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About This Manual
This document is for those who want to improve the performance of code running on C7000™ CPUs.

This guide is not intended to help optimize code for the memory/cache hierarchy, MSMC, DMA, or Matrix
Multiply Accelerator (MMA).

Readers of this document should have the following:

* Knowledge of C and C++.

» Experience invoking the C7000 compiler using compiler options.

» Knowledge of basic assembly language concepts.

» Knowledge of CPU architectural features like registers, caches, and functional units.

Related Documentation

Use the following documents from Texas Instruments to supplement this user's guide:

SPRUIG8 C7000 Optimizing C/C++ Compiler User's Guide
SPRUIG4 C7000 Embedded Application Binary Interface (EABI) Users Guide
SPRUIU4 C7x Instruction Guide (available through your Tl Field Application Engineer)

SPRUIP0 C71x DSP CPU, Instruction Set, and Matrix Multiply Accelerator Technical Reference Manual
(available through your Tl Field Application Engineer)

SPRUIQ3 C71x DSP Corepac Technical Reference Manual (available through your Tl Field Application
Engineer)

SPRU425 C6000™ Optimizing C Compiler Tutorial

SPRA666 Hand-Tuning Loops and Control Code on the TMS320C6000™
SPRABKS5 Throughput Performance Guide for KeyStone™ Il Devices
SPRUIG5 C6000-to-C7000 Migration Users Guide

Trademarks

C7000™, C6000™, TMS320C6000™, and KeyStone™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
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. Chapter 1

. ’{II\EI)S(’?FS{UMENTS Introduction

Before describing compiler options and source code strategies you can use to make code more efficient, it is
necessary to know some information about the C7000 Digital Signal Processor and instruction set. This chapter
provides an overview of the C7000 architecture, datapath, and functional units.

1.1 C7000 Digital Signal Processor CPU Architecture OVErVieW................cocuiiiiiiiiiiiiiiiieee et 8
1.2 C7000 Split Datapath and Functional Units...................cooi e 9
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1.1 C7000 Digital Signal Processor CPU Architecture Overview

The C7000 CPU DSP architecture is the latest high-performance digital signal processor (DSP) from Texas
Instruments. It is featured in some Texas Instruments Keystone 3 devices. This Very-Long-Instruction-Word
(VLIW) DSP has significant mathematical processing capabilities, due to its wide vector instructions and multiple
functional units. This optimization guide can help developers get the most performance of the C7000 DSPs.

When integrated into a larger Tl device, such as some Keystone 3 devices, the C7000 is often paired with a
Matrix Multiply Accelerator (MMA), which can significantly improve the performance of certain machine learning
networks. We recommend use of the Tl Deep Learning library, which has been optimized to use the Matrix
Multiply Accelerator. The Tl Deep Learning library is part of the Processor SDK.

The C7000 DSP has vector (SIMD) instructions that are capable of performing up to 64 operations in a single
instruction, depending on the data type and version of the C7000 CPU. Nearly all computational instructions
on C7000 DSP cores are fully pipelined, which means independent instructions can be started on every clock
cycle. This combination of vector instructions and pipelined behavior allows you to perform a large number of
computations per cycle. The C7000 DSP cores feature both fixed-point and floating-point vector instructions.

Each C7000 DSP core has several functional units. On each clock cycle, each functional unit can be executing
an independent instruction. In this guide, we focus on the first generation of C7000 DSP cores, the C7100 and
C7120. Because the C7100 and C7120 DSP cores have 13 functional units, there are 13 instructions that can
execute every clock cycle. In reality, some of the functional units are specialized for certain kinds of instructions,
so for this and other reasons, it is common that not all 13 functional units execute an instruction every cycle.

For more information on the C7000 instruction set, please see the C771x DSP CPU, Instruction Set, and Matrix
Muiltiply Accelerator Technical Reference Manual (SPRUIPO).
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1.2 C7000 Split Datapath and Functional Units

The following block diagram shows the datapath split on the C7100 DSP CPU. There is an A-side datapath and
a B-side datapath. The diagram shows the functional units and multiple, heterogeneous register files. The A-side
datapath is responsible for scalar computation, loading and storing scalars and vectors to and from memory, and
control-flow (branches, calls). The B-side datapath handles vector math operations, permutations of data, and
vector predication operations.
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Figure 1-1. C7000 Datapath Block Diagram

<«—— Vector predicate data bus

To simplify the image above, some data movement capabilities and data paths are not shown in this figure.

* In general, a functional unit can write to any register file on the same datapath.

* Most functional units can obtain data from one or both of the streaming engines.
» There is one 64-bit cross path per datapath (A/B). Each cross path allows one read per cycle from the

opposite side global register file.

On C7100 and C7120 devices, the vector width is 512 bits.
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On a given datapath, there are several different kinds of register files. On a given datapath, each functional
unit can write to the global register file on that datapath and most of the “local” register files on that datapath.
However, only some functional units can read from a “local” register file. Registers are 64-bits per register
(“scalar”) or 512-bits per register (“vector”) and the register files vary in the number of registers.

D1 and D2 units: These reside on the A-side datapath and can load from and store to memory. Two 64-bit
loads can operate in parallel. Two 64-bit stores can operate in parallel. A 64- or 512-bit load can execute in
parallel with a 64- or 512-bit load or store. It is not possible for two 512-bit (“vector”) stores to be in parallel or
two 512-bit (“vector”) loads to be in parallel.

L1, S1, M1, and N1 units: These are general-purpose functional units, handling a varied mix of scalar and
small vector computation. The M1 and N1 functional units perform various multiplication instructions.

L2, S2, M2, and N2 units: These are also general-purpose functional units, but can operate on 512-bit-wide
vectors. The M2 and N2 functional units perform various multiplication instructions.

B unit: This unit handles indirect branches and calls.

C unit: This unit performs permutations and shuffles of data.

P unit: This unit computes predicates used to mask off vector lanes so particular lanes are not computed or
are not stored to memory.

In addition to the D1 and D2 units providing CPU access to the memory hierarchy, the C7100 DSP has two
“streaming engines” that facilitate a fast path to obtain data from memory. A streaming engine is a hardware
feature that allows you (or the compiler) to specify a pattern of memory addresses to obtain from memory. The
streaming engine will do its best to pre-fetch that data from the memory hierarchy into a scratchpad memory
close to the CPU, to minimize CPU stalls due to cold cache misses.

10
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Chapter 2

2 NS TRUMENTS C7000 C/C++ Compiler Options

This chapter describes the Texas Instruments C7000 C/C++ Compiler and options that can be used to optimize
performance.

2.0 OVEIVIBW..........eeieeiie e et e e e et e e e e e eateeeeeeeeataeeeaeaaeaaseeaaeeeaanseeeeaeaansseeeaeseasssseeaeesanssesseaesanssnseaesanssnaneaeaanns 12

2.2 Selecting Compiler Options for PerfOrManCe..................ooiiiiiiiiiiii it e e e e e e e e enraeaeeeanees 13

2.3 Understanding Compiler OptimizZation.................c.oiiiiiiiiiiiiii et sbe e bt e eanbe e e sanees 14
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2.1 Overview

C/C++
Application

High-level b
Optimization '
(optional) 1

1

1

1

1 ,

Low-level ’
Optimization P
And Code
Generation

¢ Assembly File (.asm)

Assembling

Object File (.obj)

Executable

Figure 2-1. C7000 Compiler Processing Stages

The Texas Instruments C7000 compiler accepts C or C++ source input. When compiling, the compiler proceeds
through several stages, as shown in the following figure

First, the source file is parsed to create a high-level intermediate representation that closely resembles the
source language, but is more tailored for optimization transformations.

Files and functions (optionally) compiled with some level of optimization pass through the high-level optimizer,

which performs function inlining, loop transformations, and other code optimizations.

Next, the high-level intermediate language is translated into a low-level intermediate language, which closely
resembles assembly. The low-level optimizer and code generation pass performs partitioning, register allocation,
software pipelining, instruction scheduling, and other optimizations.

The output of the code generation pass is the assembly file, which is assembled into an object file by the
assembler and then linked into a library or executable by the linker.

12
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2.2 Selecting Compiler Options for Performance

After your application has been fully debugged and is working properly, it is time to begin the optimization
process. First, you need to select appropriate compiler options. The following compiler options affect
performance. See the C7000 C/C++ Compiler User’s Guide (SPRUIGS8) for more details on command-line
options.

--opt_level=3 (-03). The compiler performs function-level optimization at -opt_level=2 and file-level
optimization and function inlining at --opt_level=3. At both --opt_level=2 and --opt_level=3, the compiler
performs various loop optimizations, such as software pipelining, vectorization, and loop coalescing. By
default, the --opt_level switches optimize for performance. Such optimization can increase code size. If code
size is an issue, do not reduce the level of optimization. Instead use the --opt_for_speed (-mf) switch to
change the optimization goal (performance versus code size) and the —oi option to control the amount of
automatic inlining.

--opt_level=4 (-04). Consider using this option to perform optimizations across all files at link-time. Using
this option can increase compile time significantly. If used for any step, this option must be used at all
compilation and linking steps. Source files can be compiled separately, as long as they are all compiled with
--opt_level=4. This optimization level cannot be used with --program_level _compile (-pm).
--gen_func_subsections (-mo). Consider using this option if the source code uses many functions that are
never called. This option places each function in its own input subsection, so the linker can exclude that
function from the executable if it is never referenced. However, this optimization can increase code size,
because there are minimum section alignment requirements the compiler must apply.

--opt_for_speed=0 (-mf0) or --opt_for_speed=1 (-mf1). If code size is a concern, use these options when
compiling files with functions that are not executed often or are not critical to performance. This tells the
compiler to optimize for code size instead of performance. Do not lower the optimization level (--opt_level) in
an attempt to lower code size.

Do not use the --disable_software_pipelining (-mu) option if you are concerned about performance. This option
turns off software pipelining. Software pipelining is critical to achieving high performance on most loops. This
option can be a debugging tool, as it makes the assembly code easier to understand.

The following options provide additional information for debugging and performance evaluation purposes:

--src_interlist (-s). This option causes the compiler to emit into the compiler-generated assembily files a copy
of what the source code looks like after high-level optimization. This output is placed in the assembily files as
comments among the assembly code. The comments output from the optimizer look like C code and show
the high-level transformations that have been applied such as inlining, loop coalescing, and vectorization.
This option can be useful in helping you understand the assembly code and some of what the compiler

is doing to optimize the performance of the code. This option turns on the --keep_asm (-k) option, so the
compiler-generated assembly (.asm) files will not be deleted.

--debug_software_pipeline (-mw). This option emits extra information about software-pipelined loops,
including the single-scheduled iteration of the loop. This information is used in loop tuning examples
presented later in this document. This option turns on the --keep_asm (-k) option, so the compiler-generated
assembly (.asm) files will not be deleted.

--gen_opt_info=2 (-on2). This option creates a .nfo file with the same base name as the .obj file. This file
contains summary information regarding the high-level optimizations that have been applied, as well as
providing advice.
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2.3 Understanding Compiler Optimization

Before you can interpret the assembly code and the software pipelining information within, it helps to understand
some of what the compiler is trying to do with the C/C++ source code as it compiles it into assembly code.

2.3.1 Software Pipelining

Very-Long Instruction Word (VLIW) digital signal processors (DSPs) like the C7000 depend on software
pipelining of loops to achieve maximum performance. Software pipelining is a technique in which successive
iterations of a source loop are overlapped so that the functional units on the CPU are utilized on as many cycles
as possible throughout the loop.

The following figure shows loop iteration execution both without and with software pipelining. You can see that
without software pipelining, loops are scheduled so that loop iteration i completes before iteration i+7 begins.
With software pipelining, iterations overlap. Thus, as long as correctness can be preserved, iteration i+7 can
start before iteration i finishes. This generally permits a much higher utilization of the machine’s resources than
might be achieved from other scheduling techniques. In a software-pipelined loop, even though a single iteration
might take s cycles to complete, a new iteration is initiated every ii cycles.

iteration i exec Ution iteration i execution

\/\ time time

e ii'"éj}'ciiéé"
s =i s cycles

iteration i+1 iteration i+1 I I
iteration i+2 V iteration i+2 ’_\/

Non software-Pipelined \d Software-Pipelined v

Figure 2-2. Effects of Software Pipelining on Execution

In an efficient software pipelined loop, ii is much less than s. ii is called the initiation interval; it is the number
of cycles between starting iteration i and starting iteration i+17. s is the number of cycles for the first iteration to
complete, or equivalently, the length of a single scheduled iteration of the software-pipelined loop.

The compiler attempts to software pipeline the innermost source loops. These are loops that do not have any
other loops within them. Note that during the compilation process, software pipelining occurs after inlining and
after loop transformations that may combine loops, so in certain cases you may see the compiler software
pipelining more of your code than you expect.
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After software pipelining, the loop has three major phases, as shown in the following figure:

« pipe-up (prolog) phase during which the overlapped iterations are started.
+ steady-state (kernel) phase during which iterations continue to be started.
» pipe-down (epilog) phase during which any iterations that have not yet completed are allowed to finish.

loop:

prolog

br kernel

epilog

Figure 2-3. Loop Iterations with Prolog and Epilog

The following example shows the source code for a simple weighted vector sum.

// weighted vector sum.cpp

// Compile with "cl7x -mv7100 --opt level=3 --debug software pipeline
// --src_interlist --symdebug:none weighted vector sum.cpp"

void weighted sum(int * restrict a, int *restrict b, int *restrict out,
int weight a, int weight b, int n)
{

#pragma UNROLL (1)
#pragma MUST ITERATE (1024, ,32)
for (int i = 0; i < n; i++4)
{
out[i] = a[i] * weight a + b[i] * weight b;
}

To simplify this first software-pipelining example, two pragmas are used:

*  The UNROLL pragma tells the compiler not to perform vectorization, which is a transformation technique that
is demonstrated in the next section.

* The MUST_ITERATE pragma conveys information on how many times the loop executes and is explained

later in this document. The example uses this pragma to prevent a "duplicate loop" from being generated,
which is also explained later in this document.

Then we compile this code with the following command:

cl7x --opt level=3 --debug software pipeline --src_interlist --symdebug:none weighted vector sum.cpp

The --symdebug:none option prevents the compiler from generating debug information and the associated
debug directives in the assembly. This debug information is not relevant to the discussion in this document and
if included, would unnecessarily lengthen the examples shown here. Normally, you would not turn off debug
generation as the generation of debug information does not degrade performance.
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Because the --src_interlist option is used, the compiler-generated assembily file is not deleted and has the
following contents:

LR R T S S S S

I$

1S

Loop found in file

Loop sou

rce line

Loop opening brace source line
Loop closing brace source line
Known Minimum Trip Count

Known Max Trip Count Factor

Loop Carried Dependency Bound (")

Unpartitioned Resource Bound
Partitioned Resource Bound

2 (pre-sched)

Searching for software pipeline schedule at
2 Schedule found with 7 iterations in parallel

ii =

Partitioned Resource Bound (*)

SINGLE SCHEDULED ITERATION

2 (post-sched)

; [A U]

; [A_D1] |12]
; [A D2] |12]
; [B_N] |12]
; [B_M2] |12]
; [B_L2] |12]
; [A D11 |12]
; [A B] [10]
;o [1 110]

[1$CS$C361 |
0 TICK
1 SLDW .D1 *D1++ (4) ,BMO
I SLDW .D2 *D2++ (4) , BM1L
2 NOP 0x5 ; [A B]
7 MPYWW .N2 BM2, BMO, BLO
I MPYWW M2 BM3, BM1, BL1
8 NOP 0x3 ; [A_B]
11 ADDW LL2 BL1,BLO0, B0
12 STW .D1X BO, *DO++ (4)
I BNL .B1 [ 1$CS$C36] |
13 ; BRANCHCC OCCURS {|]$C$C36] ]}
K e e e e e o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o
CSL1]|: ; PIPED LOOP PROLOG
EXCLUSIVE CPU CYCLES: 8
TICK ; [A_U]
SLDW .D1 *D1++ (4) ,BML ; [A D1]
SLDW .D2 *D2++ (4) , BMO ; [A D2]
MV .L2X A7,BO ; [B_L2] 7] (R)
TICK ; [A U] (P) <2,0>
MV .L2X A8,BlL ; [B_L2] |71 (R)
SLDW .D1 *D1++ (4) , BMO ; [A D1] |12] (P) <2,1>
SLDW .D2 *D2++ (4) , BM1 ; [A D2] [12] (P) <2,1>
MV .52 BO, BM2 ; [B_S2] (R)
MV LL2 B1,BM3 ; [B_L2] (R)
TICK ; [A U] (P) <3,0>
MPYWW .N2 BM2, BM1, BLO ; [B_N] [12] (P) <0,7>
MPYWW M2 BM3, BMO, BL1 ; [B_M2] |12] (P) <0,7>
SLDW .D1 *D1++ (4) ,BMO ; [A D1] [12] (P) <3,1>
SLDW .D2 *D2++ (4) , BM1L ; [A D2] |12] (P) <3,1>
TICK ; [A U] (P) <4,0>
MPYWW .N2 BM2, BM1, BLO ; [B.N] [12] (P) <1,7>
MPYWW M2 BM3, BMO, BL1 ; [B M2] [12] (P) <1,7>
SLDW .D1 *D1++ (4),BMO ; [A D1] [12] (P) <4,1>
SLDW .D2 *D2++ (4) , BM1 ; [A D2] |12] (P) <4,1>
MV .D2 A6,D0 ; [A D2] (R)
ADDD .D1 SP,Oxfffffff8,SP ; [A D1] (R)
TICK ; [A U] (P) <5,0>
CcsL2] | : ; PIPED LOOP KERNEL
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; EXCLUSIVE CPU CYCLES: 2
ADDW .L2 BL1,BLO, B0 ; [B L2] |12 <0,11>

I MPYWW N2 BM2, BMO, BLO ; [B NI [12] <2,7>

| MPYWW .M2 BM3,BM1, BL1 ; [B M2] |12 <2,7>

| SLDW .D1 *D1++ (4) , BMO ; [A D1] |12 <5,1>

| SLDW .D2 *D2++ (4) , BM1 ; [A D2] [12] <5,1>
BNL .B1 [ 1$CSL2 | | ; [A B] [10] <0,12>

| STW .D1X BO, *DO++ (4) ; [A D1] |12]| <0,12>

| TICK ; [A U] <6,0>

; K K e *

| 1$CSL3 | : ; PIPED LOOP EPILOG

; EXCLUSIVE CPU CYCLES: 7

JFE L s return;
ADDD .D2 SP, 0x8,SP ; [A D2] (O)

| LDD .D1 *SP(16),A9 ; [A D1] (O)

| ADDW .L2 BL1,BLO, B0 ; [B_L2] |12 (E) <4,11>

I MPYWW .N2 BM2,BMO, BL1 ; [B N] [12] (E) <6,7>

I MPYWW M2 BM3, BM1,BLO ; [B_M2] |12] (E) <6,7>
STW .D1X BO, *DO++ (4) ; [A D1] |12 (E) <4,12>
ADDW L2 BL1,BLO, B0 ; [B_L2] |12] (E) <5,11>
STW .D1X BO, *DO++ (4) ; [A D1] |12 (E) <5,12>
ADDW .L2 BLO,BL1, B0 ; [B L2] |12 (E) <6,11>
STW .D1X BO, *DO++ (4) ; [A D1] |12] (E) <6,12>
RET .B1 ; [A_B] (O)

I PROT ;7 [A_U] (E)
; RETURN OCCURS {RP} ;o [l (0)

This assembly output shows the software pipelined loop from the compiler-generated assembly file along with
part of the software pipelining information comment block, which includes important information about various
characteristics of the loop.

If the compiler successfully software pipelines a loop, the compiler-generated assembly code contains a
software pipeline information comment block that contains a message about "ii = xx Schedule found with yy
iterations in parallel". The initiation interval, (i 1), is @ measure of how often the software pipelined loop is able
to start executing a new iteration of the loop. The smaller the initiation interval, the fewer cycles it will take to
execute the entire loop. The software-pipelined loop information also includes the source lines from which the
loop originates, a description of the resource and latency requirements for the loop, and whether the loop was
unrolled (among other information). When compiling with -mw, the information also contains a copy of the single
scheduled iteration.

In this example, the achieved initiation interval (ii) is 2 cycles, and the number of iterations that will run in paralle
is 7.

The comment block also includes a single-scheduled iteration view of the software pipelined loop. The single-
scheduled iteration view of the software pipelined loop allows you to see how the compiler transformed the
code and how the compiler scheduled one iteration of the software pipelined loop overlap iterations in software
pipelining. See Section 4.2 for more information on how to interpret the information in this comment block.

2.3.2 Vectorization and Vector Predication

The C7000 instruction set has many powerful single-instruction, multiple-data (SIMD) instructions that can
perform multiple operations in a single instruction. To take advantage of this, the compiler tries to vectorize the
source code when possible and profitable. Vectorization usually involves using vector (SIMD) instructions to
perform an operation on several loop iterations of data at a time.
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The following example removes the UNROLL pragma from the example in the previous section. The UNROLL(1)
pragma prevented certain loop-transformation optimizations in the C7000 compiler.

// weighted vector sum v2.cpp
// Compile with "cl7x -mv7100 --opt level=3 --debug software pipeline
// --src_interlist --symdebug:none weighted vector sum v2.cpp"
void weighted sum(int * restrict a, int *restrict b, int *restrict out,
int weight a, int weight b, int n) {
#pragma MUST ITERATE (1024, ,32)
for (int i = 0; i < n; i++4) {
out[i] = a[i] * weight a + b[i] * weight b;
}

The following shows the resulting internal compiler code, which has been vectorized. Vectorization by the
compiler can be inferred by the "+= 16" address increments and "32x16" in the names of optimizer temporary
variables (to indicate there are 16 32-bit elements in the temporary variable).

T i it g3:

ittt if (! ((d$1 == 1)&U$33) ) goto g5;

P VP$19 = VPS$S18;

T g5:

R B VP$20 =  expand vpred p64 U8 (VPS19, 2);

R B ittt bbbt vstore pred p64 P64 S32(VP$20, &(*(packed int (*)<[16]>)U$52),

* (packed int (*)<[16]>)US$43*VRCS$s32x165001+
* (packed int (*)<[16]>)U$47*VRC$s32x165002) ;

P U$43 += 16;

PRF Qoo U$47 += 16;

PEE G US$52 += 16;

P --ds$1;

JEF Qe if ( L$l = L$1-1 ) goto g3;

The software pipeline information block from the resulting assembly file is as follows:

P * SOFTWARE PIPELINE INFORMATION
. %
;* Loop found in file : weighted vector sum v2.cpp
Hd Loop source line : 9
Had Loop opening brace source line : 10
i Loop closing brace source line : 12
i Loop Unroll Multiple : lox
Had Known Minimum Trip Count HE
;* Known Max Trip Count Factor 1
Hd Loop Carried Dependency Bound (") 1
Had Unpartitioned Resource Bound H
i* Partitioned Resource Bound 2 (pre-sched)
. %
Had Searching for software pipeline schedule at
;x ii = 2 Schedule found with 7 iterations in parallel.
S *
P* SINGLE SCHEDULED ITERATION
.k
P* | 1$Cs$C41] |
;* 0 TICK ; [A U]
H 1 VLDlew .D1 *D0++ (64) , VBMO ; [A D1] [11] [STI]
;x 2 VLDléw .D1 *D1++ (64),VBMO ; [A_D1] |11| [STI]
;* 3 NOP 0x3 ; [A B]
H 6 CMPEQW .S1 A2,0x1,ALO ; [A S1]1 191 ~
Hd 7 ANDW L1 ALl,ALO,ALO ;o [A_L1] 191
e | VMPYWW N2 VBM2, VBMO, VBLO ; [B_N2] [11]
H | ADDW M1 A2, Oxffffff£ff,A2 ; [A M1] |9] ~
;x 8 CMPEQW .L1 ALO,0,A0 ; [A_L1] 9]
e | VMPYWW N2 VBM1, VBMO, VBL1 ; [B_N2] |11]
H 9 [1A0] MV .P2 P2,P1 ; [B_P] |9] CASE-1
;* 10 BITXPND .P2 P1,0x2,P0 ; [B_P] |11}
;11 NOP Ox1 ; [A B]
;* 12 VADDW L2 VBL1,VBLO, VBO ; [B_L2] [11]
;* 13 VSTP16W .D2 PO, VBO, *A1 (0) ; [A_D2] |11]
H | ADDD .S1 Al,0x40,Al ; [A S1] |9] [C1]
P* I BNL .B1 [1$CSC4l || ;7 [A_Bl 19]
p* 14 ; BRANCHCC OCCURS {||$CsC41] |} ;o [1 191
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This example compares the output from that in the previous section to show these effects of vectorization:

« The "optimizer" code after several high-level optimization steps, including vectorization. (This "optimizer"
code appears in the assembly when using the -os compiler option.) The address increments are by 16 and
there are optimizer temporary variables with the partial name of 32x16, indicating 16 32-bit elements.

* The "SOFTWARE PIPELINE INFORMATION" comment block in the assembly file shows that the loop has
been unrolled by 16x. This may or may not indicate vectorization has occurred, but is often associated with
vectorization.

» The software pipelined loop now uses the VMPYWW and VADDW instructions. The 'V' in the instruction
mnemonics often (but not always) indicates that the compiler has vectorized a code sequence (using vector/
SIMD instructions).

» Larger address increments in load and store instructions can be another clue that vectorization has occurred.

In this loop, the compiler does not know how many times the loop will execute. Therefore in our example, the
compiler must not store to memory an entire vector on the last loop iteration if the number of loop iterations
is not a multiple of the number of elements in the vector width that was chosen. For example, if the original
(unvectorized) loop will execute 40 iterations and the compiler vectorized the loop by 16, the last optimized
iteration will compute 16 elements, but only 8 of them should be stored to memory.

The C7000 ISA has certain vector predication features, where a vector predicate affects which lanes of a vector
operation should be performed. In this case, a BITXPND instruction generates a vector predicate that is used

in a vector-predicate-aware store instruction. This vector store instruction (VSTP16W) uses the vector predicate
to prevent storing to memory those elements on the last iteration that were computed only as a result of the
vectorization process and would not have been computed or stored in the original loop. The compiler attempts
to perform vector predication automatically during the vectorization process. Vector predication helps avoid the
need for generating peeled loop iterations, which can inhibit loop nest optimizations.

Note
Vector predicated stores may lead to page faults if the Corepac Memory Management Unit (CMMU)
is enabled and the store overlaps an illegal memory page. Any memory range that will be within 63
bytes of an illegal memory page at run-time should be reduced in length in the linker command file.
For more information, see the C7000 C/C++ Compiler User’s Guide (SPRUIGS).

2.3.3 Loop Collapsing and Loop Coalescing

The compiler attempts to collapse or coalesce nested loops if it is legal and can improve performance. A

nested loop is a set of two loops where one loop resides inside of another enclosing loop. Both collapsing and
coalescing involve transforming a nested loop into a single loop. Collapsing takes place when there is no code in
the outer loop. Coalescing takes place when there is code in the outer loop.

After the two nested loops are combined into one loop, the code that was in the body of the outer loop must
be transformed so that it conditionally executes only when necessary. Collapsing and coalescing can have
performance benefits because only one pipe-up and pipe-down are executed when the loop nest is executed,
instead of a pipe-down and pipe-up of the inner loop every time the outer loop executes when loop coalescing/
collapsing is not performed.

In order to perform loop collapsing or loop coalescing, the combined loop must be able to be software pipelined.
This means that the loop nest must not contain function calls. The loops must each have a signed counting
iterator that iterates a fixed amount each time. That is, the inner loop must not iterate a different number of times
depending on which outer loop iteration execution is in. Also, the outer loop must not contain too much code,
otherwise the transformation will not improve performance. If the outer loop carries a memory dependence, loop
coalescing and loop collapsing likely will not be performed.

When loop collapsing or loop coalescing take place, the software pipelined loop indicates the beginning loop
source line ("Loop source 1line") near the top of the software information comment block. When this source
line number references an outer loop, this indicates that the inner loop has been fully unrolled or the compiler
has performed loop coalescing or collapsing. In cases of loop coalescing, the compiler uses special instructions,
such as NLCINIT, TICK, GETP, and BNL. A description of these hardware features, encompassing what is
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known as the "NLC", is beyond the scope of this document. More details of the NLC may be found in the C71x
DSP CPU, Instruction Set, and Matrix Multiply Accelerator Technical Reference Manual (SPRUIPO).

2.3.4 Automatic Inlining

The compiler sometimes takes functions defined in header files and places the code at the call site. This allows
software pipelining in an enclosing loop and thus improves performance. The compiler may also do this to
eliminate the cost of calling and returning from a function.

In the following example, the add _and saturate to 255 () function sums two values and caps the sum
at 255 if the sum is over 255. This function is called from a function in inlining. cpp, which includes the
inlining.h file via a preprocessor #include directive.

// inlining.cpp

// Compile with "cl7x -mv7100 --opt level=3

// --debug software pipeline --src interlist"
#include "inlining.h" B

voild saturated vector sum(int * restrict a, int * restrict b,
int * restrict out, int n)

{
#pragma MUST ITERATE (1024, ,)
#pragma UNROLL (1)

for (int i = 0; i < n; i++)

{

out[i] = add and_saturate to_255(a[i], b[il]);

}

}

// inlining.h
int add and saturate to 255(int a, int b)
{

int sum = a + b;

if (sum > 255) sum = 255;

return sum;

In this case, the compiler will inline the call to add_and_saturate to 255 () so that software pipelining can
be performed. You can determine that inlining has been performed by looking at the bottom of the generated
assembly file. Here, the compiler places a comment that add _and saturate to 255() has been inlined.
Note that the function's identifier has been modified due to C++ name mangling.

;; Inlined function references:
;7 [0] _Z23add_and saturate to 255ii

The inlining can also be seen in the generated assembly code, because there is no CALL instruction to a
function in the loop. In fact, because of the inlining (and thus the elimination of the call to a function), the loop
can be software pipelined. Software pipelining cannot occur if there is a call to another function in the loop.
Note that because of code size concerns, not every call that can be inlined will be inlined automatically. See the
C7000 Optimizing Compiler User's Guide for more information on inlining.

S *

;x SINGLE SCHEDULED ITERATION

.k

P | 1SCSC44 1] |:

;* 0 TICK ; [A U]

P 1 SLDW .D1 *D1++ (4) ,BLO ; [A D1] |5]

P 2 SLDW .D2 *D2++ (4) ,BL1 ; [A D2] |5]

. 3 NOP 0x5 ; [A B]

P 8 ADDW L2 BL1,BLO,BL1 ; [B_L2] 5]

P 9 VMINW L2 BL2,BL1, B0 ; [B_L2] 5]

;% 10 STW .D1X BO, *DO++ (4) ; [A D1] |5]

P [ BNL .B1 | 1scsc4a4l | ; [A B] |11]

;x 11 ; BRANCHCC OCCURS {||$CS$C44] |} ;o1 111

S *
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2.3.5 If Conversion

In order to software pipeline a loop (and thus improve performance), the only branch that may occur in a loop
is a branch back to the top of the loop. Branches for if-then and if-then-else statements or for other control-flow
constructs will prevent software pipelining.

To get around this limitation, the compiler performs if-conversion. If-conversion attempts to remove branches
associated with if-then and if-then-else statements, by predicating instructions so that they conditionally execute
depending on the test in the "if" statement. As long as there are not too many nesting levels, too many condition
terms, or too many instructions in the if-then or if-then-else statements, if-conversion usually succeeds.

The following example demonstrates if-conversion. In order to software pipeline the "for" loop in this C++ code,
if-conversion must be performed. The pragmas are used to prevent the compiler from vectorizing and generating
additional code that is not important for this example.

// if conversion.cpp
// Compile with "cl7x -mv7100 --opt level=3 --debug software pipeline
// --src_interlist --symdebug:none if conversion.cpp"

void function 1(int * restrict a, int *restrict b, int *restrict out, int n)
{
#pragma UNROLL (1)
#pragma MUST ITERATE (1024, ,32)
for (int i = 0; i < n; i++)
{
int result;
if (a[i] < b[i])
result = af[i] + b[i];
else
result = 0;

out [1i] = result;

After compilation, the single-scheduled iteration of the loop in the software pipeline information comment block
looks like the following:

S *
P * SINGLE SCHEDULED ITERATION

. K

P [ 1$C$C65] | =

P 0 TICK ; [A U]

P 1 SLDW .D1 *D2++ (4) ,Al ; [A D11 [17] ~

P I SLDW .D2 *D1++(4) ,A2 ; [A D2] [17] ~

I 2 NOP 0x5 ; [A_B]

P 7 CMPGEW .L1 A2,A1,A0 ; [A L1) |17 ~

P 8 [1AQ] ADDW .D2 Al,A2,D3 ; [A D2] 17| ~

P 9 [ A0] MVKU32 .Sl 0,D3 ; [A S1] |17]

;%10 STW .D1 D3, *DO++ (4) ; [A D11 |17]

;* | BNL .B1 | 1$CSC65] | ; [A Bl |9]

x11 ; BRANCHCC OCCURS {|1$C$C65] 1} ;[0 191

o K e e e

The instruction [!A0] ADDW.D2 Al,A2, D3 represents the "then" part of the if statement. The instruction
[A0O] MVK32.S1 0,D3 represents the "else" part of the if statement. The CMPGEW instruction computes the
if-condition and puts the result into a predicate register, which is used to conditionally execute the ADDW and
MVKUS32 instructions.
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. Chapter 3

I ’{II\EI)S(’?PS{UMENTS Basic Code Optimization

This section discusses basic code optimization techniques that can be applied to C/C++ code that will run on the
C7000 DSP core.

3.1 Signed Types for Iteration Counters and LIMItsS...............ocoiiiiiiiiiiii e 24
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B A 13144 57 (o= SRR 28
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3.1 Signed Types for Iteration Counters and Limits

In order for automatic vectorization to occur, the iteration counters and iteration limits for loops should have
signed types. In other words, use int rather than unsigned int.

The C language standard defines the behavior for unsigned arithmetic overflow, but not for signed arithmetic
overflow.

In the unsigned case, an overflowing value will "wrap-around". Therefore, the compiler must assume (in certain
cases) that the loop counter may loop around and thus cannot make certain necessary conclusions about the
behavior of the loop.

In the signed type case, the compiler can assume the iteration counter will not overflow, because that has
undefined behavior according to the C-standard. Thus, the compiler can make certain conclusions about the
behavior of the loop and from there may be able to vectorize the loop.

3.2 Floating-Point Division

Floating-point division operations can be costly. Often, a division operation results in a run-time-support call to a
predefined function that implements floating-point division. Such calls prevent software pipelining.

If your code divides by a constant that is known at compile time, consider pre-calculating the 1/constant
value and replacing the division operation with a multiplication by 1/constant. The compiler automatically
performs this optimization only if the 1/constant value can be precisely represented in an IEEE-754 float or
double.

3.3 Loop-Carried Dependencies and the Restrict Keyword

To maximize the efficiency of generated code, the C7000 compiler schedules as many instructions as possible

in parallel, especially during software pipelining. To schedule instructions in parallel, the compiler must determine
the relationships, or dependencies, between instructions. Dependency means that one instruction must occur
before another; for example, a variable must be loaded from memory before it can be used. Because only
independent instructions can execute in parallel, dependencies inhibit parallelism.

» If the compiler cannot determine that two instructions are independent, it assumes a dependency and
schedules the two instructions sequentially accounting for any latencies needed to complete the first
instruction.

» If the compiler can determine that two instructions are independent of one another, it may be able to schedule
them in parallel.

3.3.1 Loop-Carried Dependencies

In certain cases when software pipelining, the compiler will not be able to overlap successive iterations of the
loop in order to get the best performance. When the compiler is not able to overlap successive iterations of
the loop, performance suffers: the initiation interval (i1, described earlier) will be larger than desired and few
functional units will be simultaneously utilized.

In almost all cases, this is due to a loop-carried dependency. A loop-carried dependency prevents to some
degree the execution of iteration i+1 from overlapping with iteration i. A loop-carried dependency bound is a
lower limit on the initiation interval of the software pipelined loop (and thus a limit on the speed of the software
pipelined loop). A loop-carried dependency bound arises because there is a cycle in the ordering constraints
(dependencies) for a set of the instructions in a loop. Out of all these cycle lengths in the loop, the maximum
loop-carried dependency cycle is the loop-carried dependency bound. This can occur even if there are plenty of
functional units available to perform several iterations in parallel.

If the loop-carried dependency bound is greater than the partitioned resource bound, then one of the loop-
carried dependencies is slowing the loop, as the initiation interval is always at least the maximum of the
partitioned resource bound and the loop-carried dependency bound.

To reduce or eliminate a problematic loop-carried dependency, one must identify the cycle and then find a way to
shorten or break it.
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The following example shows a loop with a problematic loop-carried dependency.

void weighted sum(int * a, int * b, int * out,
int weight a, int weight b, int n)
{
#pragma UNROLL (1)
#pragma MUST ITERATE (1024,
for (int i = 0; 1 < n; 1i++)

{

,32)

out[i] = a[i] * weight a + b[i] * weight b;

}

The compiler-generated assembly code for this example (shown below) shows that the Loop Carried
Dependency Bound in the Software Pipeline Information section of the assembly code is 7 cycles.

K e *
;*  SOFTWARE PIPELINE INFORMATION

*
;* Loop found in file weighted vector sum v3.cpp
Hd Loop source line : 10
Had Loop opening brace source line 11
Hd Loop closing brace source line : 13
Hd Known Minimum Trip Count : 1024
Hd Known Max Trip Count Factor : 32
Hd Loop Carried Dependency Bound (") : 12
Hd Unpartitioned Resource Bound : 2
;* Partitioned Resource Bound : 2 (pre-sched)

*
Hd Searching for software pipeline schedule at
Had ii = 12 Schedule found with 2 iterations in parallel
; K o *
P SINGLE SCHEDULED ITERATION

*
P* | |$CSC51] |
0 TICK [A U]
H 1 LDW .D2 *D1++(4),BMO ; [A D2] [12]
e Il LDW .D1 *D2++(4) ,BM1 ; [A_D1] [12]
;* 2 NOP 0x5 ; [A_B]
H 7 MPYWW M2 BM2, BMO, BLO ; [B_M2] [12]
Had | MPYWW N2 BM3,BM1,BL1 ; [B_N2] [12]
;* 8 NOP 0x3 ; [A_B]
xo11 ADDW LL2 BL1,BLO,BO ; [B L2] |12]
;12 STW .D1X BO, *DO++ (4) ; [A_D1] [12]
P I BNL .B1 | |$SC$C51 ] | ; [A B] |10]
;* 13 ; BRANCHCC OCCURS {||SC$C5111} ;7 [1 110}

K e *

The final software pipelined initiation interval of the software pipelined loop is at least the greater of the

Loop Carried Dependency Bound and the Partitioned Resource Bound. When the Loop Carried Dependency
Bound value is greater than the Partitioned Resource Bound value, this indicates the code has a loop-carried
dependency bound problem that likely should be addressed. In other words, when the loop-carried dependence
bound is greater than the partitioned resource bound, the software pipelined loop could likely run faster if

the loop-carried dependency bound is eliminated. Therefore in this example, because the partitioned resource
bound is 2 and the loop-carried dependency bound is 12, this code has an issue that should be investigated.

To identify the problem, we need to look at the instructions involved in the loop-carried dependency. These
instructions are marked with the caret "*" symbol in the comment block in the compiler-generated assembly

file. Notice that the load and store instructions are marked with a caret. This tells us the compiler thinks there
may be a loop-carried dependence between successive iterations. This is likely because the compiler cannot
prove the stores are writing to an area of memory that is independent of the location from which the load
instructions are loading values. In absence of information about the locations of the pointers, arrays and address
access patterns, the compiler must assume that successive iterations may load from the location of the previous
iteration's stores. See Hand-Tuning Loops and Control Code on the TMS320C6000 (SPRAG66) for more about
loop-carried dependencies and how to identify them.
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3.3.2 The Restrict Keyword

The correct the problem in the previous example caused by a loop-carried dependency, we need to tell the
compiler that these arrays do not overlap in memory, and thus there is no memory dependence from one
iteration to the next.

Many common digital signal processing loops contain one or more load operations, some computation, and then
a store operation. Typically, the loads are reading from an array and the stores are storing values to an array. If
the compiler does not know that the arrays are separate (or do not overlap), the compiler must be conservative
and assume that the stores of iteration i may be needed in the loads of iteration i+1, or i+2, etc. Therefore, it
is important to tell the compiler if the load and store arrays inhabit entirely different memory areas (that is, the
objects/arrays pointed-to do not overlap).

We can do this with the use of the restrict keyword. This keyword tells the compiler that throughout the
scope of the variable (array name or pointer name used to access the array), accesses to that object or array will
only be made through that array name or pointer name.

Note
This description of the restrict pointer is not precisely accurate; it is good enough for most purposes.
If you wish to learn more about the restrict keyword, see the C standard or Demystifying The Restrict
Keyword.

Use of the restrict keyword effectively allows you to tell the compiler that the store to memory will not write to the
same place where the next iterations' loads will read from. Thus, successive iterations can be overlapped when
the compiler performs software pipelining, thus allowing the generated code to run faster.

This C function example uses the restrict keyword. The resulting Software Pipeline Information comment
block will show that when the restrict keyword is used, the loop-carried dependence bound is zero, while the
partitioned resource bound is two. This leads to a much-improved initiation interval (ii) of two cycles.

void weighted sum(int * restrict a, int *restrict b, int *restrict out,
int weight a, int weight b, int n)

The Texas Instruments C7000 C/C++ Compiler allows the restrict keyword to be used in both C and C++ modes,
despite the restrict keyword not being part of the C++14 or C++17 standards.

Note
If you use the restrict keyword incorrectly, the compiler will often produce code with undefined
behavior--meaning that the code generated by the compiler will produce an incorrect result.

3.3.3 Run-Time Alias Disambiguation

Under certain limited circumstances, the compiler may generate two loops: one that assumes two pointers are
not aliased and one that assumes the two pointers are aliased. It generates a run-time check to determine if
the two pointers alias. This optimization is called run-time alias disambiguation. The advantage is that the loop
that assumes no-aliased pointers can usually software pipeline at a much smaller initiation interval, leading to
improved performance of the loop.

The compiler cannot always perform run-time alias disambiguation due to considerations that are too technical
to describe here. In addition, certain further optimizations such as nested loop coalescing are inhibited when
the compiler produces two different loops with a run-time alias check, so it is best to use the restrict keyword
whenever legally possible.

For further discussion and details regarding identifying and eliminating loop-carried dependencies, consult the
following references:

*  TMS320C6000 Programmer's Guide (SPRU198K), Section 2.2.2 "Memory Dependencies"
* Hand-Tuning Loops and Control Code on the TMS320C6000 (SPRA666), Section 4.1, "Using restrict
qualifiers, MUST_ITERATE pragmas, and _nasserts()"
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3.4 Function Calls and Inlining

In some instances, functional calls inhibit optimization. For instance, a loop containing a function call will not be
software pipelined if the compiler is not able to inline the called function. In order to enable optimizations such as
software pipelining, it may be necessary to define the called function in one of these ways:

* In the same source file as the call with the "inline" keyword
* Ina .hfile included with the #include preprocessor directive, with the called function using the keywords
"static inline"

The compiler performs some amount of automatic inlining at the --opt_level=3 and --opt_level=4 optimization
levels.

3.5 MUST_ITERATE and PROB_ITERATE Pragmas and Attributes

The compiler can often generate faster code when the compiler knows how many times a loop will execute.
Adding this information via the MUST _ITERATE and PROB_ITERATE pragmas and the Tl_must_iterate and
TI_prob_iterate C++ attributes can help the compiler:

» Determine if it is profitable to vectorize a loop
» Determine if it is profitable to perform certain loop optimizations and loop nest optimizations
» Determine if a redundant loop is needed (see Redundant Loops, below)

Before vectorizing a loop, the compiler tries to determine if the change will improve performance. It is helpful if
the compiler has information about the iteration counts of the loop so the compiler can make better predictions
about the profitability of vectorization. In the same way, the compiler also tries to determine if certain loop
optimizations and loop-nest optimizations will be profitable and so information about the iterations counts of the
loops can be helpful to the compiler.

Note
Do not provide incorrect information about the trip count in the MUST_ITERATE pragma or
Tl_must_iterate C++ attribute. If incorrect information is specified in this pragma/attribute, the compiler
may create code that produces unexpected and incorrect behavior.

Redundant Loops: In some cases, if the compiler does not know how many times a loop will execute, the
compiler generates two different versions of the loop. Software pipelined loops often must execute a certain
minimum number of iterations to be legal to execute. If the iteration count of the loop is less than this minimum
safe trip count, the compiler generates a run-time iteration count check and branches to either the software
pipelined version of the loop, or a duplicate loop. That is, the compiler generates a "regular" version of the loop
(that executes much more slowly).

The minimum safe trip count depends on how many iterations were scheduled in parallel and how effectively the
compiler was able to perform an optimization called stage collapsing. See Section 4.2.6 for more information.

The Software Pipeline Information in the comment block in the assembly file specifies the minimum safe trip
count (iteration count) of the loop and states whether the compiler has generated a duplicate loop.

Because the compiler must sometimes generate a redundant loop and the control code necessary to choose
between the two loops, it is helpful to tell the compiler the minimum iteration count of the loop with a

MUST _ITERATE pragma when it is known, as the redundant loop may not be necessary. This can improve
performance, especially when the loop is enclosed within an outer loop and if the compiler can then perform loop
collapsing or other loop optimizations with the outer and inner loops.

The following example shows redundant loop generation information in the Software Pipeline Information section
of the as