
1SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Application Report
SWRA526–November 2016

Introducing TI’s Integrated Development Environment –
Code Composer Studio™ (CCS) to Expert Engineers

ABSTRACT
Code Composer Studio™ (CCS) is Texas Instruments' Integrated Development Environment (IDE) used
to build, debug, and run DSP applications and other processor applications.

Contents
1 Introduction ... 2

1.1 Intended Audience – Expert DSP Engineer New to TI’s Code Composer Studio™ (CCS) 2
1.2 CCS Online Training Resources.. 2
1.3 Getting Started With CCS ... 3
1.4 CCS Edit and Debug Perspectives ... 4

2 Import CCS Project From Release Examples ... 5
2.1 Before Importing a Project... 5
2.2 Import the FFT Project ... 8
2.3 Define Target – Emulator .. 12
2.4 Connect to the Target and Run the Project.. 15
2.5 Code Execution and Measure Cycles .. 18

3 Build a New CCS Project.. 20
3.1 Create a New Project ... 20
3.2 Building the New Project ... 34
3.3 Code Execution: Understanding the Results .. 40

4 Import Function From Library (Not Part of Processor SDK) ... 41
4.1 Import an Example From FFTLIB (C674x Version)... 41

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Introduction www.ti.com

2 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Code Composer Studio is a trademark of Texas Instruments.
ARM, Cortex are registered trademarks of ARM Limited.
All other trademarks are the property of their respective owners.

1 Introduction

1.1 Intended Audience – Expert DSP Engineer New to TI’s Code Composer Studio™
(CCS)
CCS is Texas Instruments’ Integrated Development Environment (IDE), based on the open source Eclipse
architecture. CCS is used to build, debug, and run DSP applications and other processor applications.

TI provides CCS training, documentation, and other help that covers all aspects of CCS. Section 1.2
provides links for the training.

The intended audience of this document are DSP experts who have not yet worked with TI tools, yet are
knowledgeable and have worked with tools from other vendors. They know what to expect from these
tools, understand the logic behind them, and only need to know the mechanics of the tools. They may not
have time for training. Their goal is to jump in and try to run a test application.

In addition to the CCS tool, TI provides software blocks to facilitate easy development of applications on
TI’s devices, including a set of optimized libraries for standard mathematics (MATHLIB), signal processing
(DSPLIB), and image processing (IMGLIB). A DSP expert can use these optimized functions in
applications. This document shows an expert DSP engineer how to develop applications that call
optimized library functions.

1.1.1 Steps to Take When Starting to Port a DSP Algorithm into TI Environments
When porting an existing DSP algorithm, developed under a different environment, into TI’s Integrated
Development Environment CCS, the expert engineer goes through the following steps:
1. TI’s Processor Software Development Kit (SDK) is a comprehensive set of software and firmware

tools, utilities, and example modules that supports many TI processors. Each module has a unit test
project that demonstrates how to use the module. To understand how to use a library function, import
the unit test of the said function and run it on hardware such as an evaluation module (EVM). Section 2
shows how to import a project from the release, build it, and run it on standard hardware.

2. Build a new application that utilizes the library function used in the previous step. Section 3 shows how
to build a new non-trivial (that is, fairly complex) project, build it, and run it on standard hardware such
as an EVM.

3. The SDK is a uniform release of software blocks that ensures working together. Three standard
libraries are included in the SDK release: DSPLIB, MATHLIB, and IMGLIB. In addition, TI developed a
set of optimized libraries that are not part of the Processor SDK release. These libraries include
IQMATH, FASTRTS, VICP, VLIB, FAXLIB, and VOLIB (see
http://processors.wiki.ti.com/index.php/Software_libraries for more details). In addition, there are
devices that are not supported by the standard Processor SDK, but rather by their own SDK. Section 4
shows how to build an example code (unit test) C674X that is not supported by the Processor SDK,
using a library function from a dedicated FFTLIB library.

1.2 CCS Online Training Resources
• CCS Training Page — contains training materials, including videos and documents.
• TMS320C6000 Optimization Workshop — Section 2 discusses CCS (and provides an introduction to

C6000 architecture)
• The Code Composer Studio (CCS) Integrated Development Environment (IDE) — The location to

download CCS, with links to other CCS information
• Processor SDK RTOS Setup CCS — An introduction to using CCS with the Processor SDK. Some of

the materials referenced in this document are covered here
• TI’s Code Composer e2e Forum — A public forum dedicated to questions and answers about

everything CCS. Almost any issue that you may encounter has probably been discussed previously in
this forum.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526
http://processors.wiki.ti.com/index.php/Software_libraries
http://processors.wiki.ti.com/index.php/Category:CCS_Training
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/op6000/op6000_v1.51/op6000_student_guide_v1.51.pdf
http://www.ti.com/tool/ccstudio
http://processors.wiki.ti.com/index.php/Processor_SDK_RTOS_Setup_CCS
https://e2e.ti.com/support/development_tools/code_composer_studio/f/81

www.ti.com Introduction

3SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

1.3 Getting Started With CCS
The instructions and the screen shots in this document are taken from CCSv6 (6.1.3). Different versions of
CCS might have slightly different screen shots. This document assumes that the user has already
installed CCS.

CCS puts all the metadata that is associated with its operation in the workspace. There is a default
workspace (usually in c:/users/user_name/workspace_v6 or similar, where user_name is the user login
name) where multiple projects can reside. In addition, the user can define other locations as workspace
for a specific project.

The first time CCS is opened in a new workspace, the display window (see Figure 1) provides links to
collateral that provide training and other support documents.

Figure 1. CCS Getting Started Display

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Introduction www.ti.com

4 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

1.4 CCS Edit and Debug Perspectives
CCS has two default perspectives.
• The CCS Edit perspective is used for creating projects and building code. To switch to the CCS Edit

perspective, click on Window → Perspective → Open Perspective → CCS Edit.
• The CCS Debug perspective is used for execution and debugging of code on the customer EVM. To

switch to the CCS Debug perspective, click on Window → Perspective → Open Perspective → CCS
Debug (see Figure 2).

Figure 2. Changing the CCS Perspective

The current perspective can be seen in the upper right corner of the CCS window, as shown in Figure 2.
Upon starting CCS, the default perspective is the CCS Edit perspective.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import CCS Project From Release Examples

5SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

2 Import CCS Project From Release Examples

2.1 Before Importing a Project
The Processor SDK has many examples and unit tests within a release that can be imported into a
project. Instructions on how to import a project from a release are provided in this chapter.

Most of the examples in the release are based on the real time software component (RTSC) scheme.
RTSC enables the system to rebuild drivers and utilities for a user-defined platform from a configuration
file. To achieve that, the CCS environment must be aware of the location of the various building modules
in the Processor SDK release; in other words, the user must verify that CCS sees all the modules in the
release.

Assuming a new release was installed in directory C:\ti\Releases\Release_3_0_0_4\C667X, the following
steps are required to add or verify that CCS sees the new release.
1. Click the Window tab and select Preferences, as shown in Figure 3.

Figure 3. CCS Edit Perspective: Window Drop-Down Menu

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import CCS Project From Release Examples www.ti.com

6 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

2. The Preferences dialog box opens. Navigate to Code Composer Studio → RTSC → Products, as
shown in Figure 4.

Figure 4. RTSC Products

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import CCS Project From Release Examples

7SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

3. In the Product Discovery Path, specify the location of the new release. If the path is not there, click on
the Add tab, add the directory name or browse to the directory, and click OK, as shown in Figure 5.

Figure 5. Add to Discovery Path

4. CCS scans the new location and reports back any new modules found. Click Finish. CCS adds the
new module.

5. A dialogue box may ask if the user trusts the software. Answer Yes, then restart CCS.

NOTE: Some releases have issues with multiple NDK releases. If CCS reports an error when it
loads NDK, un-checks NDK before clicking on Finish.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import CCS Project From Release Examples www.ti.com

8 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

2.2 Import the FFT Project
This next section uses an FFT project as an example. To get started, left-click on the Project tab in the
CCS EDIT perspective, then select import CCS Projects as shown in Figure 6, and left-click.

Figure 6. Import CCS Projects

A dialog box is opened. For the Select search-directory, click on Browse and navigate to the location
where the DSPLIB directory was installed on the system → examples, and select OK. CCS searches for
all the examples in this directory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import CCS Project From Release Examples

9SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

This example uses FFT_sp_Example_66_LE_ELF. LE stands for little endian format, and ELF stands for
the standard executable format. The window looks like Figure 7.

Figure 7. Select CCS Projects to Import

Click on Finish. CCS imports the project, but may give some warnings in the problems window. The
problem may refer to an Invalid Project Path, which may be the result of a different directory structure
between the developer of the project and the user. The next step is to fix these issues.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import CCS Project From Release Examples www.ti.com

10 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Clicking in the small arrow next to the project name opens the project explorer. There are three files, the
test source code – fft_example_sp.c, the linker command file lnk.cmd, and an initialization file,
macros.ini_initial. Double-click on the macros.ini.initial to open the file in the editor window. This file
defines three locations.
MATHLIB_INSTALL_DIR=c:/ti/mathlib_c66x_3_1_0_0
DSPLIB_INSTALL_DIR=c:/nightlybuilds/dsplib
EXT_ROOT__FFT_SP_EXAMPLE_66_LE_ELF_FFT_SP_EX=.././

The last location is relative to the example directory and is correct, but the other two point to locations in
the developer system. The user must change these paths.

MATHLIB is an optimized library for mathematical functions, and is part of the release. Its location
depends on where the user installed the Processor SDK. The screen shots were taken from a system
where the Processor SDK release location is C:\ti\Releases\Release_3_0_0_4\C667X, and the mathlib
version is mathlib_c66x_3_1_1_0, thus the first location is defined as:

MATHLIB_INSTALL_DIR=C: \ti\Releases\Release_3_0_0_4\C667X \ mathlib_c66x_3_1_1_0

Similarly, the second location is the location of the DSPLIB. For the same system, the location is defined
as:

DSPLIB_INSTALL_DIR= C:\ti\Releases\Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0.

Figure 8 shows the updated locations. As mentioned earlier, the user paths depend on the user install
directory of the Processor SDK.

Figure 8. Updated Locations

Save the updated file by either selecting File->Save or by clicking on the disk icon below the Edit tab. The
user can close the file by clicking on the x next to the file name in the Edit window.

Before building the project, look at the linker command file lnk.cmd. To open it, select the file and right-
click to open it with a text editor. In addition to stack size and heap size, link it to a generic library. During
the building process, the correct library is linked, depending on the properties of the project. For little
endian ELF format case, dsplib.ae66 is linked. For little endian COEF format case, dsplib.a66 is linked.
The COEF format is an old TI proprietary format that is used only in backward-compatibility projects. For
big endian ELF format case, dsplib.ae66e is linked. For big endian COEF format case, dsplib.a66e is
linked.

Two memory segments are defined for this project, the internal L2 memory and the shared MSMCRAM
memory. The internal L1P and L1D memories are configured as cache. Each section of memory should
be allocated in one of the memory segments; otherwise the linker allocates it in a default segment and
gives a warning message.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import CCS Project From Release Examples

11SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Finally, look at the project properties by right-clicking on the project and selecting the last item, Properties,
as shown in Figure 9.

Figure 9. Properties Menu

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import CCS Project From Release Examples www.ti.com

12 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

In the Properties dialog box, the optimization should be set to off, and the debug option to full symbolic
debug. Library routines that are called are optimized routines that were built with full optimization, and with
no symbolic debug. The user is encouraged to explore the project properties, then close the Properties
window.

Rebuild the project by right-clicking the project name and selecting Rebuild Project. Figure 10 shows the
result of the build.

Figure 10. Build Result

2.3 Define Target – Emulator
CCS communicates with the board through an emulator. In this example, the EVM used is a
TMS320C6678 Evaluation Module, with a Blackhawk XDS560v2-USB Mezzanine Emulator daughter card;
the following instructions are for this emulator. If a different emulator or different EVM is used, the
instructions can be changed accordingly.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import CCS Project From Release Examples

13SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

From the CCS Edit perspective, click on View → Target Configurations (see Figure 11) . A target
Configuration window opens.

Figure 11. Target Configurations

In the User-Defined section, the user right-clicks and selects New Target Configuration. In the opened
window, provide a name. For the purpose of this document, the example target name is emulator1. After
clicking on Finish, the emulator definition is opened in the editor window.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import CCS Project From Release Examples www.ti.com

14 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The first step is to choose the connection. From the pulldown menu, select the emulator, as shown in
Figure 12.

Figure 12. Select Emulator

Next, a set of supported boards and devices are in the Board or Device window. A filter can be applied to
help find the desired board. For this document, the TMS320C6678 was chosen, as shown in Figure 13.
After a board is chosen, the user can save the configuration. If the board or the EVM is powered and the
emulator is linked, the user can test the connection using the Test Connection tab in the middle of the
window.

Figure 13. Supported Boards or Devices

To initialize the hardware, CCS uses a script written in General Extension Language, or gel.
http://processors.wiki.ti.com/index.php/GEL gives more information about gel files. When a target is
defined attach the correct gel file to cores in the target. Usually it is enough to connect the gel to core 0,
because core 0 performs the system initialization.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526
http://processors.wiki.ti.com/index.php/GEL

www.ti.com Import CCS Project From Release Examples

15SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

At the bottom of the emulator1.ccxml (or whichever name the user gave to the target) window, there is an
Advanced tab. Click on this tab to open a display of all the CPUs in the system, as shown in Figure 14.
Select core 0, and browse for the correct gel file.

Figure 14. Advanced Tab

Gel files are located in the directory where CCS was installed in the subdirectory
\ccsv6\ccs_base\emulation\boards\BOARDNAME\gel, where BOARDNAME is the board used. For this
example, evmc6678l is used. After selecting the gel file and clicking the Open tab at the bottom of the
dialog box, the gel location is in the target configuration, as seen in Figure 15.

Figure 15. CPU Properties

Finally, save the configuration by clicking on the Save tab. The user can then close the emulator1.ccxml
window.

2.4 Connect to the Target and Run the Project
Selecting the target in the target configuration window and right click opens a menu. Set the target as a
default target and launch Selected Configuration, as shown in Figure 16.

Figure 16. Launch Selected Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import CCS Project From Release Examples www.ti.com

16 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The CCS changes perspective to debug, and displays all the CPUs in the system. Next, the cores
involved in the execution must be connected. In this case, the code runs only on a single core, thus core
zero is selected and is connected. This is done by selecting core 0, right-clicking, and selecting Connect
Core. Core 0 goes through all the initialization steps defined in the gel file, and prints the progress in the
Console window.

See Figure 17 for the last printing in the console.

Figure 17. Console Window

Next, the executable is loaded into the core. There are multiple ways to load code (such as Run and other
operations), but this document only describes one method. With core 0 selected, right-click on Load and
Load Program from the RUN menu. The window that opens enables the user to browse, or browse only
project.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import CCS Project From Release Examples

17SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The simplest way is to browse a project, then go to the debug directory and select the out file, as shown in
Figure 18.

Figure 18. Debug Directory

Click OK twice; the code is loaded and the main function appears in the edit window.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import CCS Project From Release Examples www.ti.com

18 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

2.5 Code Execution and Measure Cycles
Enabling the CCS clock is done from the Run menu. Clicking on Clock Enable (see Figure 19) opens a
small clock window with a value of 0. Double-click on the Cycle count to set the clock to zero.

Figure 19. Clock Enable

The clock window appears as in Figure 20 (bottom-right corner of the CCS window)

Figure 20. Clock Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import CCS Project From Release Examples

19SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Next, step through the code using the F6 key (or from the Run menu, click Step Over). After three steps,
the execution executes the DSPF_sp_fftSPxSP routine. At this point, set the clock (double-click) to zero.

Before executing the DSPF_sp_fftSPxSP routine, look at the parameters for the function. The
TMS320C67x DSP Library Programmer’s Reference Guide (page 49) describes the function and the
parameters used. The first parameter is the number of elements, and must be a power of two and up, to
8K. The twiddle factors generated by the function gen_twiddle_fft should be called with the same value.
Next are the pointers to the input data, the twiddle factors, and the output vector. Each of these vectors
are of 2 × N floating point size. The bit reversal vector brev is next. According to the above document, the
brev size is 64, regardless of the FFT size. The next three parameters are used to optimize the execution.
n_min is 4 if N is a power of 4, and 2 otherwise. This value tells the program to use all Radix 4 butterflies,
or that it must use Radix 2 butterflies, at least once. The last two parameters enable the program to break
the FFT into multiple executions so the data fits into the L1D cache.

Click F6 once more; the code progress after the DSPF_sp_fftSPxSP routine, and the cycle counts (the
clock) shows approximately 1513 cycles.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526
http://www.ti.com/lit/pdf/SPRU657

Build a New CCS Project www.ti.com

20 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

3 Build a New CCS Project
Section 2 shows how to import a project. Each module of Processor SDK, including all functions in the
optimized libraries, has a unit test that shows the user how to use the function. The next step is to build a
new project using the same library function that was used in Section 2.

While different devices may or may not have different implementations of library functions, the interface
and the parameter list of the function are the same across different platforms. Thus, this example uses the
TI’s EVMK2H evaluation module with the 66AK2H12 processor.

This example builds a 66AK2H12 project, a single C66xx core that generates random numbers as input,
calculates the energy in the sequence, executes an FFT function from a library, calculates the energy in
the frequency domain, and prints out the difference between the two energies. (Parseval's theorem implies
that the two energies must be equal).

There are multiple ways to use library functions and other software modules that are part of Processor
SDK. The first method is direct usage of libraries and other utilities. The other method is using RTSC.
While many TI examples use RTSC to facilitate fast and accurate building of projects, the project in this
chapter is created without RTSC support.

3.1 Create a New Project
Start from the file menu (at the upper left corner):

File → New → CCS Project

A dialogue box opens. First, configure the target. There is a pulldown menu at the upper right corner of
the dialogue window. The target can be a generic processor, a device, or a TI EVM. Each target has a set
of processors.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

21SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 21 shows the dialog window when a board called IDK_AM427X is selected.

Figure 21. Select IDK_AM427x Board

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

22 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 22 shows when the 66AK2H12 device is selected.

Figure 22. Select 66AK2H12 Device

The user selecting IDK_ AM437X can choose one of three programmable processors; ARM® Cortex®-A
(AM437X has Cortex-A9), ARM Cortex-M4, or PRU. 66AK2H12 has two processors to choose from; either
ARM Cortex-A (A15) or C66xx DSP. Each processor has its own list of default project templates. All
processors have several Empty Projects templates, as well as a Basic Example (Hello World) template.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

23SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

To start the project, choose Empty Project with main.c. Next, choose the project name. After a project
name (for example, exercise1) is written in the Project Name tab, the Finish tab at the bottom of the dialog
window is highlighted.

Left-click on the Finish tab, and the new project with main.c file is created. To open Project Explorer (if it
was not opened earlier), left-click on the View tab, select Project Explorer, then left-click. The following two
windows show how to enable Project Explorer and the Project Explorer display. Clicking on the small
arrow next to the Project Name opens the project structure, as shown in Figure 23 and Figure 24.

Figure 23. Project Explorer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

24 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 24. CCS Edit

Next, add the files to the project and modify the main.c file. The first file added is an header file called, for
example, exercise1.h. The header file has all the constants used in the code, as well as all the routine
prototypes and standard include files. Because the project uses random number generation, the C
standard include file <stdlib.h> must be included. Because the project uses I/O functions such as printf,
the standard C I/O include file <stdio.h> must be included. The following is a Pseudo C code for the
example1.h file:
/*

* exercise1.h
*
* Created on: Aug 26, 2016
* Author:
*/

#ifndef EXAMPLE1_H_
#define EXAMPLE1_H_

#include <stdlib.h>
#include <stdio.h>

#define DATA_SIZE 256
#define MAXIMUM_VALUE 1000

extern void generateFloatingPointInputData (float *p_out, int numberOfElements);
extern double calculateEnergy (float *p_in, int numberOfElements) ;

#endif /* EXAMPLE1_H_ */

The include file does not declare the FFT prototype. The FFT function is part of the DSPLIB library that is
part of the release, and the prototype is defined in a different include file that will be added later.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

25SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The include file, just like any other source file, can be written using any text editor and then copied into the
project, or it can be written within CCS. To use the later, left-click on the File tab (File → New → Header
file) and a dialog window opens. In the dialog box, write the include file name and click Finish as shown in
Figure 25 and Figure 26.

Figure 25. New Header File

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

26 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 26. Name Header File

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

27SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The include file is opened with the first two lines and the last line, as shown in Figure 27.

Figure 27. Include File

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

28 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Adding the body of the example1.h, copy and paste from the pseudocode above to get the include file
shown in Figure 28.

Figure 28. Example1.h File

One advantage of the CCSv6 is that the user can assign compilation parameters, such as level of
optimization and level of debug-ability, for each project and for each source file in the project. This feature
enables the user to both compile the main program (say) without optimization and with full symbolic
debugger features, and compile processing code with high optimization and no symbolic debug, which
makes it easier to profile performances and optimize each function. In this project, two source files are
added, one for generating floating point random numbers and one for calculating the energy. The
prototype of these function is defined in the include file.

Adding a C source file is similar to adding a header file; from the File tab, select New → Source File. After
developing each file, the user can compile each file separately by selecting the file name (left-click on the
source file name), right-click, and select Build Selected File(s). Multiple files can be selected using the Ctrl
key. Figure 29 and Figure 30 show generateFloatingPointData and calculateEnergy.c, respectively, after
the compilation of each file. The compilation message is at the Console window, usually in the bottom of
the CCS window.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

29SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Pseudo code for the two files are given below, so the user can copy and paste:
#include "example1.h"

#define HALF_MAXIMUM_VALUE (MAXIMUM_VALUE /2)

void generateFloatingPointInputData (float *p_out, int numberOfElements)
{

int r1;
float x1;
int i;
for (i=0; i<numberOfElements;i++)
{

r1 = rand() % MAXIMUM_VALUE ;
x1 = (float) (r1 - HALF_MAXIMUM_VALUE) ;
*p_out++ = x1 ;

}
}

/*
* calculateEnergy.c
*
* Created on: Aug 26, 2016
* Author:
*/

#include "example1.h"

double calculateEnergy (float *p_in, int numberOfElements)
{

double sum ;
int i ;
float x,y ;
sum = 0.0 ;
for (i=0; i<numberOfElements;i++)
{

x = *p_in++ ;

sum = sum + (double) (x*x) ;
}
return (sum) ;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

30 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 29 shows the generateFloatingPointData.c file.

Figure 29. generateFloatingPointData

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

31SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 30 shows the calculateEnergy.c file.

Figure 30. calculateEnergy.c

The main function should create the input data (using the generateFloatingPointData function), calculate
the energy in the input data, perform FFT, and then calculate the energy of the transformed frequency
domain data. The FFT function is part of the dsplib-optimized TI library that is part of the release. This
document uses Processor SDK RTOS release 3.0.0.4 with dsplib_c66x_3_4_0_0. The library contains
multiple FFT functions. For this project, the single precision floating point DSPF_sp_fftSPxSP is chosen.

The subdirectory /Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib has four versions
of the dsplib-optimized library, and four versions of the non-optimized version. Library dsplib.a66 is little
endian COFF format, and dsplib.a66e is big endian COFF format. COFF format is a TI proprietary format
that is used for backward compatibility with older projects. The library dsplib.ae66 is the ELF version of
little endian format, while dsplinae66e is the big endian version.

The ELF format is a standard format that is currently used. For the purpose of this project, the little endian
ELF format is used: dsplib.ae66 library.

The include file dsplib.h in directory /Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib
includes all dsplib include functions. This file is included in the project.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

32 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The documentation on how to use the library function is in directory
\Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib\docs\doxygen in a chm format, as well
as the TMS320C67x DSP Library Programmer’s Reference Guide (page 49).

Figure 31 shows how to use the function DSPF_sp_fftSPxSP.

Figure 31. DSPF_sp_fftSPxSP Function

Even with the documentation, it may not be clear how to use the function. To understand better how to
use the function, use the unit test. The unit test main function is called DSPF_sp_fftSPxSP_d.c, and is
located in directory
\Release_3_0_0_4\C667X\dsplib_c66x_3_4_0_0\packages\ti\dsplib\src\DSPF_sp_fftSPxSP\c66. While the
previous chapter test program is built for a different device, the method to use the library routines is the
same.

From the imported project of the previous chapter, the FFT routine needs two other vectors in addition to
the input: the 64-elements bit reversal vector (brev), and the twiddle factor. The DSPLIB has several
twiddle factor generation functions, but they are all for fixed point arithmetic and not for floating point.
Thus, this project uses the same Twiddle Factor generation used by the developer in the imported project.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526
http://www.ti.com/lit/pdf/SPRU657

www.ti.com Build a New CCS Project

33SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

In addition, like the imported test project from the previous chapter, add two include files:
DSPF_sp_fftSPxSP.h for the function used by the code, and math.h. The main source code is similar to
the following:
#include "example1.h"
#include <math.h>#include "DSPF_sp_fftSPxSP.h"

#pragma DATA_ALIGN(inputVector, 8);
float inputVector[2*DATA_SIZE] ; // complex vector
#pragma DATA_ALIGN(outputVector, 8);
float outputVector[2* DATA_SIZE] ;
#pragma DATA_ALIGN(twiddleFactors, 8);
float twiddleFactors[2* DATA_SIZE] ;

void gen_twiddle_fft_sp (float *w, int n)
{

int i, j, k;
double x_t, y_t, theta1, theta2, theta3;
const double PI = 3.141592654;

for (j = 1, k = 0; j <= n >> 2; j = j << 2)
{

for (i = 0; i < n >> 2; i += j)
{

theta1 = 2 * PI * i / n;
x_t = cos (theta1);
y_t = sin (theta1);
w[k] = (float) x_t;
w[k + 1] = (float) y_t;

theta2 = 4 * PI * i / n;
x_t = cos (theta2);
y_t = sin (theta2);
w[k + 2] = (float) x_t;
w[k + 3] = (float) y_t;

theta3 = 6 * PI * i / n;
x_t = cos (theta3);
y_t = sin (theta3);
w[k + 4] = (float) x_t;
w[k + 5] = (float) y_t;
k += 6;

}
}

}

unsigned char brev[64] = {
0x0, 0x20, 0x10, 0x30, 0x8, 0x28, 0x18, 0x38,
0x4, 0x24, 0x14, 0x34, 0xc, 0x2c, 0x1c, 0x3c,
0x2, 0x22, 0x12, 0x32, 0xa, 0x2a, 0x1a, 0x3a,
0x6, 0x26, 0x16, 0x36, 0xe, 0x2e, 0x1e, 0x3e,
0x1, 0x21, 0x11, 0x31, 0x9, 0x29, 0x19, 0x39,
0x5, 0x25, 0x15, 0x35, 0xd, 0x2d, 0x1d, 0x3d,
0x3, 0x23, 0x13, 0x33, 0xb, 0x2b, 0x1b, 0x3b,
0x7, 0x27, 0x17, 0x37, 0xf, 0x2f, 0x1f, 0x3f

};

int main(void)
{

double sumInput, sumOutput ;
int i,j ;

generateFloatingPointInputData (inputVector, 2*DATA_SIZE);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

34 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

sumInput = calculateEnergy (inputVector, 2* DATA_SIZE) ;

gen_twiddle_fft_sp (twiddleFactors, DATA_SIZE) ;

DSPF_sp_fftSPxSP(DATA_SIZE, inputVector, twiddleFactors, outputVector, brev, 4, 0, DATA_SIZE);
sumOutput = calculateEnergy (outputVector, 2* DATA_SIZE) ;

printf(" input energy %e output energy %e difference %e \n", sumInput, sumOutput,
sumInput-sumOutput) ;

return 0;
}

NOTE: The include file in the imported project is ti\dsplib\dsplib.h. This is a generic include file that
includes all the include files in the DSPLIB release. This include file is generic, so for
functions optimized for a certain architecture, the user must provide the device name. For the
C66 architecture, the device name is _TMS320C6600. Adding a device name to a project is
done from Properties -> Advanced Options -> Predefined Symbols, in the lower window
(Pre-define NAME)

3.2 Building the New Project
Right-click on the project name and select Rebuild Project. After the build, the error message in Figure 32
is displayed in the Console window.

Figure 32. Error Message

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

35SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The project does not find the include file DSPF_sp_fftSPxSP.h, thus, the user must add the path to it.
Searching in the release, the file DSPF_sp_fftSPxSP.h is in directory INSTALL_DIR\
dsplib_c66x_3_4_0_0\packages\ti\dsplib\src\DSPF_sp_fftSPxSP\c66, where INSTALL_DIR is the directory
name where the user installed the Processor SDK. Adding the path to ti\dsplib is done from the properties
windows. Right-click on the Project name and select Properties (the last item in the list). In the Properties
window, select Include Options, as shown in Figure 33.

Figure 33. Include Options

The upper window enables the user to add a pre-include file. The lower window is used to add a path.
Click on the green plus sign (+), and add the path to the ti\dsplib\dsplib.h.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

36 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 34 illustrates how the path appears in the system used here.

Figure 34. Add Directory Path

Click OK twice and try to rebuild the project again. In the example shown in Figure 35, the compilation
went through, but there are a few issues with linking the program.

Figure 35. Linking Issues

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

37SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The error indicates that the library function DSPF_sp_fftSPxSP that is called by main was not found, but in
addition, it gives warning that there are no section specifications. In this example, the project does not
have a linker command file that defines what memories are used and what sections are used. As a
starting point, copy the linker command file from the imported project into the new project. Then the user
can modify the linker command file for the real application. For example, the linker command file used in
the imported project does not include the external memory DDR, which usually is used in real applications.
The linker command file of the imported projects lnk.cmd is shown in the following code:
-heap 0x8000
-stack 0xC000
-l../../../../packages/ti/dsplib/lib/dsplib.lib

MEMORY
{

L2SRAM (RWX) : org = 0x800000, len = 0x100000
MSMCSRAM (RWX) : org = 0xc000000, len = 0x200000

}

SECTIONS
{

.text: load >> L2SRAM

.text:touch: load >> L2SRAM

GROUP (NEAR_DP)
{
.neardata
.rodata
.bss
} load > L2SRAM

.far: load >> L2SRAM

.fardata: load >> L2SRAM

.data: load >> L2SRAM

.switch: load >> L2SRAM

.stack: load > L2SRAM

.args: load > L2SRAM align = 0x4, fill = 0 {_argsize = 0x200; }

.sysmem: load > L2SRAM

.cinit: load > L2SRAM

.const: load > L2SRAM START(const_start) SIZE(const_size)

.pinit: load > L2SRAM

.cio: load >> L2SRAM
xdc.meta: load >> L2SRAM, type = COPY

}

Next, add the DSPF_sp_fftSPxSP function library. A complete set of the entire DSPLIB libraries are in
directory INSTALL_DIRECTORY\ dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib. In addition, each DSPLIB
function has its own small library. This is the library that is going to be used in this project.

From the comment of type of libraries in Section 2.2, and building this project as little endian and ELF
format, the library that is used is dsplib.ae66 in directory: INSTALL_DIRECTORY\
\dsplib_c66x_3_4_0_0\packages\ti\dsplib\lib.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

38 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

To add the library and a path to the library to the project, the user must go to Properties → C6000 Linker
→ File Search Path, as shown in Figure 36.

Figure 36. File Search Path

The upper window should have the library name, while the lower window has the path to the library.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Build a New CCS Project

39SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Select the green plus sign at the top window to open a dialog box (shown in Figure 37) where the library
name can be entered.

Figure 37. Add File Path

And in the lower window, add the path to the library, as shown in Figure 38.

Figure 38. Add Library Path

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Build a New CCS Project www.ti.com

40 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Click OK three times: once for the library, once for the path, and once for the Properties, then rebuild the
project. This time, the project is built and the console appears as it does in Figure 39.

Figure 39. Build Finished

There are some warnings that the user can easily eliminate, but the executable exercise1.out is built and
is now in the Debug directory.

3.3 Code Execution: Understanding the Results
Repeat the steps in Section 2.5 to launch the target, connect core 0, and load the code of exercise1 (Run-
>load _> Load Program). From the dialog box, choose Browse Project, then choose exercise1->Debug-
>Exercise1.out, and then OK and OK).

Step through the code. The last instruction prints the following on the Console:

input energy 4.216463e+07 output energy 1.079414e+10 difference -1.075198e+10

Thus, the input energy is not equal to the output energy. As a hint to the problem, if the following two lines
are added to the code:
sumInput = sumInput * (float) DATA_SIZE ;

printf(" input energy %e output energy %e difference %e \n", sumInput, sumOutput,
sumInput-sumOutput) ;

Then the second printf gives the following results, (error of about e-8):
input energy 1.079415e+10 output energy 1.079414e+10 difference 4.998233e+02

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import Function From Library (Not Part of Processor SDK)

41SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

4 Import Function From Library (Not Part of Processor SDK)

4.1 Import an Example From FFTLIB (C674x Version)
Section 2 has instructions how to import a project. Section 3 has instructions how to build a new project. In
both cases, the build process was relatively easy and simple.

Processor SDK supports many TI digital devices and covers many building blocks. However, there are
some devices that are not currently supported by the Processor SDK. There are TI libraries that are not
part of Processor SDK.

Importing and building examples in a library that is not part of Processor SDK requires more
configurations, because the example project is unaware of the software environment.

In addition, in the previous examples, the projects were not RTSC projects. RTSC requires some
additional considerations. Section 2.1 describes how to verify that RTSC system sees all the software
modules that it may require.

In this chapter, the user will import a project with some build issues, and see how to debug and fix these
issues. The techniques demonstrated here can be used for other projects with similar issues.

The software tools used are CCS V6.1.3, and the library used is a FFTLIB for floating point devices. The
library can be loaded from http://software-dl.ti.com/libs/fftlib/2.0.0/2_0_0_2/index_FDS.html.

This library supports C674x devices, which are not supported by Processor SDK, but by a set of tools for
the C674x. The download page for the C674x set of software tools is http://software-
dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html.

Following the process, in directory INSTALL_DIRECTORY\fftlib_2_0_0_2\ packages\ti\fftlib\src, where
INSTALL_DIRECTORY is the directory where FFTLIB was installed, choose the second function in the
fft_dp_1d_c2c_batch list. This function calculates the FFT of double precision values (and the calculation
is double precision), and one dimension complex FFT on multiple vectors (thus the batch).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526
http://software-dl.ti.com/libs/fftlib/2.0.0/2_0_0_2/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/c6000/web/bios_c6sdk/latest/index_FDS.html

Import Function From Library (Not Part of Processor SDK) www.ti.com

42 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

and show the location of the example.

Figure 40. Browse Folder Figure 41. Project Explorer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import Function From Library (Not Part of Processor SDK)

43SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

First, notice the small exclamation mark next to the project name. This mark indicates that the project
must adjust its properties before it can be built. Otherwise, if the user clicks on Rebuild Project, they get
the result shown in Figure 42.

Figure 42. Rebuild Project Error

When an include file is not recognized by the system, the project properties must be checked. For RTSC
projects, verifying that all the RTSC projects are well-defined is essential. To look at the RTSC definition,
right-click on the project name and select Properties (the last item in the pulldown menu).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import Function From Library (Not Part of Processor SDK) www.ti.com

44 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

The RTSC definitions are in the General → RTSC tab, as shown in Figure 43.

Figure 43. RTSC Definitions

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import Function From Library (Not Part of Processor SDK)

45SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

If one of the required elements is not available or has the wrong address, the system flags it out. Going
through all RTSC elements (see Figure 44), one of the additional depositories has a small exclamation
mark next to it (see Figure 45).

Figure 44. RTSC Elements

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

Import Function From Library (Not Part of Processor SDK) www.ti.com

46 SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Figure 45. Depository Flag

If the user searches for pdk_c667x_2_0_1\packages, it is found at c:\ti\Releases\release_2_0_2\C667X\.
To fix the error, select the repository (left-click) and click on the Edit tab at the right side of the window.
This opens the dialog box shown in Figure 46.

NOTE: The repository location of these files may be different than the example. Please edit the file
paths accordingly.

Figure 46. Edit Repository Location

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

www.ti.com Import Function From Library (Not Part of Processor SDK)

47SWRA526–November 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Introducing TI’s Integrated Development Environment – Code Composer
Studio™ (CCS) to Expert Engineers

Fixing the path to the correct one, and then clicking OK twice remedies the problem. Then, if the user
rebuilds the project again, the build process is finished and generates the executable shown in Figure 47.

Figure 47. Build Finished

NOTE: RTSC projects encapsulate the used modules in the RTSC window. Most of the build errors
are due to the wrong definition of the RTSC module or the path to a repository.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA526

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Introducing TI’s Integrated Development Environment – Code Composer Studio™ (CCS) to Expert Engineers
	1 Introduction
	1.1 Intended Audience – Expert DSP Engineer New to TI’s Code Composer Studio™ (CCS)
	1.1.1 Steps to Take When Starting to Port a DSP Algorithm into TI Environments

	1.2 CCS Online Training Resources
	1.3 Getting Started With CCS
	1.4 CCS Edit and Debug Perspectives

	2 Import CCS Project From Release Examples
	2.1 Before Importing a Project
	2.2 Import the FFT Project
	2.3 Define Target – Emulator
	2.4 Connect to the Target and Run the Project
	2.5 Code Execution and Measure Cycles

	3 Build a New CCS Project
	3.1 Create a New Project
	3.2 Building the New Project
	3.3 Code Execution: Understanding the Results

	4 Import Function From Library (Not Part of Processor SDK)
	4.1 Import an Example From FFTLIB (C674x Version)

	Important Notice

