

Module 13
Lab 13: Timers

 Lab: Timers

 2 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP192

13.0 Objectives

The purpose of this lab is to develop the software needed to spin the motors. The
software can vary the electrical power delivered to each motor using pulse
width modulation (PWM). In this module,

1. You will learn the MSP432 Timer_A module.
2. You will configure Timer A0 to create two PWM outputs.
3. You will configure Timer A1 to create an additional periodic interrupt.
4. You will develop low-level robot commands for movement.

Good to Know: PWM is an effective and efficient means for the microcontroller

to affect its world. It is effective because setting the timer reload value to 15000
will create an output with essentially 14 bits of precision. It is efficient because
the cost of the timer and digital switching circuit (DRV8838) is much less than an
equivalent analog amplifier.

13.1 Getting Started

13.1.1 Software Starter Projects

Look at these three projects:
PWMSine (uses a PWM and a timer to create a sine wave output)
PeriodicTimerA0Ints (uses Timer_A0 to create a periodic interrupt)
Lab13_Motors (starter project for this lab)

Note: You will not be able to run the PeriodicTimerA0Ints project on the robot

because this project uses Timer_A0, and you need to use Timer_A0 for the
robot’s two PWM outputs.

13.1.2 Student Resources (in datasheets directory)

 MSP432P4xx Technical Reference Manual, Timer_A (SLAU356)
 MSP432P401R Datasheet, msp432p401m.pdf (SLAS826)
 MotorDriverPowerDistribution.pdf Data sheet for power board
 Pololu Romi Chassis User’s Guide.pdf How to build the robot
 drv8838.pdf data sheet for the H-bridge driver

13.1.3 Reading Materials

Volume 1 Sections 8.7, and 9.7
Embedded Systems: Introduction to the MSP432 Microcontroller",
or
Volume 2 Sections 6.2, 6.3, and 6.5
Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller"

13.1.4 Components needed for this lab

Quantity Description Manufacturer Mfg P/N

1
MSP-
EXP432P401R
LaunchPad

TI MSP-EXP432P401R

1

Romi Chassis Kit -
Red

Pololu 3502

1

Motor Driver and
Power Distribution
Board for Romi

Pololu 3543

1

Romi Encoder Pair
Kit, 12 CPR*
optional

Pololu 3542

2

Rechargeable
Battery, Pack of 4,
Metal Hydride 1300
mAh, 1.2V, AA

Energizer 626831

4

1.375in 4-40 Nylon
standoff

Keystone 4809

2

0.187in 4-40 metal
nut

Keystone 4694

6

0.5in 4-40 Nylon
machine screw

Pololu 1962

 Lab: Timers

 3 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP192

13.1.5 Lab equipment needed

Oscilloscope (one or two channels at least 10 kHz sampling)
Logic Analyzer (4 channels at least 10 kHz sampling

Warning: Disconnect the VREG↔+5V wire (the one between the MBDB and the

LaunchPad) when the LaunchPad USB cable is connected to the PC. Connect
the VREG↔+5V wire when the robot is running on battery power. This way the
motors always get power from the batteries, and never get power from the USB.

13.2 System Design Requirements

The first goal of this lab is to write software that can adjust the applied power to
the two motors. You will create PWM outputs on the P2.6 and P2.7 pins, which
are connected to the PWML and PWMR of the MDPDB (EN input to the
DRV8838). The period of both outputs should be fixed at 10 ms (100 Hz).
However, the software should be able to independently set the duty cycle of the
EN pin to each motor from 0 to 14,998 (0 to 99.99%). At 100 Hz, the motor will
not respond to individual highs and lows; rather, the motors will respond to the
average level. More specifically, the delivered power will be

 P = V * I * duty/15000; 0 ≤ duty ≤ 14998

where V is the voltage and I the current, as measured previously in Lab 12.

The second goal of this lab is create an additional periodic interrupt using Timer_
A1. The high-level main program will initialize this periodic interrupt using a
function pointer at run time, providing for abstraction and code reuse.

Similar to Lab 12, the outcome of this lab is a system that drives in a straight line
until one of the bump sensors detects a collision. However, contrary to Lab 12,
this solution will require very little software overhead.

13.3 Experiment set-up
Same as Lab 12. Refer to the data sheet of the DRV8838 to see how the
software output values to these six signals affect motor behavior, Figure 1.

Figure 1. Interface circuit.

 Lab: Timers

 4 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP192

LaunchPad MDPDB DRV8838 Description

P1.6 DIRR PH Right Motor Direction

P3.6 nSLPR nSLEEP Right Motor Sleep

P2.6 PWMR EN Right Motor PWM

P1.7 DIRL PH Left Motor Direction

P3.7 nSLPL nSLEEP Left Motor Sleep

P2.7 PWML EN Left Motor PWM

13.4 System Development Plan
13.4.1 Low-level software driver

Replace the suite of software functions built in Lab 12 with functions that use
Timer_A0 to create the two PWM outputs. This suite of functions will control the
two wheels on the robot. When active the PWM to both motors will be 100 Hz (10
ms), but have independent duty cycles. The prototypes for the driver are:

void Motor_Init(void);

 Initializes the 6 lines and Timer A0 and puts driver to sleep
 Returns right away

void Motor_Stop(void);

 Stops both motors, puts driver to sleep
 Returns right away

void Motor_Forward(uint16_t leftDuty, uint16_t rightDuty)
 Drives left motor forward at leftDuty (0 to 14,998)
 Drives right motor forward at rightDuty (0 to 14,998)

The motors run until software issues another command
 Returns right away

void Motor_Backward(uint16_t leftDuty, uint16_t rightDuty)
 Drives left motor backward at leftDuty (0 to 14,998)
 Drives right motor backward at rightDuty (0 to 14,998)

The motors run until software issues another command
 Returns right away

void Motor_Left(uint16_t leftDuty, uint16_t rightDuty)
 Drives left motor backward at leftDuty (0 to 14,998)
 Drives right motor forward at rightDuty (0 to 14,998)

The motors run until software issues another command
 Returns right away

void Motor_Right(uint16_t leftDuty, uint16_t rightDuty)
 Drives left motor forward at leftDuty (0 to 14,998)
 Drives right motor backward at rightDuty (0 to 14,998)

The motors run until software issues another command
 Returns right away

13.4.2 Motor Testing

Place voltmeters on the VM line (+7.2) and on VREG line (+5V) of the MDPD
board while debugging the motor software. Place the robot on blocks, so the
wheels do not touch the ground, and test the low-level motor functions, using a
program like Program13_1.

// Driver test

void TimedPause(uint32_t time){

 Clock_Delay1ms(time); // run for a while and stop

 Motor_Stop();

 while(LaunchPad_Input()==0); // wait for touch

 while(LaunchPad_Input()); // wait for release

}

int Program13_1(void){

 Clock_Init48MHz();

 LaunchPad_Init(); // built-in switches and LEDs

 Bump_Init(); // bump switches

 Motor_Init(); // your function

 while(1){

 TimedPause(4000);

 Motor_Forward(7500,7500); // your function

 TimedPause(2000);

 Motor_Backward(7500,7500); // your function

 TimedPause(3000);

 Motor_Left(5000,5000); // your function

 TimedPause(3000);

 Motor_Right(5000,5000); // your function

 }

}

 Lab: Timers

 5 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP192

Place the robot on the ground and try to adjust each of the 7500 parameters in
the calls to Motor_Forward and Motor_Backward so robot moves in a straight
line. Adjust the 5000 parameters in the calls to Motor_Left and Motor_Right
and the 3000 parameters to Pause, so robot turns 90 degrees.

Note: Adjusting these parameters to run the robot open loop will be virtually

impossible. Asking you to try to solve an impossible problem will motivate the
need for inputs and create a closed loop controller.

13.4.3 Periodic Interrupt

Write the software to create an additional periodic interrupt using Timer_A1. If
you use the 12 MHz SMCLK and divide by 24, the 16-bit timer will clock at 500
kHz. At this clock rate, the slowest interrupt that can be created is about 130 ms
(65535*2µs). You can use a program like Program13_2 to test this driver. Notice

the use of bit-banding to remove the critical section that would normally occur
with a read-modify-write sequence on a shared global.

// Test of Periodic interrupt

#define REDLED (*((volatile uint8_t *)(0x42098060)))

#define BLUELED (*((volatile uint8_t *)(0x42098068)))

uint32_t Time;

void Task(void){

 REDLED ^= 0x01; // toggle P2.0

 REDLED ^= 0x01; // toggle P2.0

 Time = Time + 1;

 REDLED ^= 0x01; // toggle P2.0

}

int Program13_2(void){

 Clock_Init48MHz();

 LaunchPad_Init(); // built-in switches and LEDs

 TimerA1_Init(&Task,50000); // 10 Hz

 EnableInterrupts();

 while(1){

 BLUELED ^= 0x01; // toggle P2.1

 }

}

Use a dual trace scope to observe both P2.0 (interrupt thread) and P2.1 (main
thread). Trigger on the interrupt signal and use the gap in the oscillations on P2.1
to estimate the time required to service the Timer A1 interrupt.

After testing the PWM and Timer A1 separately, combine them into one software
system that runs the robot like Program 13.1, but uses the periodic interrupt to
check the bump switches, stopping the robot on a collision.

13.5 Troubleshooting

PWM or interrupts are the incorrect period:

• Check the source of the timer clock.
• Make sure the processor is running at 48 MHz.

PWM output does not occur:

• Run the PWMSine project to see if the hardware is ok.
• Use the debugger to make sure the Timer_A0 registers are set.

Interrupts do not occur:

• Run the PeriodicTimerA0Ints project and use the debugger to observe

the Timer A0 registers. Run your program and observe the Timer A1
registers

• Use the debugger to observe the registers in the NVIC
• Make sure the I-bit is clear, by calling EnableInterrupts();

 Lab: Timers

 6 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP192

13.6 Things to think about

In this section, we list questions to consider after completing this lab. These
questions are meant to test your understanding of the concepts in this lab. The
goal of this module is for you to understand Timer_A and its use for PWM and
periodic interrupts.

• How does the software select the input clock for Timer_A?
• What does the prescaler do for Timer_A? Why is the prescaler

important (i.e., what happens when you change the prescale?)
• What is the precision of the PWM generated in this lab?
• What would happen if the main program in Program13_2 while loop

executed P2->OUT ^= 0x04; instead?

• How could you use Timer A1 to perform periodic tasks once a second?
• What is a function pointer? Why are function pointers used in this lab?

13.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. For example,

• If you do not have the Pololu motor board, you will have to change the
way your software operates. Luckily, it is possible to create PWM
outputs on any of the P2.4, P2.5, P2.6 or P2.7.

• It is now possible to combine Lab 7 (FSM), Lab 12 (motors) and this lab
to create a robot that follows a line.

13.8 Which modules are next?

The major limitation to the robot conceived in this lab is the speed of the motors
depends on many factors most of which cannot be predicted in advance.
Therefore the system must deploy sensors to determine its state. Over the
remaining labs we will solve these limitations.

Module 15) Use the ADC to interface distance sensors. Two distance sensors
can be used to drive the robot at a fixed distance and fixed angle to the wall.
Module 16) Interface tachometers (Romi Encoder Pair Kit) and use timer
capture to measure the speeds of each wheel directly.
Module 17) Combine modules 12, 13, and 16 to create a control system that
spins the motors at a desired speed.

13.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module:

• Understand voltage, current, and power to a motor.
• Be able to use PWM output to adjust power to the motors.
• Understand basic operation and purpose of an H-bridge.
• Know how to write and test a low-level software driver.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

