.

Table 3-1. Host Emulation Header Files
File Included Explicitly Description
c7x.h Main header file. Includes all others listed below except c6x_migration.h.

c6x_migration.h Legacy intrinsics and data types. Includes all others listed below.

Files Included Automatically
c7x_cr.h Global control register definitions

c7x_ecr.h Global extended register definitions

c7x_luthist.h Lookup table and histogram control interface

c7x_strm.h Streaming engine control interface

The ti_he_impl folder contains other header files used for the implementation; these files should not be
included directly.

3.2 Package Dependencies
Programs written for C7000 Host Emulation must use the C++14 language due to the underlying
implementation, which relies heavily on C++14 constructs and features.

Depending on the compiler, a special flag to enable C++14 support may be required in the compilation
command.

While not mandated, it is highly encouraged that you use standard integer types (such as int32_t) when
programming using C7000 Host Emulation. Usage of built-in data types may compile and run, but these results
cannot be guaranteed to be correct on all platforms. Using standard integer types in place of the corresponding
built-in type will achieve correct results and will have no effect on the ability to transition the program to the
C7000 compiler.

Use of C7000 compiler attributes and directives will create undefined warnings when using Host Emulation. This
behavior is expected and cannot be remedied. If these attributes and directives are required for the program to
run on a target chip, the warnings can typically be suppressed on the Host Emulation compiler.

The C7000 Host Emulation package does not emulate C7000 compiler pragmas. As a result, C7000 compiler
pragmas will have no effect when used in code run with C7000 Host Emulation.

A full list of C7000 compiler symbols that are defined automatically when using Host Emulation are provided in
Table 3-2

Table 3-2. C7000 Preprocessor Symbols
Defined Preprocessor Symbols Description

__C7000__ Defined if compiled for the C7000 target or any type of C7000 Host Emulation.

__C7100__ Defines if compiled for C7100 Host Emulation.

__little_endian__ Defined by default.

General Coding Requirements www.ti.com

4 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

3.3 Example Program
The following is a sample program that can be compiled using both Host Emulation and the C7000 compiler
interchangeably without modification to the source. A sample compiler command is provided for each case.

The C7000 compiler (cl7x) command-line options are not compatible with the Host Emulation compilers.

/* Example Program test.cpp */
#include "c7x.h"
extern void test(int8 v);
int main()
{
 #ifdef __C7X_HOSTEM__
 int8 vec1 = int8(1,2,3,4,5,6,7,8);

 #else
 int8 vec1 = (int8)(1,2,3,4,5,6,7,8);
 #endif
 int8 vec2 = (int8)5;
 test(vec1 + vec2);
}

C7100 Host Emulation compiler command (Linux):

g++ -c --std=c++14 -fno-strict-aliasing -I<cgt_install_path>/host_emulation/include/C7100
test.cpp -L<cgt_install_path>/host_emulation -lC7100-host-emulation

The -fno-strict-aliasing command-line option should always be used with g++ when using Host Emulation. This
option ensures the g++ compiler does not use type differences to make aliasing decisions. The Host Emulation
implementation uses differing types in order to implement native vector types. Therefore if this option isn't
used, g++ may incorrectly optimize native vector code utilizing the Host Emulation feature, which may lead to
unexpected and incorrect results.

C7000 compiler command:

cl7x test.cpp

www.ti.com General Coding Requirements

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

4 Intrinsics
All intrinsics that are available with the C7000 compiler are available for use with C7000 Host Emulation. The
following subsections address issues when using the following types of intrinsics with Host Emulation:

• OpenCL-Like intrinsics (see Section 4.1)
• Intrinsics used for special loading and storing of vector and scalar elements (see Section 4.2)
• Intrinsics used to program the streaming engine and streaming address generator (see Section 4.3)
• Intrinsics used to migrate legacy code written for the C6000™ compiler (cl6x) (see Section 4.4)
• Intrinsics that act on the memory system (see Section 4.5 for differences)
• Low-level direct-mapped intrinsics (same as C7000 compiler)
• Intrinsics that are a part of the vector predicate to register interface (same as C7000 compiler)
• Intrinsics used to perform lookup table and histogram operations (same as C7000 compiler)

Intrinsics that modify control registers will do so in C7000 Host Emulation. All control registers that are available
under C7000 Host Emulation can be referenced at any time as an unsigned 64-bit integer.

Reading and writing registers that rely on hardware information, such as execution mode and cycle count, is not
fully supported in Host Emulation. While all symbols and intrinsics associated with these registers are defined
for compilation purposes, their values cannot be depended upon and may not be accurate when using Host
Emulation.

Some intrinsics may require special handling to be used properly. For all intrinsics not mentioned in the
subsections that follow, their functionality remains exactly as it is on C7000. A comprehensive list of the intrinsics
available for use with the C7000 compiler can be found in the c7x.h file and the other header files provided in
the C7000 Runtime Support Package.

Instruction execution emulates the hardware as closely as possible.

4.1 OpenCL-Like Intrinsics
All OpenCL™-like intrinsics available in the C7000 compiler are available for use in C7000 Host Emulation. The
intrinsic interface remains unchanged and any legal use of an OpenCL-like intrinsic is also legal in C7000 Host
Emulation.

Intrinsics www.ti.com

6 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

4.2 Load and Store Intrinsics
All scalar and vector load and store intrinsics that are available with the C7000 compiler are available for use in
C7000 Host Emulation.

4.2.1 Incompatibilities Between char and int8_t Arguments

Certain load and store intrinsics, such as __vload_dup(), use incompatible data types for C7000 Host Emulation
and the C7000 compiler. See the "Intrinsics Defined for Special Load and Store Instructions" section in the
C7000 C/C++ Optimizing Compiler User's Guide (SPRUIG8) for a list of load and store intrinsics.

The C7000 compiler expects char* and const char* data types for certain intrinsics. The Host Emulation
compiler instead expects int8_t* and const int8_t* types for these same intrinsics.

In C and C++, these types are not compatible. Passing an int8_t* when compiling for C7000 results in a
warning in C and an error in C++. Passing a char* when compiling for host emulation results in an error.

You can work around this issue by using int8_t* types but conditionally casting them to char* when
compiling for C7000. For example:

#ifdef __C7X_HOSTEM__
#define FORCE_CHAR_PTR
#else
#define FORCE_CHAR_PTR (char*)
#endif

Then, to call one of these intrinsics, use syntax like the following:

char64 x = __vload_dup(FORCE_CHAR_PTR mem);

4.2.2 Interpreting Errors from Intrinsics

While the interface for intrinsics remains the same as it is in the C7000 compiler, error messages may be
difficult to decipher because each intrinsic uses a template with many parameters. If an incorrect data type
or an incorrect number of elements is used with an intrinsic, then the resulting host compiler error states that
"a template substitution error has occurred." This indicates there is no definition for that intrinsic that uses a
matching combination of parameters. The following code contains an example of such a substitution error.

/* load_store_error_output.cpp */
#ifndef __C7X_HOSTEM__
void print(long* ptr, int length)
{
 /* Implementation is omitted */
}
#endif
#ifdef __C7X_HOSTEM__
// Host Emulation Code
char32 invalid_input = char32(char16(0), char16(1));
__vload_deinterleave_long(&invalid_input).print();
#else
// Target Code
char32 invalid_input = (char32)((char16)(0), (char16)(1));
long8 res = __vload_deinterleave_long(&invalid_input);
print((long*)(&res), 8);
#endif

www.ti.com Intrinsics

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

Host Emulation Output (using g++-5 –std=c++14 load_store_error_output.cpp):

error: no matching function for call to ‘__vload_deinterleave_long(char32*)’
 __vload_deinterleave_long(&invalid_input).print();
 ^
In file included from include/c7x.h:11:0,
 from spls_error_test.cpp:2:
include/src/c7x_he_load_stores.h:414:25: note: candidate: template<class ELEM_T_IN, long
unsigned int NELEM, class, class> _c70_he_detail::vtype<long int, (NELEM / 2)>
__vload_deinterleave_long(_c70_he_detail::accessible<ELEM_T, NELEM>*)
 vtype<int64_t, NELEM/2> __vload_deinterleave_long(accessible<ELEM_T_IN, NELEM>* input)
 ^
include/src/c7x_he_load_stores.h:414:25: note: template argument deduction/substitution failed:
include/src/c7x_he_load_stores.h:413:10: error: no type named ‘type’ in ‘struct
std::enable_if<false, void>’
 typename = typename std::enable_if< (NELEM <= 16) && (NELEM >= 4) >::type>

Target Output:

"spls_error_test.cpp", line 42: error: (OpenCL) Cannot find overloaded instance for function:
__vload_deinterleave_long

4.3 Streaming Address Generator Intrinsics
All streaming address generator intrinsics that are available with the C7000 compiler are also available for use in
C7000 Host Emulation. Their interface is the same as it is with the C7000 compiler.

Section 6.1 details implementation requirements for using the streaming address generator with C7000 Host
Emulation.

4.4 C6000 Legacy Intrinsics
All legacy intrinsics defined in c6x_migration.h are available for use in C7000 Host Emulation. Their
interface is the same as it is with the C7000 compiler.

Section 8 discusses requirements regarding legacy data types and assumptions about their SIMD usage. As
a result of those limitations, all legacy data types must be treated as container types. That is, all initialization
and interaction with legacy data types must be through intrinsics. Section 8 also contains examples of how
to program with legacy data types and intrinsics when using C7000 Host Emulation. The C6000-to-C7000
Migration User's Guide (SPRUIG5) and the c6x_migration.h header file should be used as references any
time C6000 code is used within a C7000 program.

4.5 Memory System Intrinsics
The intrinsics listed in Table 4-1 have no effect when used with Host Emulation. These intrinsics operate on
memory and the L1D cache, which cannot be emulated on a host system.

Table 4-1. Memory System Intrinsics
Intrinsic Name Implementation Note
__memory_fence Executes successfully with no effect

__memory_fence_store Executes successfully with no effect

__prefetch Executes successfully with no effect

Intrinsics www.ti.com

8 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

5 Native Vector Types
The C7000 Host Emulation package generally allows for the use of native vector types (for example, int16)
to be used in the same way as with the C7000 compiler. However, due to C7000 Host Emulation being written
in C++, there are limitations. The following sections discuss and provide examples of these limitations. Where
limitations exist, usage and syntax changes may be required.

Note: If a native vector type feature is not mentioned here but is permissible with the C7000 compiler, the
feature is permissible with C7000 Host Emulation.

Vector types compiled for C7000 Host Emulation require more memory than vectors with the C7000 compiler.
Complex vectors, in particular, require significantly more memory. This memory overhead is due to the way
vector types are implemented for C7000 Host Emulation. (They are implemented as C++ classes; each
accessor--such as .s0--requires its own pointer in the class structure.)

The following examples show the typical memory requirement differences. Use the sizeof() operator to find the
size required by your specific vector data types.

Table 5-1. Vector Type Memory Use Examples
Type Memory with C7000 Compiler Memory with C7000 Host Emulation
char4 4 bytes 544 bytes

cchar4 8 bytes 2792 bytes

int8 32 bytes 2368 bytes

cint8 64 bytes 15624 bytes

cfloat4 32 bytes 2824 bytes

5.1 Constructors
The native vector constructor syntax with parenthesis around the data type is supported only for the C7000
compiler. Using this syntax for C7000 Host Emulation will not cause compile errors, but will cause unexpected
results. Therefore, when using C7000 Host Emulation, native vector type constructors must be used without
parentheses around the data type itself. Otherwise, the host compiler will treat the operation as a cast and will
yield unexpected results.

This following example shows these differences.

/* Host Emulation vector constructor syntax examples */
long2 ex1 = long2(1); // -> (1,1)
long2 ex2 = long2(1,2); // -> (1,2)
long8 ex3 = long8(long4(1), long4(2)); // -> (1,1,1,1,2,2,2,2)
long8 ex4 = long8(long4(1),2,3,4,5); // -> (1,1,1,1,2,3,4,5)
long8 ex5 = (long8)(1,2,3,4,5,6,7,8); // -> (8,8,8,8,8,8,8,8)
 // Valid syntax, but result is unexpected.
/* C7000 compiler vector constructor syntax examples */
long2 ex1 = (long2)(1); // -> (1,1)
long2 ex2 = (long2)(1,2); // -> (1,2)
long8 ex3 = (long8)((long4)(1), (long4)(2)); // -> (1,1,1,1,2,2,2,2)
long8 ex4 = (long8)((long4)(1),2,3,4,5); // -> (1,1,1,1,2,3,4,5)
long8 ex5 = (long8)(1,2,3,4,5,6,7,8); // -> (1,2,3,4,5,6,7,8)

www.ti.com Native Vector Types

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

As a consequence of C++’s casting rules, the native vector constructor syntax with parentheses around the
data type can be used when initializing a vector with one value. This is due to the fact that native vector types
duplicate a value to all lanes if only one value is provided to the constructor.

The following example is valid for both the Host Emulation and the C7000 compilers:

/* Case with only one element provided to constructor */
int4 example = (int4)(1); // -> (1,1,1,1)
 // 1. Cast element "1" to an int4 vector typedef
 // 2. Call int4 constructor with "1" as only value
 // 3. Create int4
 // 4. Same result as int4(1)

5.2 Accessors
C7000 Host Emulation support is provided for all native vector type accessors except for “swizzle” accessors
(.sxz, .s0123 etc.). This is due to the fact that there are too many possible combinations of the swizzle accessors
and it would not be possible to have definitions for all of them. A workaround is to use a combination of other
accessors. The following example shows a workaround in a specific case.

/* Swizzle accessor example workaround in Host Emulation code */
int16 ex = int16(0,1,2,3,4,5,6,7,8,
 9,10,11,12,13,14,15);

// Desired, but illegal:
// int8 swizzle = ex.s048c159d
// Potential workaround:
int8 swizzle = int8(ex.even.even, ex.odd.even);

5.3 Vector Operators
All vector operators are supported when using C7000 Host Emulation except for the ternary operator when
vectors are used as the Boolean expression. However, the ternary operator can be used with vector types as
long as the Boolean expression is a scalar value. The following example shows this limitation.

/* Legal use of ternary operator, bool_expr is scalar */
int32_t bool_expr = 0;

#ifdef __C7X_HOSTEM__
long8 valid_res = bool_expr ? long8(1,2,3,4,5,6,7,8) : long8(2);
#else
long8 valid_res = bool_expr ? (long8)(1,2,3,4,5,6,7,8) : (long8)(2);
#endif
// valid_res now contains (2,2,2,2,2,2,2,2)

/* Illegal use of ternary operator, bool_vec is a vector */
// int8 bool_vec = (int8)-1;
//#ifdef __C7X_HOSTEM__
// Operation is illegal in HE
// Vector value bool_vec cannot be converted to a boolean value
//long8 invalid_res = bool_vec ? long8(1,2,3,4,5,6,7,8) : long8(2);
//#else
//long8 invalid_res = bool_vec ? (long8)(1,2,3,4,5,6,7,8) : (long8)(2);
//#endif

All other operator implementations follow the specification detailed in the OpenCL specification. Illegal uses of an
operator result in compiler errors. However, the type of message received may vary. In a few cases, illegal uses
of some operators result in assertion errors at compile time rather than traditional compiler errors.

Nested subvectors (using .lo, .hi, .even, and .odd) are limited to a depth of 2 when compiling for Host Emulation.
For example, vect.lo.lo is legal, but vect.lo.lo.lo is not. As a workaround, you can use a temporary
vector as follows:

uchar8 tmp = vect.lo.lo;
dst = tmp.lo;

Native Vector Types www.ti.com

10 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.khronos.org/registry/OpenCL/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

5.4 Vector Pointer and Storage Limitations
The C7000 compiler allows references to consecutive data in memory using a pointer to a native vector type.
This allows vector operations and vector accesses on data in memory without a vector variable. In addition, the
compiler allows code to treat arrays as vectors and vice versa.

However, in C7000 Host Emulation, the vector class contains more than just the data it represents, making its
size larger than just the size of its data. As a result, a pointer to an array cannot be directly cast to a native
vector type pointer in C7000 Host Emulation. In addition, for the same reason, a program cannot obtain the
address of either a native vector or native vector array if the underlying memory wasn't initialized with a scalar
array.

Code for Use with C7000 Compiler shows code that is correct when used with the C7000 compiler but will cause
a run-time error when used with C7000 Host Emulation.

Code for Use with C7000 Compiler

/* Load into vector from scalar array in memory */
int array[] = {1,2,3,4,5,6,7,8};
int8 temp = *(int8*)(&array);
 // temp is now an int8 vector with the same data as "array"
/* Store vector as an array in memory */
int array[] = {1,2,3,4,5,6,7,8};
int8 temp = int8(50);
(int8)(&array) = temp;
 // "array" now contains the eight elements from vector temp
/* Use vector pointer to modify data in memory */
int array[] = {1,2,3,4,5,6,7,8};
int8* temp = (int8*)(&array);
 // temp now points to data in "array"
 // Native vector type operations are now valid on data in "array"
(*temp).s0 = -1;
 // Modifies array[0];
int4 temp_even = (*temp).even;
 // Grabs even indices of "array" and creates int4 vector
/* Reference members of vector using pointer */
int8 temp = int8(50);
int32_t* ptr = (int32_t*)(&temp);
*(ptr + 1) = -1;
 // now temp.s1 = -1

Instead, the C7000 Host Emulation provides special pointer types for vectors and complex element types that
allows for pointer casting and basic pointer arithmetic. For example, uchar64_ptr is a pointer type that points
to a uchar64 vector. Likewise, clong_ptr is a pointer type that points to a clong . These pointer types
model C++ smart pointers that manage memory in a special way to ensure that the corresponding allocated
objects do not leak. The types of C-style casting supported are listed in Section 5.9.

www.ti.com Native Vector Types

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 11

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

In Code for Use with Host Emulation and C7000 Compiler, the previous code has been modified for use with
Host Emulation. Because this code can also be used with the C7000 compiler, it is the recommended way to
handle vector pointers.

Code for Use with Host Emulation and C7000 Compiler

/* Load into vector from scalar array in memory */
int array[] = {1,2,3,4,5,6,7,8};
int8 temp = *(int8_ptr)array;
// Equivalent to: temp = *(int8*)(array) on cl7x
// temp now contains: (1,2,3,4,5,6,7,8)
/* Store vector as an array in memory */
int8 temp2 = (int8)50;
*(int8_ptr)array = temp2;
/* Array now contains the eight elements from vector temp2 */

int array[] = {1,2,3,4,5,6,7,8};
*(int8_ptr)array = temp; // put array back to 1,2,3,4,...
int8_ptr temp3 = (int8_ptr)array;
/* temp3 now points to data in "array" */
(*temp3).s0 = -1;
(*temp3).s7 = -8;

/* Grabs even indices of "array" and creates int4 vector */
int4 temp_even = (*temp3).even;

/* Reference members of vector using pointer */
int8 temp4 = (int8)50;
int32_t* ptr = (int32_t*)(&temp4);
*(ptr + 1) = -11;
/* Now temp4.s1 = -11 */

int32_t word_data = *((int32_t*)&temp4 + 1);
/* word_data now contains value in temp4.s1 */

When using Host Emulation, it is required that you use the vector and complex pointer types. (see Section 5.9).
This enables the host compiler to provide feedback whenever pointers are used in an incorrect or unsupported
way. If you do not use these pointer types, the host compiler will still emit errors if you attempt to use any
memory intrinsics that require these pointer types. However, if you do not use any intrinsics, the host compiler
may not emit any warnings or errors, and you will see runtime errors instead of compile-time errors.

A full comparison of syntax discrepancies between the C7000 compiler and C7000 Host Emulation is covered in
Section 10.

Native Vector Types www.ti.com

12 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

5.5 Print Debug Function
A print function is provided with C7000 Host Emulation that can be used on any native vector type. This function
prints out a formatted list of the contents of the vector. This function is specific to C7000 Host Emulation and is
not supported by the C7000 compiler. As a result, references to this function must be omitted or protected by
checks of the __C7X_HOSTEM__ preprocessor symbol in order to be compiled using the C7000 compiler. The
following example shows how the print function can be used at different accessor levels of a vector.

/* Print function usage */
#ifndef __C7X_HOSTEM__
void print(int* ptr, int length)
{
 // Loop over elements and print
}
#endif

#ifdef __C7X_HOSTEM__
int8 example = int8(int4(0), int4(1));
#else
int8 example = (int8)((int4)(0), (int4)(1));
#endif

#ifdef __C7X_HOSTEM__
example.print(); // Prints: (0,0,0,0,1,1,1,1)
example.lo.print(); // Prints: (0,0,0,0)
example.hi.lo.print(); // Prints: (1,1)
example.even.print(); // Prints: (0,0,1,1)
example.even.hi.print(); // Prints: (1,1)
//example.s0.print(); // Illegal, member .s0 is a scalar value

__vload_dup(&example).print(); // Prints (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)

#else
// Target implementation

// NOTE: Output depends on print() implementation
print((int*)(&example), 8); // 0,0,0,0,1,1,1,1

// Error, can't take the address of a swizzle
//print((int*)(&example.hi), 4);

// Option 1, preferred
int4 result_int4 = example.hi;
print((int*)(&result_int4), 4); // 1,1,1,1

// Option 2
print((((int *)&example)+2), 4); // 0,0,1,1

int16 result_int16 = __vload_dup(&example);
print((int*)&result_int16, 16); // 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1
#endif

www.ti.com Native Vector Types

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 13

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

5.6 Complex Vector Types
All of the limitations that exist with the construction and use of native vector types extend to complex vector
types as well. Complex vector types are simply native vectors in which the element type is a complex element.
All valid operators, accessors and uses of complex vectors on the C7000 compiler are available for use in the
same way when using C7000 Host Emulation, with the exception of the limitations outlined in this document.

There are some extra limitations when using vector to memory conversion intrinsics with complex vectors.

• There is no support for converting a complex vector pointer to a pointer of its complex element type. For
example a cint8_ptr cannot be converted to an int*.

#ifdef __C7X_HOSTEM__
cint2 vec1_cint2 = cint2(1, 2, 3, 4);
#else
cint2 vec1_cint2 = (cint2)(1, 2, 3, 4);
#endif

// The following is not allowed. Framework throws a runtime error exception
int *ptr_to_int = (int*)&vec1_cint2;
*ptr_to_int = 50; // Undefined

• Another limitation involves casting to a complex vector type from a pointer type that is different than the
complex element type and is different than the complex component type. In this case, the type of the pointer
passed must be explicitly cast as the same type of the complex component type. If not, the host compiler
emits an error.

int8_t char_data1[] = {1, 2, 3, 4, 5, 6, 7, 8};

cchar2 vec1_cchar2 = *(cchar2_ptr)(char*)char_data1; // Valid
//cchar2 vec2_cchar2 = *(char*)char_data1; // Invalid
cchar2 vec3_cchar2 = *(cchar2_ptr)char_data1; // Valid

• If an array (not a vector) of objects with a complex type is to be cast to a vector of objects with a complex
type, casts to a different element type or component type are not allowed. Also, casting an array of complex
objects to a pointer with an element type will not produce expected results in Host Emulation. The following
code shows several casts that will compile but will not produce expected results in Host Emulation.

#ifdef __C7X_HOSTEM__
cint data_cint[] = {cint(1,2), cint(3,4)};
#else
cint data_cint[] = {(cint)(1,2), (cint)(3,4)};
#endif
cint2 vec1_cint = *(cint2_ptr)(char*)(data_cint); // Produces unexpected results in HE.
cint2 vec2_cint = *(cint2_ptr)(int*)(data_cint); // Produces unexpected results in HE.
int *int_array = (int*)(data_cint); // Produces unexpected results in HE.
cint2 vec3_cint = *(cint2_ptr)(data_cint); // Allowed. Produces expected results.

There are a few extra valid use-cases that the vector to memory intrinsics provide for complex vectors that exist
in addition to the use-cases outlined in Section 5.4.The code that follows shows additional examples of legal
uses of the vector memory intrinsics with respect to complex vector types in C7000 Host Emulation.

/* Extra use-cases that are available when using memory intrinsics with complex vectors */
/* Convert vector pointer to complex element pointer */
cint4 vec = cint4(1,2,3,4,5,6,7,8);
cint_ptr = (cint_ptr)&vec; // Valid
cint element = *ptr; // Valid, element = cint(1,2)
/* Convert complex element pointer to vector pointer */
clong data[] = {clong(1,2), clong(1,2), clong(1,2), clong(1,2)};
clong4 vec = *(clong4_ptr)data; // Valid, vec is filled with elements of "data"
/* Convert complex element component type pointer to vector pointer */
int64_t data_component[] = {1,2,3,4,5,6,7,8};
clong4_ptr vec = (clong4_ptr)data_component;
 // Valid, *vec is filled with complex elements whose
 // real and imaginary components are elements of data_component
 // i.e. &(*vec).s0.r == &data_component[0]

Native Vector Types www.ti.com

14 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

5.7 Complex Element Types
In general, complex element types are used in the same ways with C7000 Host Emulation as they are with
the C7000 compiler. However, due to the complexity of their implementation, complex element types cannot
be treated as simple containers of their real and imaginary components. Similar to native vector types, this
constraint requires the use of complex element pointer types that can be used in pointer casting and basic
pointer arithmetic. See Section 5.9 for a list of the forms of C-style casting supported using these pointer types

5.8 Constant Vector Types and Constant Vector Type Pointers
Constant vector pointer types, in which the element type is const-qualified, are available for use when const-
qualification is desirable or necessary. Use typedefs for const vector pointers, such as __const_int8_ptr. Non-
pointer const types currently cannot be initialized, so they currently serve no purpose.

//const_int8 int8_const_data1(1,2,3,4,5,6,7,8); // Invalid, doesn't work in Host
Emulation
//const_int8 int8_const_data2 = const_int8(1,2,3,4,5,6,7,8);// Invalid, doesn't work in Host
Emulation

const int8_t byte_array[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
long8 long8_data = long8(11, 22, 33, 44, 55, 66, 77, 88);

int main()
{
 const_char16_ptr char_ptr = (const_char16_ptr)byte_array; // Valid
 const_long8_ptr long8_ptr = &long8_data; // Valid

 /* . . . */

 return 0;
}

5.9 Vector and Complex Element Pointer Types
The Host Emulation framework defines a set of vector and complex element pointer types. You must use these
types to manage pointers to vectors and complex element objects. The pointer types manage shared pointers
that control ownership and allocation of their corresponding object.

Each vector type and complex element type has a corresponding pointer type that is named
<vector_type>_ptr or <complex_type>_ptr . For example:

uint8_ptr points to a uint8 vector.

clong_ptr points to a clong complex element.

cint4_ptr points to a cint4 complex vector.

The following describes the behavior defined for these pointer types:

• Creation based on existing vector or complex element using the & address-of operator:

ulong2 vect = ulong2(2, 4);
ulong2_ptr p = &vect;

• Casting from a scalar pointer:

int array[] = {1, 2, 3, 4}
int4_ptr p = (int4_ptr)array;

• Pointer dereferencing using the * pointer operator. This returns the vector to which the pointer points

ulong2 vect = ulong2(2, 4);
ulong2_ptr vectp = &vect;
ulong2 new_vect = *vectp;
ulong my_long = (*vectp).s0;

www.ti.com Native Vector Types

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 15

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

• Basic Pointer Arithmetic. If the pointer type is created based on conversion from a scalar pointer to
memory, the following pointer arithmetic operations are supported:
– Post-increment "++"
– Pre-increment "++"
– Post-decrement "--"
– Pre-decrement "--"
– Plus "+ offset"
– Minus "- offset"
– Minus "- pointer"
– Plus-assignment "+="
– Minus-assignment "-="

If pointer arithmetic is attempted on a pointer type not created based on a conversion from a scalar pointer to
memory, an exception will be thrown.

• Pointer Comparisons. Additionally, the following pointer comparison operations are supported:
– Equal "== pointer"
– Not-equal "!= pointer"
– Less-than "< pointer"
– Greater-than "> pointer"
– Less-than-or-equal "<= pointer"
– Greater-than-or-equal ">= pointer"

• C-style casting
– Converting from a vector

• Convert from a vector pointer to an element type scalar pointer.

// Converts int4_ptr to int32_t*
int32_t *p = (int32_t*)pointer_to_int4;

• Convert from a complex vector pointer to a complex element type pointer.

// Converts cint4_ptr to cint_ptr
cint_ptr p = (cint_ptr)pointer_to_cint4;

• Convert from a complex vector pointer to a complex element type component scalar pointer. This is
allowed only if the complex vector was converted/initialized based on a scalar pointer to memory.

// Converts cint4_ptr to int32_t*
int32_t *p = (int32_t*)pointer_to_cint4;

– Converting to a vector
• Convert from a scalar pointer to a vector pointer.

// Converts int32_t* to int4_ptr
int4_ptr p = (int4_ptr)pointer_to_int32_t;

• Convert from a scalar pointer to a complex vector pointer.

// Converts int32_t* to cint4_ptr
cint4_ptr p = (cint4_ptr)pointer_to_int32_t;

• Convert from a complex element type pointer to a complex vector pointer.

// Converts cint[] to cint4_ptr
cint data[] = {cint(1,2), cint(1,2), cint(1,2), cint(1,2)};
 cint4_ptr p = (cint4_ptr)data;

– Convert from complex element pointer to scalar pointer
// Converts cint_ptr to int32_t
int32_t *p = (int32_t*)pointer_to_cint;

Native Vector Types www.ti.com

16 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

– Convert from scalar pointer to complex element pointer
// Converts int32_t* to cint_ptr
cint_ptr p = (cint_ptr)pointer_to_int32_t;

Note

The formerly-documented vtos_ptr(), stov_ptr(), ctos_ptr(), and stoc_ptr() intrinsics are still available,
but are deprecated. They now wrap the corresponding C-style cast describedabove.

No other operators are supported, including using the array (subscript) access operator ([index]). Using the array
access operator may result in a segmentation fault, as an internal data structure that implements vectors and
vector types might be used after its memory is freed.

The C7000 Compiler supports all of these pointer types, which are typedefs to a standard pointer to the
corresponding vector or complex element type.

Note

A __STRM_TEMPLATE_ptr type is provided for use when storing and loading a
__STRM_TEMPLATE. The stream template is used to configure the Streaming Engine and Streaming
Address Generator (see Section 6). A strmtemplate_ptr(addr) conversion macro is also
provided to allow you to cast a scalar pointer to a __STRM_TEMPLATE_ptr type.

www.ti.com Native Vector Types

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 17

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

6 Streaming Engine and Streaming Address Generator
The C7000 Host Emulation Streaming Engine (SE) and Streaming Address Generator (SA) interface is the same
as with the C7000 compiler.

6.1 Streaming Address Generator
As discussed in Section 5.4, when loading and storing vectors from memory, care must be taken to ensure that
the data is formatted in the correct way and that the size of the data matches its destination.

When using the Streaming Address Generator, all pointers used as the base address to the SA intrinsics must
point to a contiguous set of elements in memory. The base pointer in these intrinsics cannot be a vector pointer
if the data at that location is a vector type that was stored directly without modification. To store pre-built vector
types into memory for use with the SA, use the scalar-pointer to vector-pointer typecasts described in Section
5.9.

Although the SA can only retrieve offsets to a set of consecutive elements in memory, vector operations are still
valid on the data as if it was originally stored as a native vector type. When using the SA to retrieve an offset
to a vector type, a pointer is returned to a vector that represents that continuous data in memory. Modifying this
vector through the pointer modifies the data in memory, as is expected. The following example demonstrates this
limitation and shows how to work with the SA using C7000 Host Emulation.

/* SA example: Host Emulation Code */
#include "c7x.h"
int32_t mem[16] = {0};
void SA0_init_func()
{
 // SA initialization of param vector omitted

 __SA0_OPEN(param_vec);
}
int main()
{
 int16 to_mem = int16(int8(0), int4(1), int4(2));
 *(int16_ptr)(mem) = to_mem;
 // mem now contains
 // {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2}

 SA0_init_func();

 int16_ptr data = __SA0ADV(int16, mem);
 // It is also valid to use:
 // int16* data = __SA0ADV(int16, (int32_t*)mem)
 // This is because "mem" points to a list of consecutive elements

 (*data).s0 = -1; // Modify mem using native vector type
 // mem now contains
 // {-1,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2}
}

As was noted in Section 5.4, the vector pointer to scalar functions are defined with the C7000 compiler as a
simple cast operation. This allows any code written with the SA under C7000 Host Emulation to compile properly
with the C7000 compiler without modification.

Streaming Engine and Streaming Address Generator www.ti.com

18 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

7 Lookup Table and Histogram Interface
The C7000 Host Emulation Lookup Table (LUT) and Histogram (HIST) interface is the same as with the C7000
compiler. Any intrinsic or definition mentioned in c7x_luthist.h is also defined and implemented in C7000
Host Emulation and can be used in the same way.

7.1 Lookup Table and Histogram Data
When using C7000 Host Emulation, a 32K portion of memory is allocated to represent the C7000’s L1D cache
for use with LUT and HIST operations. The symbol, lut_sram , should not be used directly under normal
circumstances. Accessing lut_sram directly is analogous to accessing the C7000’s L1D cache directly, which
is prohibited. However, the symbol is available for debugging purposes.

www.ti.com Lookup Table and Histogram Interface

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 19

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

8 C6000 Migration
All intrinsics and data types defined in c6x_migration.h are available in C7000 Host Emulation for migrating
legacy code. All intrinsics that map to a C7000 instruction or a set of instructions are used in the same way as
they are with the C7000 compiler. However, as mentioned in Section 4.5, there are limitations when using legacy
types in C7000 Host Emulation.

The following sections focus only on the differences between using legacy code with the C7000 compiler
and using C7000 Host Emulation. The C6000-to-C7000 Migration User's Guide (SPRUIG5) contains detailed
information on migrating C6000 programs to C7000.

8.1 __float2_t Legacy Data Type
With the C7000 compiler, the __float2_t legacy type is treated as a double at all times. This is valid with
the C7000 compiler as a double is 64-bits wide and can fit two 32-bit floating point elements for use with SIMD
operations.

This is not the case when using host systems that execute on Intel x86 architectures. When performing loads
and stores of doubles on Intel x86 machines, there is an automatic conversion that takes place to convert
a 64-bit double to an 80-bit “extended-real” type. This presents a problem when a double is used to store
two distinct 32-bit floating point values as normalization can occur on the 80-bit “extended-real” types, which
changes the bits stored in memory. If an extension to an 80-bit type with normalization is done on a double that
represents two 32-bit floating point types, then the data can no longer be guaranteed and SIMD operations that
expect two floating point values will have inconsistent results.

To solve this problem, C7000 Host Emulation contains a separate class definition for the __float2_t type that
is treated as an opaque container type. Container types can only be modified, accessed, and initialized using
special intrinsics. While the __float2_t class definition contains public accessor methods, it is recommended
that only intrinsics are used to modify __float2_t types as any member of the C7000 Host Emulation
__float2_t type will be undefined with the C7000 compiler. The __float2_t class type should be used
when a single data structure that represents two 32-bit floating point values is required in a legacy intrinsic.
When writing C7000 Host Emulation code that utilizes C6000 legacy constructs, a double type should only be
used to represent one double precision floating point value.

As a result of having a separate definition for the __float2_t type, the _ftof2 intrinsic must be used to
construct a __float2_t type. With the C7000 compiler, this intrinsic is defined as _ftod which creates a
double type from two floating pointer arguments. The accessor methods for __float2_t are defined in the
same manner.

Table 8-1 lists the intrinsics that are distinctly defined for C7000 Host Emulation. Despite the distinctions made
in the definitions of the intrinsics listed in this table, legacy code written for C7000 Host Emulation can be
transferred to the C7000 compiler without change.

Table 8-1. Legacy Intrinsics with Distinct Definitions in Host Emulation
Intrinsic Name Previous Definition Function
_ftof2 _ftod Construct __float2_t type from 2 floating point values

_lltof2 _lltod Convert long long values to __float2_t type

_f2toll _dtoll Convert __float2_t type to long long

_hif2 _hif Access high 32-bit float from __float2_t type

_lof2 _lof Access low 32-bit float from __float2_t type

_fdmv_f2 _fdmv Alternative to using PACK instruction to construct __float2_type from 2 floats

_fdmvd_f2 _fdmvd Alternative to using PACKWDLY4 instruction to construct __float2_type from 2 flaots

_hif2_128 _hid128 Access high __float2_t type from __x128_t type

_lof2_128 _lod128 Access low __float2_t type from __x128_t type

_f2to128 _dto128 Construct __x128_t type from 2 __float2_t types

C6000 Migration www.ti.com

20 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

The following examples construct and set __float2_t variables in valid and invalid ways as indicated in the
comments.

/* __float2_t type examples: Host Emulation Code */

#include <c7x.h>
#include <c6x_migration.h>

int main(){
 // Valid ways to construct a __float2_t
 __float2_t src1 = _ftof2(1.1022, 2.1010);
 __float2_t src2 = _ftof2(-1.1, 4.10101);

 // Invalid way to construct a __float2_t in Host Emulation
 // __float2_t from_double = (double)1.0;

 // Legal to set a __float2_t from other pre-constructed
 // __float2_t types (done using intrinsic)
 src1 = src2;

 // It is illegal to set a __float2_t type via a
 // constructor call. The following will not compile:
 // src1 = __float2_t(1.0, 2.0);

 // Correct way to access lo/hi
 float lo_correct = _lof2(src1);

 // Intrinsic use example
 __float2_t res = _daddsp(src1, src2);

 return 0;
}

www.ti.com C6000 Migration

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 21

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

9 Matrix Multiply Accelerator (MMA) Interface
The C7000 Host Emulation Matrix Multiply Accelerator (MMA) interface is the same as the interface used with
the C7000 compiler on the target hardware with one important difference. All intrinsics and definitions mentioned
in c7x_mma.h are also defined and implemented for C7000 Host Emulation and can be used in the same ways.
However, programs must explicitly indicate when the MMA state advances by calling the provided __HWAADV()
intrinsic. This is because, unlike the target hardware, the MMA that is emulated for the host can't be tied to the
notion of a CPU clock.

Programs must keep track of instructions that are intended to execute in parallel and explicitly advance the MMA
state by calling __HWAADV() after each set of "parallel" instructions.

To make portability easier between host and target modes, the __HWAADV() intrinsic is defined as an empty
macro by the target compiler.

Matrix Multiply Accelerator (MMA) Interface www.ti.com

22 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

10 Compiler Errors and Warnings
When using C7000 Host Emulation to program for C7000, compiler errors and warnings will differ from those
seen when compiling the same code with the C7000 compiler. Due to the complex implementation of some of
the C7000’s features in Host Emulation, the following sections define some key terms needed to help decipher
some Host Emulation compiler errors you may see.

This section also discusses Host Emulation compiler errors and warnings that may be emitted when attempting
to use C7000 Host Emulation specific syntax and constructs. Cases that may not trigger compiler errors or
warnings are also described.

10.1 Key Terms Found in Compiler Errors and Warnings
When dealing with native vector constructors, compiler errors and warnings may reference different classes and
their respective members. Table 10-1 lists these key terms and their purposes.

Table 10-1. : Key terms found in vector-related compiler errors and warnings
Term Purpose Sample Error/Warning
_c70_he_detail Namespace containing all vector classes

and operators
“Error: could not convert ‘_c70_he_detail::vtype<long int, 8ul>(0)’…”

Vtype High-level vector class name “Error: conversion from ‘int2 {aka _c70_he_detail::vtype<int, 2ul>]’…”

Accessible Class name that represents an “accessible”
level of a vector (i.e. vec.lo)

“Error: char32 is not derived from ‘_c70_he_detail::accessible<char,
16ul>’…”

10.2 Host Emulation Specific Syntax
C7000 Host Emulation both introduces and omits some syntax used with the C7000 compiler. While these
differences are detailed throughout this document, the Host Emulation compiler cannot be relied on to emit
warnings and errors in all of these cases. This is due to the fact that some of the original syntax allowed by the
C7000 compiler constitutes legal C++ code, which the Host Emulation compiler would have no reason to warn
the user about. While using the original C7000 compiler syntax in some cases may be syntactically correct, the
results cannot always be guaranteed. Table 10-2 lists the host compiler errors and warnings, or lack thereof,
which may arise when using the original C7000 syntax with C7000 Host Emulation.

Table 10-2. Syntax change related compile errors and warnings
Description Example Compiler Output
Using C7000 vector constructor
syntax with Host Emulation

(long8)(1,2,3,4,5,6,7,8) // C7000
vs.
long8(1,2,3,4,5,6,7,8) // Host Emu

No errors or warnings. Results are incorrect.

Ternary operator with vector as
"boolean expression"

res = vec1 ? vec2 : vec3 Compiler error: "Cannot convert vec_type to
bool".

Using swizzle accessor example.s0121 Compiler error: "Member does not exist".

Using actual vector/complex
pointers in casting operation rather
than the special pointer types
described in Section 5.9.

int4 vect = *(int4*)data; // C7000
int4 *vp = (int4*)data; // C7000
vs.
int4 vect = *(int4_ptr)data; // Host Emu
int4_ptr vp = (int4_ptr)data; // Host Emu

Run time error.

Using invalid value within SE/SA
parameters

Setting VECLEN to a negative number. Run time error. Explains which flag is invalid and
what constraints it must meet.

www.ti.com Compiler Errors and Warnings

SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

C7000 Host Emulation User's Guide 23

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

11 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from March 15, 2021 to October 22, 2021 (from Revision G (March 2021) to Revision
H (October 2021)) Page
• Added a list of pointer comparisons operators to vector and complex element pointer types..........................15

Changes from December 31, 2020 to March 15, 2021 (from Revision F (December 2020) to
Revision G (March 2021)) Page
• Allow Visual C++ build tools versions after 2017..3
• Both release and debug-compatible static run-time libraries are provided for use with Microsoft Visual C++... 3
• The initial values of control registers are now set to the values used in a hardware reset instead of setting all

control register values to 0..6

Changes from May 1, 2020 to December 31, 2020 (from Revision E (May 2020) to Revision F
(December 2020)) Page
• Updated the numbering format for tables, figures, and cross-references throughout the document..................2
• Noted that Host Emulation support is an experimental product, and its limitations should be considered.........2
• Added -fno-strict-aliasing option to command line for g++ compiler. Corrected error in sample code............... 5
• Added #ifdef __C7X_HOSTEM__ to example to show code with and without Host Emulation....................... 10
• Modified code for use with Host Emulation and C7000 Compiler...11
• Modified example code...13
• Modified examples code and added information about unexpected results when casting array of complex

objects to a vector or pointer...14
• Added section about constant vector pointer types.. 15
• Array access operators are not supported for vector and complex element pointer types...............................15
• Modified example code to use int16_ptr type... 18
• Modified example code...20

Table 12-1. Changes from January 28, 2020 to May 1, 2020 (from Revision D to Revision E)
Version
Added Location Notes

SPRUIG6E Section 1.1 Added C7x Instruction Guide and other documents to list of related documents.

SPRUIG6E Section 4.2.1 Added information and workaround for incompatible argument types for load and store
intrinsics.

SPRUIG6E Section 5 Additional memory is required for vector data types with Host Emulation.

SPRUIG6E Section 5.3 Nested subvectors are limited to a depth of 2 with Host Emulation.

Revision History www.ti.com

24 C7000 Host Emulation User's Guide SPRUIG6H – JANUARY 2018 – REVISED OCTOBER 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIG6
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIG6H&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 About This Document
	1.1 Related Documentation
	1.2 Disclaimer
	1.3 Trademarks

	2 Getting Started with Host Emulation
	2.1 System Requirements
	2.2 Installation Instructions
	2.3 Summary of Differences: Host Emulation Coding vs. Native C7000 Coding

	3 General Coding Requirements
	3.1 Required Header Files
	3.2 Package Dependencies
	3.3 Example Program

	4 Intrinsics
	4.1 OpenCL-Like Intrinsics
	4.2 Load and Store Intrinsics
	4.2.1 Incompatibilities Between char and int8_t Arguments
	4.2.2 Interpreting Errors from Intrinsics

	4.3 Streaming Address Generator Intrinsics
	4.4 C6000 Legacy Intrinsics
	4.5 Memory System Intrinsics

	5 Native Vector Types
	5.1 Constructors
	5.2 Accessors
	5.3 Vector Operators
	5.4 Vector Pointer and Storage Limitations
	5.5 Print Debug Function
	5.6 Complex Vector Types
	5.7 Complex Element Types
	5.8 Constant Vector Types and Constant Vector Type Pointers
	5.9 Vector and Complex Element Pointer Types

	6 Streaming Engine and Streaming Address Generator
	6.1 Streaming Address Generator

	7 Lookup Table and Histogram Interface
	7.1 Lookup Table and Histogram Data

	8 C6000 Migration
	8.1 __float2_t Legacy Data Type

	9 Matrix Multiply Accelerator (MMA) Interface
	10 Compiler Errors and Warnings
	10.1 Key Terms Found in Compiler Errors and Warnings
	10.2 Host Emulation Specific Syntax

	11 Revision History

