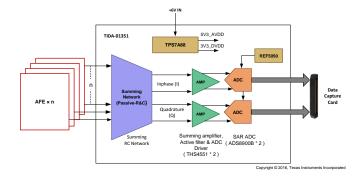
TI Designs: TIDA-01351 High-Resolution, High-SNR True Raw Data Conversion Reference Design for Ultrasound CW Doppler


Texas Instruments

Description

This reference design is a continuous wave (CW) voltage signal conditioning subsystem for ultrasound imaging systems (64-, 128-, 192-, 256-channel ultrasound system). This design features 20-bit fully differential simultaneous sampling with true raw data available for processing. This TI Design consists of a fully-differential signal path for I and Q channels, each using high-performance SAR analog-to-digital converters (ADCs) (ADS8900B), fully-differential precision amplifiers (THS4551), a dual low-noise, lowdropout (LDO) voltage regulator (TPS7A8801), and a precision voltage reference (REF5050). The TIDA-01351 can be interfaced with the PH1-EVM controller through the multiSPI[™] digital interface, and the performance can be evaluated using a PC-based application (GUI) from any PC through the USB interface.

Resources

TIDA-01351	Design Folder
ADS8900B	Product Folder
ADS8910B	Product Folder
ADS8920B	Product Folder
THS4551	Product Folder
TPS7A88	Product Folder
REF5050	Product Folder
OPA376	Product Folder
LM7705	Product Folder

Features

- Two Simultaneous Channels (I and Q Voltage Output From AFE) Fully-Differential Signal Chain Providing Zero-Latency True Raw Data With SNR of 101.2 dB and ENOB of 16.45
- 8-Channel Summing, Filtering, Buffering, and Gain Implemented in Single-Stage High-Bandwidth, Low-Power, Low-Noise, Single Supply Fully-Differential Amplifier (THS4551)
- High Sampling Rate of 1 MSPS Allows Flexibility in Post-Processing to Improve SNR and Resolution
- Bandpass Filtering for Frequency Range of 50 Hz to 20 kHz
- Operates From Single 6-V Power Supply With Total Power Consumption of 258 mW
- Designed Using ADS89x0B (20-/18-/16-Bit) With 1ppm INL and SNR of 104.5-dB SNR

Applications

- Medical Ultrasound Scanners
- Industrial Imaging
- SONAR Imaging Equipment
- Nondestructive Evaluation Equipment

System Description

2

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

1 System Description

Ultrasound imaging systems use high-frequency sound waves (several MHz or more) to image internal structures by the differing reflected signals produced when a beam of sound waves is projected into the body and bounces back at the interfaces between those structures. Ultrasound diagnosis differs from radiological diagnosis in that there is no ionizing radiation involved. The use of ultrasound to create images is based on the reflection and transmission of a wave at a boundary. When an ultrasound wave travels inside an object that is made up of different materials with varying densities (such as the human body), part of the wave is reflected and part of it is transmitted each time the wave encounters a boundary (for example, between bone and muscle or muscle and fat). The reflected rays are detected and used to construct an image of the object.

The ultrasound imaging system (Figure 1) front-end consists of two main sections: a transmit section and a receive section. The transmit section has a linear or pulse transmitter, which generates excitation pulses for ultrasound transducers of frequencies typically ranging from 1 to 15 MHz of amplitude ±2.5 to ±100 V. On the transmit (Tx) side, the Tx beam former determines the delay pattern and pulse train that set the desired transmit focal point. Ultrasound transducers are piezoelectric transducers that undergo mechanical deformation on the application of electrical pulses, which, in turn, produce ultrasound waveforms and the reverse process of an ultrasound wave at the surface of the transducer. The received ultrasound wave excites the transducer element to generate equivalent electrical energy. The reflected signal received by the transducer is conditioned by the receive (Rx path). There is a T/R switch, generally a diode bridge, which blocks the high voltage Tx pulses and protects the Rx circuit. This T/R switch can be either stand alone or integrate in the transmit pulsers. The T/R switch is followed by the receive AFE. The AFE usually incorporates a low-noise amplifier (LNA), voltage-controlled amplifier (VCA), programmable-gain amplifier (PGA), and an ADC to produce digitized output and, given to the receive beam former FPGA and then to the DSP for processing, image formation and display. Time gain control, which provides increased gain for signals from deeper in the body (and therefore arriving later), is under operator control and used to maintain image uniformity. Time gain control is implemented by controlling the gain of the VCA.

The CW Doppler has a very large dynamic range. During CW, a sine wave transmits continuously by half of the transducer array, and the other half receives. There is a strong tendency for the Tx signal to leak into the Rx side, and there are strong reflections coming from stationary body parts that are close to the surface. This action tends to interfere with examination of, for example, blood flow in a vein deep in the body with concomitant very weak Doppler signals. The CW Doppler signals cannot be processed through the main imaging (B-mode) and pulsed-wave (PW) Doppler (F-mode) path in a digital beamforming system; for this reason, images may be formed as either a sequence of analog levels that are delayed with analog delay lines, summed, and converted to digital after summation, which is indicated as CW Doppler processing. Receive AFE also integrates CW mixer and a low noise summer to form a CWD beam former. LNA output is passed through the CW mixer to demodulate the Doppler frequencies and produces I and Q signals, all these I and Q signals from all the channels in the same AFE are summed at a low-noise summer. Sixteen selectable phase delays can be applied to each analog input signal.

The most common use of ultrasound is in creating images, which have industrial and medical applications. Ultrasound systems have different forms or variants available in the market including cart-based, portable, or handheld.

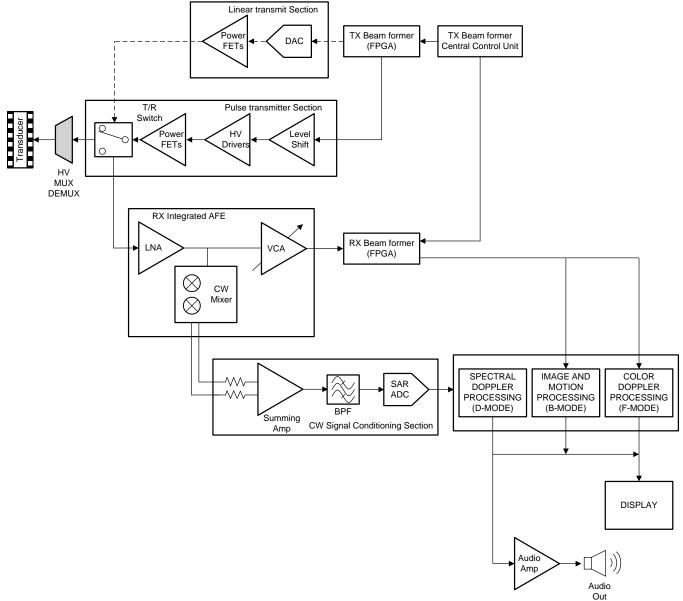


Figure 1 shows the block diagram of an ultrasound imaging system.

Copyright © 2016, Texas Instruments Incorporated

Figure 1. Ultrasound Imaging System Block Diagram

The TIDA-01351 design is a CW voltage output signal conditioning subsystem for ultrasound imaging systems, which features 20-bit fully-differential simultaneous sampling with true raw data available for processing. This TI Design has a fully differential signal path using high-performance SAR ADCs (ADS8900B), a fully-differential precision amplifier (THS4551), a dual, low-noise LDO voltage regulator (TPS7A88), and a precision voltage reference (REF5050). The TIDA-01351 can be interfaced with the PH1-EVM controller through the multiSPI digital interface, and the performance can be evaluated using a PC-based application (GUI) from any PC, through the USB interface. This TI Design can be used for both cart-based and portable ultrasound systems where simultaneous sampling and true raw data availability are the key selection requirements.

1.1 Key System Specifications

PARAMETER	SPECIFICATIONS
Number of channels	Two, simultaneous sampling
Input type	Differential
Input range	±10 μVp-p to ±500 mVp-p, fully differential
Resolution	20 bit
SNR	101.2 dB at 2-kHz signal input (gain = 1) 92.3 dB at 2-kHz signal input (gain = 10) 92.1 dB at 20-kHz signal input (gain = 10)
ENOB	16.45 at 2-kHz signal input (gain = 1) 15.44 at 2-kHz signal input (gain = 10) 15.01 at 20-kHz signal input (gain = 10)
Power	258 mW
Form factor	120 mm × 85 mm

Table 1. Key System Specifications

This reference design supports only I and Q voltage outputs from AFE; the AFEs must be configured for I and Q voltage outputs. I and Q current outputs are not supported by this reference design. Table 2 shows the TI AFEs compatible with this reference design.

Table 2. AFEs Compatible With TIDA-01351

AFE	CW OUTPUT
AFE5808	Voltage or current output
AFE5808A	Voltage or current output
AFE5807	Voltage or current output
AFE5809	Voltage or current output
AFE5818	Voltage or current output
AFE5812	Voltage or current output
AFE58JD18	Voltage or current output

Table 3 compares the performance of the different TI SAR ADCs versus their resolution. These devices are drop-in replacement with pin compatibility. For test result details, see Section 3.2.2.3.

Table 3. Comparison of TI SAR	ADC Performance versus Resolution
-------------------------------	-----------------------------------

SAR ADC	BITS	SNR
ADS8900B	20	94.3 dB at 2-kHz input signal, 90.7 dB at 20-kHz input signal (with gain = 10)
ADS8910B	18	94.1 dB at 2-kHz input signal, 88.8 dB at 20-kHz input signal (with gain = 10)
ADS8920B	16	92.7 dB at 2-kHz input signal, 88.4 dB at 20-kHz input signal (with gain = 10)

2 System Overview

2.1 Block Diagram

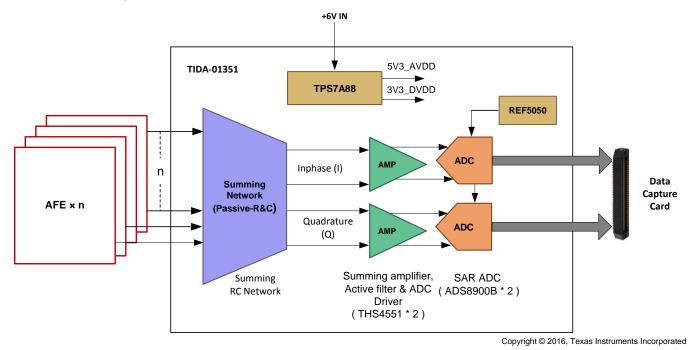


Figure 2. Block Diagram

System Overview

2.2 Highlighted Products

2.2.1 ADS890xB

The ADS8900B, ADS8902B, and ADS8904B (ADS890xB) belong to a family of pin-to-pin compatible, high-speed, high-precision successive-approximation-register (SAR) ADCs with an integrated reference buffer and integrated LDO regulator. These devices support unipolar, fully-differential analog input signals with \pm 1-ppm INL and 104.5-dB SNR specifications under typical operating conditions. The integrated LDO enables single-supply operation with low-power consumption. The integrated reference buffer supports burst-mode data acquisition with 20-bit precision for the first sample. External reference voltages in the range of 2.5 to 5 V are supported, which offers a wide selection of input ranges without additional input scaling. The integrated multiSPI digital interface is backward-compatible to the traditional SPI protocol. Additionally, configurable features simplify board layout, timing, and firmware and support high throughput at lower clock speeds. The multiSPI digital interface allows for easy interface with a variety of microcontrollers (MCUs), digital signal processors (DSPs), and field-programmable gate arrays (FPGAs). The ADS890xB family is offered in a space-saving, 4-mm × 4-mm VQFN package and is specified over the extended temperature range of -40° C to 125° C.

2.2.2 THS4551

The THS4551 fully-differential amplifier offers an easy interface from single-ended sources to the differential output required by high-precision ADCs. Designed for exceptional DC accuracy, low noise, and robust capacitive load driving, this device is well suited for data acquisition systems where high precision is required along with the best signal-to-noise ratio (SNR) and spurious-free dynamic range (SFDR) through the amplifier and ADC combination. The THS4551 features the negative rail input required when interfacing a dc-coupled, ground-centered source signal to a single-supply differential input ADC. Very-low DC error and drift terms support the emerging 16- to 20-bit SAR input requirements. A wide-range output common-mode control supports the ADC running from 1.8- to 5-V supplies with ADC common-mode input requirements from 0.7 V to greater than 3.0 V. The THS4551 device is characterized for operation over the wide temperature range of -40°C to 125°C and is available in 8-pin VSSOP, 16-pin VQFN, and 10-pin WQFN packages.

2.2.3 TPS7A88

The TPS7A88 is a dual, low-noise $(3.8 \ \mu V_{RMS})$ LDO voltage regulator capable of sourcing 1 A per channel with only 200 mV of maximum dropout. The TPS7A88 provides the flexibility of two independent LDOs and approximately 50% smaller solution size than two single-channel LDOs. Each output is adjustable with external resistors from 0.8 to 5.0 V. The TPS7A88 wide input-voltage range supports operation as low as 1.4 V and up to 6.5 V. With 1% output voltage accuracy (over line, load, and temperature) and soft-start capabilities to reduce in-rush current, the TPS7A88 is ideal for powering sensitive analog low-voltage devices [such as voltage-controlled oscillators (VCOs), ADCs, digital-to-analog converters (DACs), high-end processors, and FPGAs]. The TPS7A88 is designed to power up noise sensitive components such as those found in high-speed communication, video, medical, or test and measurement applications. The very-low 4- μ V_{RMS} output noise and wideband PSRR (40 dB at 1 MHz) minimizes phase noise and clock jitter. These features maximize performance of clocking devices, ADCs, and DACs.

2.2.4 OPA376

The OPA376 family represents a new generation of low-noise operational amplifiers with e-trimTM, which offer outstanding DC precision and AC performance. Rail-to-rail input and output (RRIO), low offset (25 μ V, maximum), low noise (7.5 nV/ \sqrt{Hz}), a quiescent current of 950 μ A (maximum), and a 5.5-MHz bandwidth make this part very attractive for a variety of precision and portable applications. In addition, this device has a reasonably wide supply range with excellent PSRR, making it attractive for applications that run directly from batteries without regulation. The OPA376 (single version) is available in MicroSIZE SC70-5, SOT-23-5, and SOIC-8 packages. The OPA2376 (dual) is offered in the DSBGA-8, VSSOP-8, and SOIC-8 packages. The OPA4376 (quad) is offered in a TSSOP-14 package. All versions are specified for operation from –40°C to 125°C.

2.2.5 LM7705

7

The LM7705 device is a switched capacitor voltage inverter with a low-noise, -0.23-V fixed negative voltage regulator. This device is designed to be used with low-voltage amplifiers to enable the amplifiers output to swing to zero volts. The -0.23 V is used to supply the negative supply pin of an amplifier while maintaining less than 5.5 V across the amplifier. Rail-to-rail output amplifiers cannot output 0 V when operating from a single-supply voltage and can result in error accumulation due to amplifier output saturation voltage being amplified by following gain stages. A small negative supply voltage will prevent the amplifiers output from saturating at 0 V and will help maintain an accurate zero through a signal processing chain. Additionally, when an amplifier is used to drive an input of the ADC, the amplifier can output a zero voltage signal and the full input range of an ADC can be used. The LM7705 device has a shutdown pin to minimize standby power consumption.

2.2.6 REF5050

The REF50xx is a family of low-noise, low-drift, and very-high precision voltage references. These references are capable of both sinking and sourcing current and have excellent line and load regulation. Excellent temperature drift (3 ppm/°C) and high accuracy (0.05%) are achieved using proprietary design techniques. These features, combined with very-low noise, make the REF50xx family ideal for use in high-precision data acquisition systems. Each reference voltage is available in both high grade (REF50xxIDGK and REF50xxID) and standard grade (REF50xxAIDGK and REF50xxAID). The reference voltages are offered in 8-pin VSSOP and SOIC packages and are specified from –40°C to 125°C.

System Overview

8

2.3 System Design Theory

The system consists of a summing stage, active filter, ADC driver, charge kickback filter, and a SAR ADC. Two such stages are used in this TI Design, one for I and other for Q voltage output signal, which demonstrates simultaneous sampling of I and Q signals received from receive AFEs. The I and Q voltage outputs from different receive AFEs are summed and filtered before digitizing. The TIDA-01351 design demonstrates the summing of I and Q signals from eight receive AFEs. The ADC used in this TI Design is a 1-MSPS, 20-bit fully-differential SAR ADC. The SAR ADC provides true raw data with low latency and good SNR. For even higher SNR, an external digital filter can be used. The TIDA-01351 filter design is designed to have a completely flat passband for the audio band ranging from 54 Hz to 20 kHz. This TI Design also has a complete low-noise power supply solution.

2.3.1 Summing Stage, Active Filter, ADC Driver, and Charge Kickback Filter

Figure 3 shows the summing stage, active filter, gain stage, ADC driver, charge kickback filter, and ADC. The same circuit is replicated for both I and Q channels.

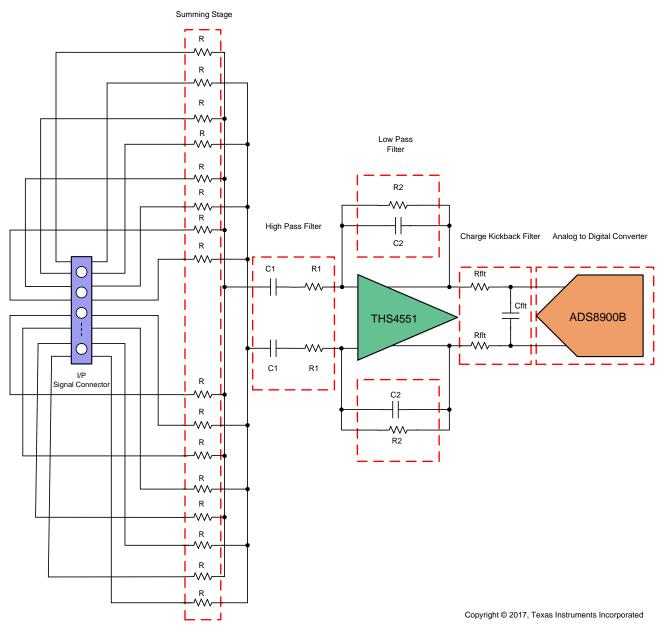
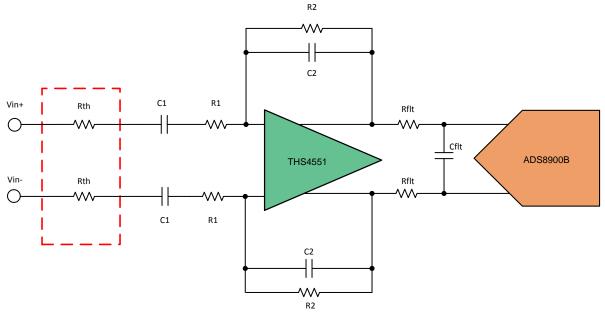



Figure 3. Summing Stage, Active Filter, ADC Driver, and Charge Kickback Filter Circuit

2.3.1.1 Summing Circuit and Gain Stage

Summing circuit is designed to sum all the I and Q voltage outputs from eight receive AFEs of ultrasound system. Each input signal is differential, and the same circuit is used for both I and Q signals. Assuming the same input is coming from the receive AFEs, the Thevenin equivalent of all summing resistor R (1 k Ω ; see Figure 3) is Rth 120 Ω (see Figure 4). This Rth (120 Ω), R1 (887 Ω), and R2 (10 k Ω) forms a gain of 10 [R2 / (Rth + R1)]. In some applications if the input signal level is low, such a high gain is required.

Copyright © 2017, Texas Instruments Incorporated

Figure 4. Thevenin Equivalent of Summing Stage

2.3.1.2 Input High-Pass Band Limiting Filter

In reference to Figure 3, the high-pass filter, R1, and C1 are calculated for a 54-Hz, –3-dB cutoff frequency.

For RC filter cutoff frequency, use Equation 1.

1

$$f_{-3dB_RC_CUTOFF} = \frac{1}{2\pi \times R1 \times C1}$$
(1)

Where:

• R1 = 887 Ω

$$f_{-3dB_{-}RC_{-}CUTOFF} = \frac{1}{2\pi \times R1 \times C1} = \frac{1}{2 \times 3.14 \times 887 \times 3.3 \times 10^{-6}} = 54 \ Hz$$

High-Resolution, High-SNR True Raw Data Conversion Reference Design for TIDUCD9B-December 2016-Revised October 2017 Ultrasound CW Doppler Submit Documentation Feedback

System Overview

2.3.1.3 Input Low-Pass Band Limiting Filter

In reference to Figure 3, the low-pass filter, R2, and C2 are calculated for 285 kHz, -3-dB cutoff frequency.

For RC filter cutoff frequency, use Equation 2.

1

$$f_{-3dB_RC_CUTOFF} = \frac{1}{2\pi \times R2 \times C2}$$

Where:

- $R2 = 10 k\Omega$
- $C2 = 56 \, pF$

$$f_{-3dB_{-}RC_{-}CUTOFF} = \frac{1}{2 \times 3.14 \times 10 \times 10^{3} \times 56 \times 10^{-12}} = 285 \ kHz$$

2.3.1.4 Input Driver Circuit

2.3.1.4.1 Input Buffer Amplifier

The input driver circuit for a high-precision ADC consists of two main parts: a driving amplifier and a flywheel RC filter. The amplifier is used for signal conditioning of the input signal. The driving amplifier's low output impedance provides a buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate the sampling charge injection from the switched capacitor input stage of the ADC and functions as a charge kickback filter to band-limit the wideband noise.

The input op amp must support following key specifications:

- 1. RRIO
- 2. Low power, low noise
- 3. High, small-signal bandwidth with low distortion at high frequencies

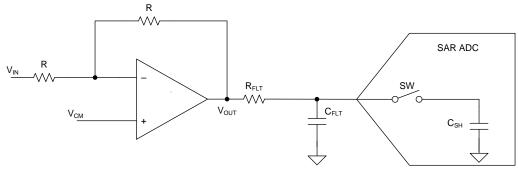
The THS4551 is designed to drive precision (16-, 18- and 20-bit) SAR ADCs at sample rates up to 1 MSPS. The combination of low-output impedance (10 Ω at 10 kHZ to 1 MHz). low THD, low noise (3 nV/\Hz), and fast settling time (18-bit settling time: 4-V step, < 500 ns) make the THS4551 the ideal choice for driving the SAR ADC inputs. The THS4551 is a fully differential amplifier; hence, only one op amp is required to drive an ADC. The device also has independent control over output common mode. THS4551 provides a very good noise figure of 3 nV/√Hz, with single-ended op amps the noise figure will be 1.414 times the value specified for the op amp. In this TI Design, two THS4551 devices can be replaced with a single dual FDA THS4552. See the THS4552 datasheet[4] for more details.

2.3.1.4.1.1 Settling Time

10

For DC signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow accurate settling of the signal at the inputs of the ADC during the small acquisition time window. This condition is critical to maintain the overall linearity performance of the ADC. Typically, the amplifier datasheets specify the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired 20-bit accuracy. Therefore, always verify the settling behavior of the input driver by TINA-TI[™] SPICE-based simulations before selecting the amplifier.

In Figure 5, C_{FLT} is connected as differential capacitor across the input of the ADC. This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly charge the internal sample and-hold capacitors during the acquisition process. Generally, the value of this capacitor must be at least 20 times the specified value of the ADC sampling capacitance. For the ADS8900B, the input sampling capacitance is equal to 60 pF; therefore, it is recommended to keep greater than 1200 pF. The capacitor must be a COG- or NPO-type because these capacitor types have a high-Q, low-temperature coefficient, low-voltage coefficient, and stable electrical characteristics under varying frequency, and time. Besides reducing the sampling charge injection, the RC filter helps to band-limit the noise fed into the input of the ADC. See the Precision Analog Applications Seminar^[2] for details on driving the SAR ADC.


(2)

Texas STRUMENTS

(3)

Figure 5 shows the input circuit of a typical SAR ADC. During the acquisition phase, the SW switch closes and connects the sampling capacitor (C_{SH}) to the input driver circuit. This action introduces a transient on the input pins of the SAR ADC. An ideal amplifier with 0 Ω of output impedance and infinite current drive can settle this transient in zero time. For a real amplifier with non-zero output impedance and finite drive strength, this switched capacitor load may create stability issues.

Copyright © 2017, Texas Instruments Incorporated

Figure 5. Input Sample and Hold Circuit for Typical SAR ADC

The RC charge kickback filter helps address these issues. The capacitor C_{FLT} helps reduce the sampling charge-kickback at the ADC input and provides a charge bucket to quickly charge the input capacitor C_{SH} during the sampling process.

When SW closes, the worst-case voltage difference between the sampling capacitor (C_{SH}) and the filter capacitor (C_{FLT}) is the full-scale input range supported by the SAR ADC (that is, V_{REF}). The charge required for the ADC sampling capacitor is given by Equation 3.

$$Q_{SH} = C_{SH} \times Vref$$

As a general rule, the value of the capacitor C_{FLT} must be selected such that it provides this charge without dropping its voltage by more than 5% (see Equation 4).

$$Q_{FLT} = C_{FLT} \times \Delta V_{FLT} \le C_{FLT} \times (0.05 \times V_{REF})$$
⁽⁴⁾

By the principle of charge conservation, the charge required by the sampling capacitor must be equal to the charge provided by the filter capacitor. Using this principle, derive Equation 5, Equation 6, and Equation 7.

$$Q_{SH} = Q_{FLT}$$

$$\rightarrow C_{SH} \times V_{REF} \le C_{FLT} \times (0.05 \times V_{REF})$$

$$\rightarrow C_{FLT} \ge 20 \times C_{SH}$$
(5)
(6)
(7)

NOTE: Driving capacitive loads can degrade the phase margin of the input amplifiers, thus, making the amplifier marginally unstable. To avoid amplifier stability issues, series isolation resistors (R_{FLT}) are used at the output of the amplifiers. A higher value of R_{FLT} is helpful from the amplifier stability perspective, but adds distortion as a result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal frequency, and input signal amplitude. Therefore, the selection of R_{FLT} requires balancing the stability and distortion of the design.

2.3.1.4.1.2 RC Filter Passive Components Selection

The critical passive components are resistor (R_{FLT}) and capacitor (C_{FLT}) for RC filter. The resistor tolerance must be less than 1% because use of differential capacitor at input balances the effect due to any resistor mismatch. The type of capacitor should be COG (NPO) because this capacitor has high-Q and low-temperature coefficient and stable electrical characteristics over voltage, frequency, and time variations.

2.3.1.4.1.3 To Select C_{FLT}

The input capacitance for the ADS8900B is 60 pF. The filter capacitor C_{FLT} should be 20 times greater than the sampling capacitor of ADC (Equation 7).

$$C_{FLT} \ge 20 \times C_{SH} = 20 \times 60 \ pF = 1.2 \ nF$$

2.3.1.4.1.4 To Select R_{FLT}

Minimum value of R_{FLT} can be derived as Equation 9.

$$R_{FLT} \ge \frac{R_0}{9} \tag{9}$$

Considering the effect of RC filter on op amp stability using A_{OL} response, the output resistance of THS4551 is $R_o = 10 \Omega$ and substituted in .

$$R_{FLT} \ge \frac{R_0}{9} = \frac{10}{9} = 1.1 \ \Omega$$

So, the value of R_{FLT} can be chosen greater than 1.11 Ω .

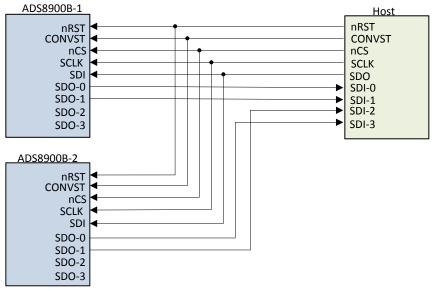
1

The R_{FLT} and C_{FLT} are calculated for 15-MHz, –3-dB cutoff frequency with R_{FLT} and C_{FLT} value consideration. For the RC filter cutoff frequency, see Equation 10.

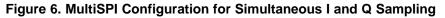
$$f_{-3dB_RC_CUTOFF} = \frac{1}{2\pi \times C_{FLT} \times R_{FLT}}$$
(10)

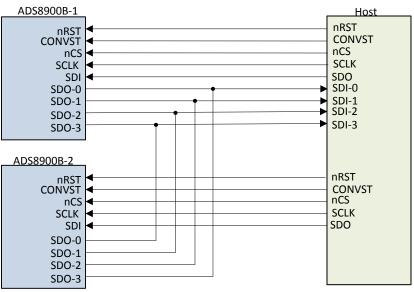
Where:

$$R_{FLT} = \frac{1}{2 \times \pi \times C_{FLT} \times f_{-3dB_{-}RC_{-}CUTOFF}}$$
(11)
$$R_{FLT} = \frac{1}{2 \times 3.14 \times 2 \times 10^{-9} \times 15 \times 10^{6}} = 5.1 \,\Omega$$


www.ti.com

(8)


2.3.2 Analog-to-Digital Conversion


The ADS8900B is a fully-differential, 20-bit, 1-MSPS SAR ADC with integrated reference buffer, integrated LDO, and multiSPI digital interface. The SAR ADC provides true raw data with low latency and good SNR. For even higher SNR, an external digital filter can be used.

ADC SPI (multiSPI): The ADS8900B has integrated multiSPI that is backward compatible with the traditional SPI and configurable SDO lines (one, two, three, and four). The configurable feature simplifies board layout, timing and firmware, and achieves high throughput at lower clock speeds, thus, allowing easy interface with embedded MCUs, DSPs, and FPGAs. Figure 6 shows the logical connection for simultaneous I and Q sampling. Figure 7 shows the configuration for independent I or Q channel sampling. Detailed information on multiSPI can be found in ADS8900B datasheets[5].

Copyright © 2016, Texas Instruments Incorporated

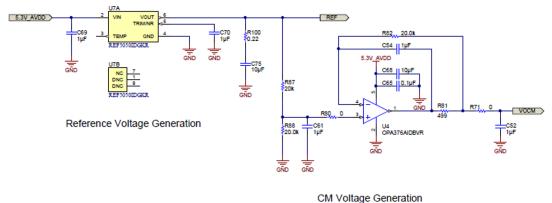

Copyright © 2017, Texas Instruments Incorporated

Figure 7. MultiSPI Configuration for Independent I or Q Channel Sampling

2.3.3 **Reference Voltage Generation and CM Voltage Generation**

The onboard 5-V reference REF5050 (ultra-low noise, low drift, and high precision) generates both ADC common-mode voltage and ADC reference voltage. To exercise the complete dynamic range of the ADS8900B, the common-mode voltage at the ADS8900B inputs is established at a value of 2.5 V (5 V / 2) by using the VCOM pins of the THS4551 amplifier's onboard reference REF5050. The reference buffer can be realized using a single amplifier having high bandwidth, low open-loop output impedance, low offset, and low drift specifications, as shown in Figure 8. The output broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160 Hz for CM voltage generation.

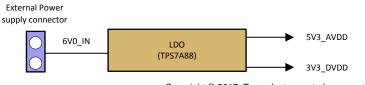


Figure 8. Reference Voltage Generation and CM Voltage Generation

2.3.4 **Power Supply**

14

The TPS7A88 is selected is to convert 6-V input to 5.3 V and 3.3 V. With The TPS7A88's flexibility of having two independent LDOs, it is possible to generate a voltage output of 5.3 V for the analog section and 3.3 V for the digital section of the ADC. The TPS7A88 has 1-A, low noise (3.8 µV_{RMS}), and wideband PSSR capability, which makes it well suited for this TI Design.

Copyright © 2017, Texas Instruments Incorporated

The EEPROM on the ADS8900BEVM uses a 3.3-V power supply generated directly by the precision host interface (PHI). The ADC and analog input drive circuits are powered by the TPS7A88 onboard, which is a low-noise linear regulator that uses the 6-V input to generate a cleaner 5.3-V and 3.3-V output. The 3.3 V is supplied to the digital section of the ADC. The power supply for each active component on board is bypassed with a ceramic capacitor placed close to that component.

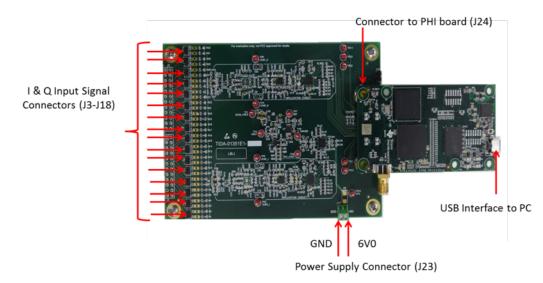
To get better noise rejection, ferrite beads are used at the output of both 5V3 and 3V3 power supplies.

Figure 9. The Power Tree

2.3.5 Host Interface

PHI is TI's SAR ADC evaluation platform, which supports the entire TI SAR ADC family. By using PHI, the TIDA-01351 easily communicates with the host PC using a USB interface. PHI supports the ADS8900B multiSPI and onboard configuration I²C EEPROM interface. PHI GUI software can be used to evaluate both AC and DC parameter of the ADS8900B. For more information on PHI, refer to the ADS8900BEVM-PDK quick start guide[6]. The TIDA-01351 board along with the PHI controller board enables the accompanying computer software to communicate with the ADC over USB for data capture and analysis. The PHI board primarily serves three functions:

- Provides a communication interface from the TIDA-01351 board to the computer through a USB port
- Provides the digital input and output signals necessary to communicate with the ADS8900B
- Supplies power to all EEPROM on TIDA-01351 board


The TIDA-01351 board interfaces with the PHI that, in turn, communicates with the computer over USB. There are two devices on board with which the PHI communicates: the ADS8900B ADC (over SPI or multiSPI) and the EEPROM (over I²C). Once the hardware is initialized, the EEPROM is no longer used.

3 Hardware, Software, Testing Requirements, and Test Results

Required Hardware and Software 3.1

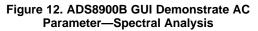
3.1.1 Hardware

Figure 10. TIDA-01351 PCB Connector Configuration

- Power supply connector (J23): This pin is used to connect the input power supply. Set power supply to 6 V with 1-A current limit.
- Input signal (J3-J18): Eight differential input signals are fed to the board using the connectors from J3 to J18. These signals will be summed, filtered, and amplified before digitizing.
- PHI board interface connector (J24): The PHI interface connector uses the TIDA-01351 to communicate with the host through USB interface. By using PHI, the TIDA-01351 easily communicates with the host PC using a USB interface. PHI supports the ADS8900B multiSPI and onboard configuration I²C EEPROM interface.
- Programming interface: The PHI interface connector uses the TIDA-01351 to communicate with the host through USB interface. By using PHI, the TIDA-01351 easily communicates with the host PC using a USB interface. PHI supports the ADS8900B multiSPI and onboard configuration I²C EEPROM interface. See Section 2.3.5 for more details.

Hardware, Software, Testing Requirements, and Test Results

www.ti.com


3.1.2 Software

3.1.2.1 ADS8900BGUI Panel

The ADS8900B GUI software, which is based on the LabVIEW[™] platform, validates the reference design. Figure 11 and Figure 12 show the available test options in ADS8900B GUI.

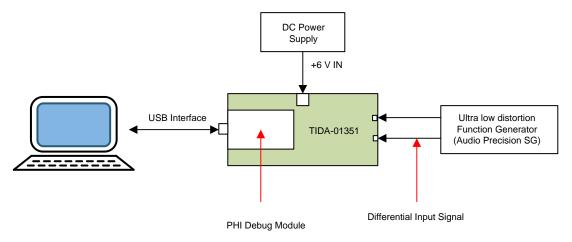
ADS8900 EVM File Debug Capture Tools He			ADS8900 EVM	Hele	
	7	EVM Connected : ADS8900EVM Connect to Hardware	The beauty captore roots i	unh.	EVIA Connected : ADS8900EVIA Connect to Hardware
Pages	Time Domain Display	Y Scale It Auto mode -0.003	Pages Register Map Config Time Domain Display	Spectral Analysis	Mark Harmonics Obsplay DC HIE M FFT
Deco Reat Matriace Configuration SCI Mode SPI 00 • SPI 00 • S		4.500 9 3 	Device Reset		
Protocol Selected SPL,90,0,0 SCLK Frequency/H2) Target Achievable 400 0 40000 Sampling Restriction 1.00M 0 930.23X Update Mode Immediate v Configure	TARNE TEREOR TEREOR TEREOR TEREOR TEREOR Banyess 201744 C. Custon Vetto 5	12000 12000 12000 12008	Protocol Selected 979,09,0 SCLET Propency(H) Tarpot Activeshin 4010 @ 40,000 Sampling Relat(spa) Tarpot Activeshin 1,000 @ (190,020) Update Mode Immediate Immediate Costgare	Samples 202344 a Castur Not Presenters Deco F1 PQ Flamoncy Window 2022X 9 B 71mm84ami a	Deput Praemicy/50 Style (sever(87)) Hamstein (80) 96(8) THC (68) Style (sever(87)) Hamstein (80) 91273 11578 4.552120 H 10.00 115 115.75 14.629 H 10.155 115 10.804 H 4.629 H 10.155 115 10.804 H H 10.154 H 10.115 1009950 111.155 298451 H 11.154 H 11.155 H 11.155
le .	W	sion 1.4.0 HW CONVECTED			Version:14.0 HW CONNECTED

Figure 11. ADS8900B GUI Demonstrate AC Parameter—Time Domain Display

The ADS8900B GUI can be used to validate the following system key specifications:

- 1. Linearity analysis
 - DNL
 - INL
 - Accuracy
- 2. Histogram analysis
 - Effective resolution
- 3. Spectral analysis
 - SNR
 - THD
 - SFDR
 - SINAD
 - ENOB

ADS8900B GUI software can be found at the ADS8900B product folder.

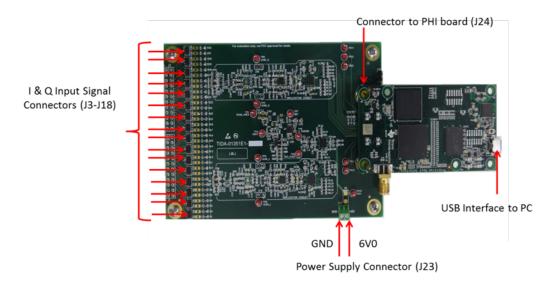

3.1.2.2 ADS8900B Software Start-up Instruction

- 1. Download the latest version of the ADS8900B EVM GUI Installer[7] from the Tools and Software folder of the ADS8900B, and run the GUI installer to install the EVM GUI software on the user's computer.
- 2. Accept the license agreements and follow the on-screen instructions to complete the installation.
- 3. See the ADS8900BEVM-PDK User's Guide[8] to install the software GUI.
- 4. See the ADS8900BEVM-PDK User's Guide[8] for GUI settings for ADC control and results capture.

3.2 Testing and Results

3.2.1 **Test Setup**

Figure 13 shows the TIDA-01351 test setup to validate the ultrasound CW voltage output signal conditioning unit. The test must evaluate the performance of a high-speed (1-MSPS) and high-resolution (20-bit) system that is compliant with testing requirements. The setup has an audio precision AP2700 waveform generator, which is capable of generating a sine pattern with a signal frequency up to 200 kHz. The device requires high precision with very-low ripple power supply to power entire system. This design requires 6-V DC at 43 mA with high precision and low-ripple power. The 6-V DC voltage is generated using Keithley triple output power supply (2230G). The power supply is capable of generating up to 30 V with 0.03% voltage accuracy and 0.1% current accuracy with simultaneous voltage and current indication. The data capturing is established using USB 2.0 interface.


Copyright © 2017, Texas Instruments Incorporated

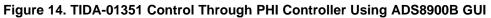

Figure 13. TIDA-01351 Test Setup

Figure 14 shows the connections used in testing the TIDA-01351

The ADS8900B GUI software must be installed in the host computer before testing.

- 1. Plug the PHI interface board to the connector J24.
- 2. Connect 6-V DC of power to the J23 connector. Ensure the positive terminal is connected to the positive input of J23 and the negative terminal is connected to the negative input of J23.
- 3. Connect the differential output of function generator to the differential input terminal (J3 connector only) of the TIDA-00732 board (for a 2-kHz input signal frequency, 500 mVp-p). The test was done by using only one differential input for both I and Q channel. Hence, the resistors, R (Figure 3), used on the board was 120 Ω, which is the Thevenin equivalent of eight 1-kΩ resistors used for the eight different channels. The identical circuit was used for both I and Q signals. Also, make sure both differential signals are balanced and configured, as shown in Table 4.

FUNCTION GENERATOR							
Pattern	Sine						
Voltage	500 mVp-p at 2 kHz, 20 kHz 10 uVp-p at 2 kHz						
Frequency	2 kHz, 20 kHz						
Source impedance	40 Ω						

To evaluate the performance of TIDA-01351, the following test cases were created:

1. Generate as sine wave of 500 mVp-p (adjust to cover full dynamic input range, 2 kHz and 20 kHz).

- 2. Run ADS8900B GUI.
- 3. Capture the spectral analysis results (SNR, THD, and ENOB) and time domain display results.

The test results are taken for 2-kHz and 20-kHz input frequency for a 500-mVp-p input voltage and a 2-kHz input frequency for 10 μ Vp-p.

3.2.2 **Test Data**

ADC Sensitivity Measured With 2-kHz Input Signal 3.2.2.1

Figure 15 shows the ADC's minimum detectable capability. The capability was captured with a 2-kHz input signal with a gain of 10. This test confirms that ADC can discern a 10-µVp-p signal.

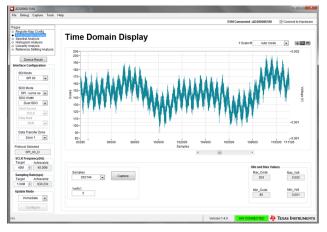


Figure 15. ADC Sensitivity Measured With 10-µVp-p Input Signal at 2 kHz

ADC AC Performance (SNR and ENOB) With Gain of 1 3.2.2.2

Figure 16 shows the ADC performance (SNR, THD, and ENOB) with a gain of 1 at 2 kHz. The SNR is 101.2 dB at a high speed of 1 MSPS, ENOB is 16.45.

ile Debug Capture Tools He	ale							
	op					EVILCon	vected : ADS8900EVM	Connect to Hard
apes								
Register Map Config Time Domain Display Spectral Analysis	Spectra	I Analys	sis					
Histogram Analysis Linearity Analysis Reference Settling Analysis	20-					Mark Harmonics	Display DC	王國 (B) (FT)
Device Reset	0-							
terface Configuration	-20-							
SDI Mode	-40 -							
SPI 00	-60-							
	() () () () () () () () () () () () () (
SDO Mode	8							
SPI - same as 💌	-100-							
SDO Width	ğ -120-	1						
Dual SDO 💌	-140- Ini. Leilma		and a second					
SCLK 💌								
Data Rate SDR 💌	-180 -	adding a laid	da nadat.	dela siel	addit to the second	elist dinous	materia	al an a' an
Data Rate		50000 100	000 15	000 2000	0 250000 Frequenci(H2)	30000 350	00 400000	465113
Data Rate SDR w Data Transfer Zone Zone 1 w	-200 -	50000 100	000 15	000 2000		30000 350	00 400000	465113
Data Rate SDR v Data Transfer Zone Zone 1 v	-200 -	50000 100	000 15	000 2000		30000 3500	00 400000	465113
Data Rate SDR w Data Transfer Zone Zone 1 w Protocol Selected SPI_00_D	-200 -	50000 100	000 15	000 2000	Frequency(Hz)		00 400000	465113
Data Rate SOR • Data Transfer Zone Zone 1 • Protocol Selected SPI_00_D SCLK frequency(Hz)	-200 -	50000 100	000 15	000 2000	Frequency(Ht) Output Parameters			
Data Rate SOR • Data Transfer Zone Zone 1 • Protocol Selected SPI_00_D SCLK frequency(Hz)	-200	50000 100	000 15	000 2000	Frequency(Hz) Output Parameters SNR(d8)	THD (dB)	Signal power(dBFS)	465113
Data Rate SOR w Zone 1 w Protocol Selected SPL_00_D SCLK Frequency(Hz) Tarpet Achievable 400 (b) 40.006	-200			000 2000	Frequency(Ht) Output Parameters			Harmonics(dBC) H1 0.00 + H2 -123.83
Data Rate SDR w Data Transfer Zone Zone 1 w Protocol Selected SPL_GO_D SCLK frequency(Hz) Tarpot Achievable	-200	50000 100		000 2000	Frequency(Hz) Output Parameters SNR(d8)	THD (dB)	Signal power(dBFS)	Harmonics(dBC) H1 0.00 + H2 -123.83 H3 -113.36
Data Rate SCR w Data Transfer Zone Zone 1 w Protocol Selected SPI_00_D SCLK frequency(Hz) Tarpet Achievable 400 00 40.0004 Sampling Rate(spo)	-200			000 2000c	Output Parameters SNR(dB) 101,273	THD (dB) -110.725	Signal power(dBFS)	Harmonics(dBC) H1 0.00 * H2 -123.83 H3 -113.16 H4 -138.53 E
Data Rate Data Transfer Zone Zone 1 •• Pretocol Selected SPL 00_D SCLK Frequency(N2) Target Achievable 400 0 400 004 Sampling Ratic(spc) Target Achievable 1.004 (§ 200.23)	200- 220- 0 Samples 202144			000 2000	Output Parameters SNR(dB) 101273 SFDR(dB) 113.155	THD (dB) -110.725 \$IN4AD(dB) 100.805	Signal power(dBF3) -0.552182 ENOB 16.4529	Harmonics(dBC) H1 0.00 / H2 -122.83 H3 -113.16 H4 -138.33 H5 -115.14 H5 -131.22
Data Rati SDR v Data Transfer Zone Zone 1 v Protocol Gélected SPL_60_D SCLK Frequency(ftz) Tarpot Achineable 400 (a) 400.004 Sampling Rate(sps) Tarpot Achineable	200- 220- 0 Samples 202144 Input Parameters	Caph Harmonics	we	0000 20000	Frequency(Hz) Output Parameters SNR(dB) 101273 SFDR(dB)	THD (dB) -110.725 SIN4D(dB)	Signal power(dBF3) -0.552182 ENOB 16.4529	Harmonic3(dBC) H3 0.00 A H2 -12283) H3 -11336 H4 -1383 H5 -11534 H6 -131.22 H7 -137.88
Dub Rate Dub Transfer Zone Zone 1 Protocol Selected Protocol Selected Serv. 00, D SCLK Frequence(fbt) Target Achievable 400 (00) 40, 0004 Sampling Rate(cps) Target Achievable 1, 000 (0) 303, 2004 Update Mode	Samples 2921- 0 292144 Input Parameters Device Fs (Hz)	Caph Harmonics	Window		Frequency(Hz) Output Parameters SNR(dB) 101273 SFDR(dB) 113.155 Fi Calculated (Hz)	THO (dB) -110.725 SINAD(dB) 100.805 Maximum Spur(dBC	Signal power(dBFS) -0.552182 ENOB 16.4529 Maximum Spur (Hz)	Harmonics(dBC) H1 0.00 / H2 -122.83 H3 -113.16 H4 -138.33 H5 -115.14 H5 -131.22
Data Rata SDR Data Transfer Zone Zone 1 Profecos delected SP-goo_D SCLK Frequency(Nc) Targett Administricable 4.00 9.00.03x Update Mode (mmediate	Samples 2921- 0 292144 Input Parameters Device Fs (Hz)	Caph Harmonics	Window		Frequency(Hz) Output Parameters SNR(dB) 101273 SFDR(dB) 113.155 Fi Calculated (Hz)	THO (dB) -110.725 SINAD(dB) 100.805 Maximum Spur(dBC	Signal power(dBFS) -0.552182 ENOB 16.4529 Maximum Spur (Hz)	Harmonic3(dBC) H3 0.00 A H2 -12283) H3 -11336 H4 -1383 H5 -11534 H6 -131.22 H7 -13788

Figure 16. ADC Performance at 2-kHz Input With Gain of 1

3.2.2.3 ADC AC Performance (SNR, THD, and ENOB) With Gain of 10

Figure 17 shows the ADC performance (SNR, THD, and ENOB) with a gain of 10 at 2 kHz. The SNR is 94.8 dB at a high speed of 1 MSPS, ENOB is 15.44, and THD is equal to -113.1 dB.

ADS8900 IQ Cap EVM	LATE AND										-	•
ile Debug Capture Tools	Help						0.4	100000	ed : ADS890	0.04	Connect to I	Unite
ages								a comec		OCAN S	Company	- ave
Register Map Config Time Domain Display Spectral Analysis Histogram Analysis Linearity Analysis	Spectral Analysis	5						Mark H	armonics	Display	∞ ⊞≣	2 10
Device Reset	20-									1	DUTB 🛛	
terface Configuration	-20-											
Device Selection												
DUT B	-40-											
SDI Mode	() -00 - 90 - 00 - 90 - 100 - 90 - 120 -											
SPI 00	\$ 100-											
	8 -120-1											
SDO Width		And the second										
Dual SDO 💌	-140-											
Data Transfer Zone Zone 1	-180- -200-	riscond Raddina	in Jour	1	hilder	- de de	a dh	d tarl	mphan	R più (Più	o fillingi	UV
Protocol Selected SPL 00_D	-220-0 50000 100000	150000	20000		250000 equency(Hz)	3000	00	350000	4000	00 4	50000	49
SCLK Frequency(Hz)												
Target Achievable	Samples	Result	SNR	THD 1	ional Power	SFDR	SINAD	ENOB	FiCalc	Max Spur	Max Spur	
50M 💿 50.00M	262144 Capture		(dB)	(dB)	(dBFS)	(dB)	(dB)	ENUD	(Hz)	(dBC)	(Hz)	
Sampling Rate(sps)		DUT B	94.809 -	13.118	-0.459	114,237	94,745	15.446	1998.901	-114.237	4001.617	
Target Achievable 1.00M 0 1.00M	Device Fs (Hz) 1.00M											
	1.00M											
Update Mode	# Harmonics Window	-										
Immediate 💌	9 🔄 7 Term B-Harris											
Configure												
our-pite												
							V CONNER					
9											XAS INSTR	

Figure 17. ADC AC Performance With a Gain of 10 at 2 kHz

Figure 18 shows the ADC performance (SNR, THD, and ENOB) with a gain of 10 at 20 kHz. The SNR is 92.1 dB at a high speed of 1 MSPS, ENOB is 15.01, and THD is equal to 110.12 dB.

								EVI	Connec	ed : ADS890	OEVM	Connect to F	-lardw:
ges Register Map Config													
Time Domain Display Doct W Analysis Histogram Analysis Linearity Analysis	-	Analysis						1	Mark H	armonics	Display	oc 🖽	10
Device Reset	20-												
Device Selection DUT B • SDI Mode SPI 00 •	-20 - -40 - 												
	90 -100 - 120 -	dia a la la	1 k										
SDO Width Dual SDO • Data Transfer Zone Zone 1 • Protocol Selected SPL00_D	-140- -160- -180- -200- -220-	11	150000	11 2000		250000 requency(Hz)	17 P) 3000	4 Vot(4) 00	350000	1949 to 4 10 1	111 ¹¹¹ 1	in <mark>da la la la la la</mark>	4995
Dual SDO Data Transfer Zone Zone 1 Protocol Selected SPL00_D SCLK Frequency(kt)	-140- -160- -180- -200- -220-	1	150000 Result				10 D	0 Vost(),†) 10	350000	1999 1991 (F) 4000	00 4	11-11-11-11 50000	4999
Dual SDO Duala Transfer Zone Zone 1 Protocol Selected SPL_00_D SCLK Frequency(Nt) Target Achievable 50M © 50.00M	-140- -160- -180- -200- -220- 0		Result	SNR (dB)	THD (dB)	signal Power (dBFS)	SFDR (dB)	SINAD (dB)	ENOB	Fi Calc (Hz)	Max Spur (dBC)	Max Spur (Hz)	4999 4999
Dual SDO Data Transfer Zone Zone 1 Protocol Selected SPL_00_D SCLK Frequency(kt) Target Achievable	-140- -160- -180- -200- -220- 0			SNR (dB)	THD	signal Power	SFDR	SINAD	ENOB	FiCalc	Max Spur	Max Spur	


Figure 18. ADC AC Performance With a Gain of 10 at 20 kHz

Hardware, Software, Testing Requirements, and Test Results

www.ti.com

Figure 19 shows the phase-shifted time domain display of I and Q signals. One channel is given an attenuation and phase shift compared to the other channel.

Figure 19. Time Domain Display of I and Q Signals (With Attenuation and Phase Shift Given on One Channel)

Figure 20 shows the time domain display of 20-kHz I and Q signals. Both signals are in phase and have the same gain.

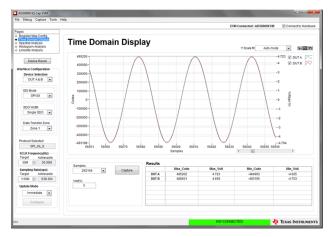


Figure 20. Time Domain Display of I and Q Signals at 20 kHz

Hardware, Software, Testing Requirements, and Test Results

Figure 21 shows the ADC performance (SNR, THD, and ENOB) with simultaneous sampling of I and Q signals (Gain = 10 at 20 kHz). The SNR is 89.4 dB and 89.9 dB at a high speed of 1 MSPS, ENOB is 14.5 and 14.6, and THD is equal to -104.5 dB and -107.1 dB.

Figure 21. ADC AC Performance With Gain of 10 at 20 kHz (Same Gain on Both Channels)

Figure 22 shows the time domain display of 2 kHz I and Q signals. Both signals are in phase and have the same gain.



Figure 22. Time Domain Display of I and Q signals at 2 kHz

Hardware, Software, Testing Requirements, and Test Results

www.ti.com

Figure 23 shows the ADC performance (SNR, THD, and ENOB) with simultaneous sampling of I and Q signals (Gain = 10 at 2 kHz). The SNR is 91.3 dB and 92.1 dB at a high speed of 1 MSPS, ENOB is 14.8 and 14.9, and THD is equal to -105.4 dB and 108.5 dB.

ile Debug Capture Tools H												Section in the
	lelp							0416-0		SESCOEVE	TR Out	nect to Hardwa
aces								EAM COR	sected : AU	203006.58	(K) Con	nect to Plarowa
Register Map Config Time Domain Display Epicient Analysis Histogram Analysis Linearity Analysis	Spectral /	Analysis						⊡ Ma	erk Harmon	ics 🖽 D	hisplay DC	HAD
Device Reset	20-											
terface Configuration	-20-										100 DA	DIS NV
Device Selection	1000											
DUTA&B	-40-											
SDI Mode	98 -80-											
SP100 .	-100-											
SDO Width	120-	L. albertar										
Single SD0 💌	-140-											
Data Transfer Zone Zone 1 • Protocol Selected SPI_00_S	-180 -200- -220- 0 20000	40000 6000 8000	100000	120000		150000 180 quencj(Hz)	000 200	00 22000	0 24000	o 520000	280000	300000 3191
Zone 1 Protocol Selected SPI_00_S SCLK Frequency(Hz)	-200-	40000 60000 80000					000 2000	00 22000	0 24000	0 260000	280000	300000 3191
Zone 1 Protocol Selected SPI_00_S	-200- -220- 0 20000		Result				000 2000 SFDR (dt)	00 22000 SINAD (dl)	0 24000 ENOB	Fi Calc (H)	280000 Max Spor	300000 3191 Max Spor (Hz)
Zone 1 Protocol Selected SPh_00_S SCLK Frequency(bit) Target Achivable 300 (S) 30 00M Sampling Rate(sps)	-200- -220- 0 20000			SNR	Fre	quency(Hz) Signal Power	SFDR	SINAD	ENOB	FiCalc	Max Spur	Max Spor
Zone 1 Protocol Selected SPL_00_S SCLK (requency04) Target Achievable 30M (3) 30.00M Sampling Rate(spo) Target Achievable	200- 220- 0 20000 Samples 202144 •		Result	SNR (dB) 91.305	Fre THD (dB)	guency(Hz) Signal Power (dBFS)	SFDR (dl)	SINAD (dli)	EN08 14.847	Fi Calc (Hz)	Max Spur (dDC)	Max Spur (Hz)
Zone 1 Protocol Selected SPh_00_S SCLK Frequency(bit) Target Achivable 300 (S) 30 00M Sampling Rate(sps)	-200- -220- 0 20000		Result	SNR (d8) 91.305 92.111	Fre THD (dB) -105.430	guency(Hz) Signal Power (dBFS) -0.563	SFDR (dB) 105.428	SINAD (dB) 91.141	EN08 14.847	Fi Calc (Hz) 1999.054	Max Spur (dBC) -105.428	Max Spur (Hz) 5999.625
Zone 1 Protocol Selected SPL.00_S SCLK FrequencyOt) Target Achievable 300 ③ 30.004 Sampling Rate(sps) Target Achievable	200- 220- 20000 Samples 202144 ¥ Device Fs (Hz) 638.30k	Capture	DUT A	SNR (d8) 91.305 92.111	Fre THD (dB) -105.430	guency(Hz) Signal Power (dBFS) -0.563	SFDR (dB) 105.428	SINAD (dB) 91.141	EN08 14.847	Fi Calc (Hz) 1999.054	Max Spur (dBC) -105.428	Max Spur (Hz) 5999.625
Zone 1 Protocol Selected SPI_00_5 SCLK Frequency(k) Date 30 Source 3000M Source 3000M Source 3000M Source 3000M Source 3000M Source 3000M Target Achievable	200- 220- 0 20000 Samples 262144 Device Fs (Hz)		DUT A	SNR (d8) 91.305 92.111 iics	Fre THD (dB) -105.430 -108.500	guency(Hz) Signal Power (d0FS) -0.551 -0.551 -0.551 -0.551 -0.551	SFDR (d8) 106.428 108.786	SINAD (dl) 91.141 92.012	ENOB 14.847 14.992	Fi Calc (Hz) 1999.064 1999.064 H7 -135.43	Max Spur (dBC) -105.428 -108.785 HB 3 -131.7	Max Spur (Hz) 5999.626 5999.626 5999.626 H9 6 -138.03
Zone 1 ■ Protocol Selected SP(00,5 SCLX (recencychi) Target Anievable 300M Sampling Bate/core) Target Target Anievable 100M 6.08.30x Update Mode —	200- 220- 20000 Samples 202144 • Device Fs (Hz) 638.30k # Hammoics	Capture	Result DUT A DUT B Harmon	SNR (d8) 91.305 92.111 hics H1 0.00	Fre (dB) -105.430 -108.500 H2 -112.5	guency(Hz) Signal Power (d0FS) -0.551 -0.551 -0.551 -0.551 -0.551	SFDR (dB) 105.428 108.785 H4 -128.58	SINAD (d0) 91.141 92.012 H5 -138.85	ENOB 14.847 14.992 M6 -135.38	Fi Calc (Hz) 1999.064 1999.064 H7 -135.43	Max Spur (dBC) -105.428 -108.785 HB 3 -131.7	Max Spur (Hz) 5999.626 5999.626 5999.626 H9 6 -138.03

Figure 23. ADC Performance With Gain of 10 at 2 kHz (Same Gain on Both Channels)

Figure 24 shows time domain display of I and Q signals at 20 kHz. One channel is given twice the gain compared to the other channel.

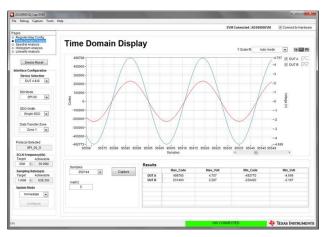


Figure 24. Time Domain Display of I and Q Signals at 20 kHz (One Channel is Given Half of the Gain Compared to the Other Channel)

Figure 25 shows time domain display of I and Q signals at 2 kHz. One channel is given half of the gain compared to the other channel.

Figure 25. Time Domain Display of I and Q Signals at 2 kHz (One Channel is Given Half of the Gain Compared to the Other Channel)

Figure 26 shows the ADC performance (SNR, THD, and ENOB) with simultaneous sampling of I and Q signals (gain = 10 at 2 kHz) using the 18-bit ADC ADS8910B. The SNR is 94.5 dB and 94.1 dB at a high speed of 1 MSPS, ENOB is 15.3 and 15.3, and THD is equal to -112 dB and -115 dB.

Figure 26. ADC AC Performance With a Gain of 10 at 2 kHz Using 18-Bit ADS8910B

Hardware, Software, Testing Requirements, and Test Results

www.ti.com

Figure 27 shows the ADC performance (SNR, THD, and ENOB) with simultaneous sampling of I and Q (gain = 10 at 20 kHz) using the 18-bit ADC ADS8910B. The SNR is 88.8 dB and 88.7 dB at a high speed of 1 MSPS, ENOB is 14.4 and 14.4, and THD is equal to –111 dB and –114 dB.

ADS8900 IQ Cap EVM												
File Debug Capture Tools H	elp											
								EVM Con	nected : Al	DS8900EVM	Conr	ect to Hardw
Pages > Register Map Config												
Time Domain Display Descinat Analysis Histogram Analysis Linearity Analysis	Spectral /	Analysis						EM.	ark Harmor	nics 🖂 🛙	isplay DC	生活的
Device Reset	0-											
Interface Configuration	-20-											in h o
Device Selection	-40-											
DUTA&8	-60-											
SDI Mode	8 -80-											
SPI 00 💌	00 -80- 00 -100- -120-											
SDO Width	-140-	السيبة وماس	عيناست	يبال	-			a di second		حرواصعك		
Single SDO	-160-1. 2			Anna								
Data Transfer Zone Zone 1	-180-	all at a little in a start of the	filledre.	disdu.	distant.	M. W. Marth	ad data	John	TUR	lina	ala ata	141211.4
Protocol Selected SPI_00_S	-220-0 20000	40000 60000 80000	100000	120000		160000 180 quency(Hz)	000 2000	00 22000	0 24000	0 260000	280000 3	100000 319
SCLK Frequency(Hz) Target Achievable			Results									
30M - 30.00M	Samples			SNR (dB)	THD (dB)	Signal Power (dBFS)	SFDR (dB)	SINAD (dB)	ENOB	Fi Calc (Hz)	Max Spur (dBC)	Max Spur (Hz)
Sampling Rate(sps)	262144	Capture	DUTA	88.856	-111.654	-0.532	97.427	00.033	14.454	20000.377	-97.427	20019.856
Target Achievable	Device Fs (Hz)		DUTB		-114 694	-0.516	97,300	88,759		20000.377	-97.300	20019.856
1.00M 🖶 638.30k	638.30k		Harmon									
Update Mode			marmon	H1	H2	на	84	H5	H6	H7	HS	H9
Immediate 💌	# Harmonics	Vindow 7 Term 8-Harris	DUTA	0.00	-114.42		-135.70	-125.83	-136.2			
	9 😳	/ Leum p-Harris	DUT B	0.00	-118.54		-141,14	-128.92	-137.9			
Configure				1								

Figure 27. ADC AC Performance With a Gain of 10 at 20 kHz Using 18-Bit ADS8910B

Figure 28 shows the ADC performance (SNR, THD, and ENOB) with simultaneous sampling of I and Q (gain = 10 at 2 kHz) using the 16-bit ADC ADS8920B. The SNR is 92.7 dB and 92.6 dB at a high speed of 1 MSPS, ENOB is 15.1 and 15.0, and THD is equal to -112 dB and -115 dB.

								EVM Con	nected : AE	S8900EVM	Con	nect to Hardw
pes												
Register Map Config Time Domain Display Special Analysis Histogram Analysis Linearity Analysis	Spectral	Analysis						EM.	irk Harmon	ics 🔟 O	lisplay DC	田湯間
Device Reset	20											ла 🖂
											😢 DI	ла 📈
erface Configuration	-20-											
Device Selection DUT A & B	-40-											
DUINGD	-60-											
SDI Mode	() 90 -80 - 95 -100 - 120 -											
SPI 00	\$ -100-											
00100	A -100-											
SDO With	₩ -120-1						To los				100	
Single SDO 💌	-140 -											
Single SDO 💌	-160-104/10/07/07			Manda	a	Adatab	Makat	ani ka	haithe	Alithia		ada.ni.
Single SDO	and the second	opheneder	ne population	hhah	(p. j. di pa	na waa ka	New Y	aqua;	and h	till the	pakel-tap	Henri e
L	-160-1000-00000000000000000000000000000	olikeisettike	un polici dalgas	ingah	ep-papa	ele per les	News	est the	, and h	1940	p.e.	the state
Data Transfer Zone	-160 - 100 - 101 - 101 - 100 -	operation	nepelation despense	hayahy	e-cepa A - cepa A - c	this which a	hano	an tra	on file	1940	PM P	inder and a
Data Transfer Zone Zone 1	-160-1000-00000000000000000000000000000	1000 SOLO		120000	140000	160000 180	000 2000	04 44 1	0 24020	1999 28000	28000	30000 31
Data Transfer Zone	-160 - 100 -	10000 soloo a	19.1990 1949(194) 10000 100000	120000		160000 180 quency(Hz)	000 2000	64 141 100 22000	0 240 ¹⁰ 0	1999-1997 250000	285050	300000 311
Data Transfer Zone Zone 1 • Protocol Selected SPI_00_S SCLK Frequency(Hz)	-160 - 100 -	1997 1991 1997 1997 40500 00500 0					000 2000	00 22000	0 24020	230000	280000	*** *********************************
Data Transfer Zone Zone 1 • Protocol Selected SPI_00_S SCLK Frequency(Hz) Tarpot Achievable	-160-100000000 -180- -200- -220- 0 20000	0000 (0000 a	ne parte de la companya de la compa		Fre	quency(Hz)						
Data Transfer Zone 1 Zone 1 SPh_000_S SCLK Frequency[Hz] Targot Achievable 300 6 30.00M	-560- -580- -200- -220- 0 20000						000 2000 SFDR (dB)	00 22000 SINAD (dB)	0 24020 ENOB	Fi Calc (Hz)	280000	300000 311 Max Spur (Hz)
Data Transfer Zone Zone 1 • Protocol Selected SPI_00_S SCLK Frequency(Hz) Targot Achievable 3000 🛞 30.00M Sampling Rate(spo)	-160-100000000 -180- -200- -220- 0 20000		Result	SNR (dB) 92.785	Fre THD (dB) -112.817	signal Power (dBFS) -0.510	SFDR (dB) 114.821	SINAD (dB) 92.743	ENOB 15.113	Fi Calc (Hz) 1999.054	Max Spur (dBC) -114.821	Max Spur (Hz) 4000.562
Data Transfer Zone Zone 1 Protocol Selected SPL,00,0 SCLK frequency(Hz) Targot Activate 304 © 30.00M Sempting Rate(ppo) Targot Activate	-560- -580- -200- -220- 0 20000		Result	SNR (dB) 92.785	Fre THD (dB)	Signal Power (dBFS)	SFDR (dB)	SINAD (dB)	ENOB	Fi Calc (Hz)	Max Spur (dBC)	Max Spor (Hz)
Data Transfer Zone Zone 1 ■ Protocol Selected SP-00_8 SCLK Frequency(tc) Taript Achievable 300 ⊗ 30000 Sampling Robet(spa) Taript Achievable 1.00M ⊕ 638.30k	-160-10114 9717970 -180- -200- -200- -200- -200- -200- -2000 -20000		Result	SNR (dB) 92.785 92.634	Fre THD (dB) -112.817	signal Power (dBFS) -0.510	SFDR (dB) 114.821	SINAD (dB) 92.743	ENOB 15.113	Fi Calc (Hz) 1999.054	Max Spur (dBC) -114.821	Max Spur (Hz) 4000.562
Data Transfer Zone Zone 1 Protocol Selected SPL,00,0 SCLK frequency(Hz) Targot Activate 304 © 30.00M Sempting Rate(ppo) Targot Activate	-160-1049-04777970 -180- -200- -220- -20- -200- -200-	Capture	Result DUT A DUT B	SNR (dB) 92.785 92.634	Fre THD (dB) -112.817	signal Power (dBFS) -0.510	SFDR (dB) 114.821	SINAD (dB) 92.743	ENOB 15.113	Fi Calc (Hz) 1999.054	Max Spur (dBC) -114.821	Max Spur (Hz) 4000.562
Duta Transfer Zone Zone 1 Protocol Selected SPL00, S SCLK Frequency(Hz) Target Achievable 300 00 Socol Sumpting Rate(spo) Target Achievable 1.00M 10 638.30k	-160-1040 000000 -160- -200- -	Capture	Result	s (dB) 92.785 92.634 hics H1 0.00	Fre (dB) -112.817 -115.243 H2 -114.8	Signal Power (dBFS) -0.510 -0.493 H3 2 -118.02	SFDR (dB) 114.821 116.503 H4 -127.00	SINAD (dB) 92.743 92.610 H5 -134.70	ENOB 15.113 15.091 H6 -137.40	Fi Calc (Hz) 1999.054 1999.054 H7 -136.19	Max Sper (dBC) -114.821 -116.503 H8 9 -132.4	Max Spur (Hz) 4000.562 2018.543 H9 6 -136.73
Data Transfer Zone Zone 1 Protocol Selected SPU,00,8 SCLK Frequency(kt) Target Activerates 3104 © 30.00M Sampling Reflection) Target Activerates (1.004 %) © 638.30k Update Mode	-160-10400 000000 -160- -20- -200- -	Capture	Result DUT A DUT B Harmon	s (dB) 92.785 92.634 hics H1	Fre (dB) -112.817 -115.243 H2	Signal Power (dBFS) -0.510 -0.493 H3 2 -118.02	SFDR (dB) 114.821 116.503 H4	SINAD (dB) 92.743 92.610 H5	ENOB 15.113 15.091 H6	Fi Calc (Hz) 1999.054 1999.054 H7 -136.19	Max Sper (dBC) -114.821 -116.503 H8 9 -132.4	Max Spur (Hz) 4000.562 2018.543 H9 6 -136.73
Data Transfer Zone Zone 1 * Yrotocol Selected SPL00_8 SCLK Frequeccylit2 Target Active2te Sampling Rate(spa) Sampling Rate(spa) Active2te Active2te Active2te Active2te Active2te Sampling Rate(spa) Job 2000 Sampling Rate(spa) Job 2000 Sampling Rate(spa) Job 2000 Job 2000 Jo	-160-1040 000000 -160- -200- -	Capture	Result	s (dB) 92.785 92.634 hics H1 0.00	Fre (dB) -112.817 -115.243 H2 -114.8	Signal Power (dBFS) -0.510 -0.493 H3 2 -118.02	SFDR (dB) 114.821 116.503 H4 -127.00	SINAD (dB) 92.743 92.610 H5 -134.70	ENOB 15.113 15.091 H6 -137.40	Fi Calc (Hz) 1999.054 1999.054 H7 -136.19	Max Sper (dBC) -114.821 -116.503 H8 9 -132.4	Max Spar (Hz) 4000.562 2018.543 H9 6 -136.7:
Data Transfer Zone Zone 1 Protocol Selected SPI_00_8 SCLK Frequency(tr) Target Activevate Save 6 Session Save 6 Session Save 6 Save 8 Save	-160-1040 000000 -160- -200- -	Capture	Result	s (dB) 92.785 92.634 hics H1 0.00	Fre (dB) -112.817 -115.243 H2 -114.8	Signal Power (dBFS) -0.510 -0.493 H3 2 -118.02	SFDR (dB) 114.821 116.503 H4 -127.00	SINAD (dB) 92.743 92.610 H5 -134.70	ENOB 15.113 15.091 H6 -137.40	Fi Calc (Hz) 1999.054 1999.054 H7 -136.19	Max Sper (dBC) -114.821 -116.503 H8 9 -132.4	Max Spar (Hz) 4000.562 2018.543 H9 6 -136.7:

Figure 28. ADC AC Performance With a Gain of 10 at 2 kHz Using 16-Bit ADS8920B

www.ti.com

Figure 29 shows the ADC performance (SNR, THD, and ENOB) with simultaneous sampling of I and Q (gain = 10 at 20 kHz) using the 16-bit ADC ADS8920B. The SNR is 88.4 dB and 88.2 dB at a high speed of 1 MSPS, ENOB is 14.3 and 14.3, and THD is equal to -111 dB and -114 dB.

								EVM Con	nected : A	DS8900EVM		Connect	to Hardw
ges													
Register Map Config Time Domain Display Spectral Analysis Histogram Analysis Linearity Analysis	Spectral	Analysis						EM	ark Harmo	nics 🖂	Display Di	c 8	
	20-										1000	DUTA	-
Device Reset	0-											DUTB	
terface Configuration	-20-												
Device Selection	-40 -												
DUTA&B	.60-												
SDI Mode	8 -80-												
SPI 00 💌	00 -00 - 90 -100 - 100 -												
Land	E -120-												
SDO Width		in the second	and the second	عبالاس	Chines.	- Incident	ale en contra		la de la constante	- Aurente		here	والبوب
Single SDO 💌	-140- -160- uni wite 18 au	al transmission before the two				assends in							
Data Transfer Zone	-180-	a state that a shall a	distant of the second	1997									
						1 11 11 1		Contraction of the second	and the second		11	1141	1.6
Zone 1				1111	- H - H	1 1 1 1		de las	1. Inc.	1.4.1.	11.1	- India	. da
Zone 1	-200-			10.1	р н с в	1 11 11 2	1.4	eks teaci	a de las s		h1.1	. Indi	. de
Protocol Selected		40000 60000 80000	100000	120000		160000 180	000 200	100 22000	0 24000	10 260000	28000	0 300	00 31
Protocol Selected SPI_00_S	-200-	40000 60000 80000	100000	120000		160000 180 squency(Hz)	000 200	100 22000	0 2400	10 260000	280000	0 300	00 31
Protocol Selected SPI_00_S SCLK Frequency(Hz)	-200-	40000 00000 00000					000 200	100 22000	0 2400	10 250000	28000	0 300	00 3
Protocol Selected SPI_00_S SCLK Frequency(Hz) Target Achievable	-200- -220- 0 20000	40000 00000 00000	100000 Results				000 200	100 22000 SINAD	0 24001 ENOB	10 260000 Fi Calc	28000		
Protocol Selected SPI_00_S SCLK Frequency(Hz) Target Achievable 30M (2) 30.00M	-200- -220- 0 20000				Fre	equency(Hz)						ur M	00 31 00 31 (H2)
Protocol Selected SPI_00_S SCLX Frequency(Rz) Target Achievable 30M (2) 30.00M Sampling Rate(sps)	-200- -220- 0 20000		Results	SNR (dB) 88.447	THD (dB) -111.936	Signal Power (dBFS) -0.532	SFDR (dB) 96.498	SINAD (dB) 88.427	EN08 14.397	Fi Calc (Hz) 20000.377	Max Spr (dBC) -96.491	ur M 8 20	ax Spu (Hz) 019.85
Protocol Selected SPI_00_S SCLK Frequency(Hz) Target Achievable 30M G 30.00M Sampling Rate(sps) Target Achievable	-200 - -220 - 0 20000 Samples 202144 • Device Fs (Hz)		Results	SNR (dB) 88.447	THD (dB)	Signal Power (dBFS)	SFDR (dB)	SINAD (dB)	EN08 14.397	Fi Calc (Hz)	Max Spr (dBC)	ur M 8 20	ax Spur
Protocol Selected SPI_00_S SCLK Frequency(kz) Target Achievable 30M (2) 30.00H Sampling Rate(sps) Target Achievable 1.00H (2) 638.30k	-200 -220 - 0 20000 Samples 202144 •		Results	SNR (dB) 88.447 88.297	THD (dB) -111.936	Signal Power (dBFS) -0.532	SFDR (dB) 96.498	SINAD (dB) 88.427	EN08 14.397	Fi Calc (Hz) 20000.377	Max Spr (dBC) -96.491	ur M 8 20	ax Spu (Hz) 019.85
Protocol Selected SPL_00_S SCLK Frequency(Hz) Target Achievable 30M S 30.00H Sampling Rate(sps) 1.00H S 638.30k Update Mode	-200- -220- 0 20000 Samples 202144 • Device Fa (Hz) 638.30k	Capture	Results DUT A DUT B	SNR (dB) 88.447 88.297	THD (dB) -111.936	Signal Power (dBFS) -0.532	SFDR (dB) 96.498	SINAD (dB) 88.427	EN08 14.397	Fi Calc (Hz) 20000.377	Max Spr (dBC) -95.491 -95.294	ur M 8 20	ax Spu (Hz) 019.85
Protocol Selected SPI_00_S SCLK Frequency(Hz) Target Achievable 30M G 30.00M Sampling Rate(sps) Target Achievable	-200 - -220 - 0 20000 Samples 202144 • Device Fs (Hz)		Results DUT A DUT B Harmon	SNR (dB) 88.447 88.297 ics H1 0.00	THD (dB) -111.936 -114.449 H2 -114.8	Signal Power (dBFS) -0.532 -0.515 H3 11 -115.50	SFDR (dB) 96.498 96.294 H4 -139.07	SINAD (dB) 88.427 88.287 H5 -130.22	ENOB 14.397 14.373 H6 -132.5	Fi Calc (Hz) 20000.377 20000.377 H7 3 -138.8	Max Spr (dBC) -95.491 -95.294 -95.294 -95.294 -95.294 -95.294	ur M 8 20 4 20 H8	ax Spur (Hz) 019.85/ 019.85/ H9 -131.0
Protocol Selected SPL.00_S SCLK Frequency(R2) Target Achievable Samphing Rate(sps) Target Achievable Samphing Rate(sps) Target Achievable Update Mode Immediate	200- -220- 0 20000 Samples 282144 Device Fis (H2) 638.30k # Harmonics	Capture	Results DUT A DUT B Harmon	SNR (dB) 88.447 88.297 ics H1	THD (4B) -111.936 -114.449 H2	Signal Power (dBFS) -0.532 -0.515 H3 11 -115.50	SFDR (dB) 96.498 96.294 H4	SINAD (dB) 88.427 88.287 H5	ENOB 14.397 14.373 H6	Fi Calc (Hz) 20000.377 20000.377 H7 3 -138.8	Max Spr (dBC) -95.491 -95.294 -95.294 -95.294 -95.294 -95.294	ur M 8 20 4 20 H8	ax Spu (Hz) 019.85 019.85 H9
Protocol Selected SPL_00_S SCLK Frequency(Hz) Target Achievable 30M S 30.00H Sampling Rate(sps) 1.00H S 638.30k Update Mode	200- -220- 0 20000 Samples 282144 Device Fis (H2) 638.30k # Harmonics	Capture	Results DUT A DUT B Harmon	SNR (dB) 88.447 88.297 ics H1 0.00	THD (dB) -111.936 -114.449 H2 -114.8	Signal Power (dBFS) -0.532 -0.515 H3 11 -115.50	SFDR (dB) 96.498 96.294 H4 -139.07	SINAD (dB) 88.427 88.287 H5 -130.22	ENOB 14.397 14.373 H6 -132.5	Fi Calc (Hz) 20000.377 20000.377 H7 3 -138.8	Max Spr (dBC) -95.491 -95.294 -95.294 -95.294 -95.294 -95.294	ur M 8 20 4 20 H8	ax Spu (Hz) 019.85 019.85 H9 -131.0
Protocol Selectors SPLcos, S SCLK Frequence(Rt) Target Achievable 30M ⊕ 30.00M Sampling Rate(sps) Target Achievable 10M ⊕ 33.30k Update Mode	200- -220- 0 20000 Samples 282144 Device Fis (H2) 638.30k # Harmonics	Capture	Results DUT A DUT B Harmon	SNR (dB) 88.447 88.297 ics H1 0.00	THD (dB) -111.936 -114.449 H2 -114.8	Signal Power (dBFS) -0.532 -0.515 H3 11 -115.50	SFDR (dB) 96.498 96.294 H4 -139.07	SINAD (dB) 88.427 88.287 H5 -130.22	ENOB 14.397 14.373 H6 -132.5	Fi Calc (Hz) 20000.377 20000.377 H7 3 -138.8	Max Spr (dBC) -95.491 -95.294 -95.294 -95.294 -95.294 -95.294	ur M 8 20 4 20 H8	ax Spu (Hz) 019.85 019.85 H9 -131.0

Figure 29. ADC AC Performance With a Gain of 10 at 20 kHz Using 16-Bit ADS8920B

Design Files

4 Design Files

4.1 Schematics

To download the schematics, see the design files at TIDA-01351.

4.2 Bill of Materials

To download the bill of materials (BOM), see the design files at TIDA-01351.

4.3 PCB Layout Recommendations

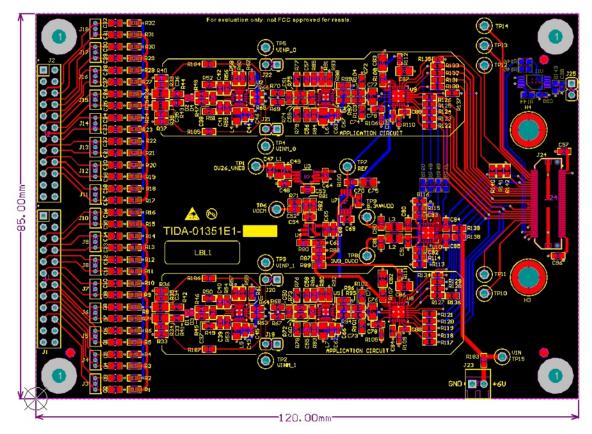


Figure 30. TIDA-01351 Layout Recommendations

www.ti.com

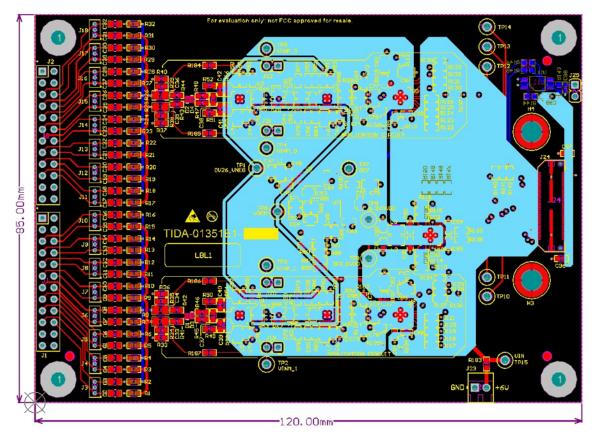


Figure 31. TIDA-01351 Power Supply Layout Recommendations

4.3.1 Layout Prints

To download the layer plots, see the design files at TIDA-01351.

4.4 Altium Project

To download the Altium project files, see the design files at TIDA-01351.

4.5 Gerber Files

To download the Gerber files, see the design files at TIDA-01351.

4.6 Assembly Drawings

To download the assembly drawings, see the design files at TIDA-01351.

Software Files

5 **Software Files**

To download the software files, see the design files at TIDA-01351.

6 **Related Documentation**

- 1. Texas Instruments, 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise, TIPD115 Design Guide (SLAU515)
- 2. Texas Instruments, Seminars View Precision Analog Applications Seminar, Seminar (SLYP166)
- 3. Texas Instruments, WEBENCH Design Center
- 4. Texas Instruments, THS4552 Dual-Channel, Low-Noise, Precision 150-MHz, Fully Differential Amplifier, THS4552 Datasheet (SBOS831)
- 5. Texas Instruments, ADS890xB 20-Bit, High-Speed SAR ADCs With Integrated Reference Buffer, Integrated LDO, and multiSPI Digital Interface, ADS8900B, ADS8902B, ADS890B Datasheet (SBAS728)
- 6. Texas Instruments, Quick Start Guide: ADS8900BEVM-PDK, Quick Start (SLYU041)
- 7. Texas Instruments, ADS8900B EVM GUI Installer, Software (SBAC156)
- 8. Texas Instruments, ADS8900BEVM-PDK User's Guide, User's Guide (SBAU269)

6.1 Trademarks

multiSPI, E2E, e-trim, TINA-TI are trademarks of Texas Instruments. LabVIEW is a trademark of National Instruments. All other trademarks are the property of their respective owners.

7 About the Authors

LENI SKARIAH is a systems engineer at Texas Instruments, where she is responsible for developing subsystem design solutions for the Medical. Healthcare and Fitness sector. Leni brings her experience in precision analog and mixed signal designs to this role. Leni earned her Bachelor of Technology in Electronics and Communication Engineering from the University of Kannur and her Master of Technology in Digital Electronics and Communication Systems from Visvesvaraya Technological University, Karnataka.

SANJAY PITHADIA is a systems engineer at Texas Instruments, where he is responsible for developing subsystem design solutions for the Medical, Healthcare and Fitness sector. Sanjay has been with TI since 2008 and has been involved in designing products related to energy, smart grid, industrial motor drives, and medical imaging. Sanjay brings his experience in analog design, mixed signal design, industrial interfaces, and power supplies to this role. Sanjay earned his Bachelor of Technology in Electronics Engineering at VJTI, Mumbai.

TEXAS INSTRUMENTS

www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from A Revision (June 2017) to B Revision Page
•	Added ADS8910B to Resources 1
•	Added ADS8920B to Resources 1
•	Changed "Designed Using 20-Bit, 1-MSPS SAR ADC (ADS8900B) With INL of 1 ppm and SNR of 104.5 dB" to "Designed Using ADS89x0B (20-/18-/16-Bit) With 1-ppm INL and SNR of 104.5-dB SNR" under <i>Features</i>
•	Added Table 2: AFEs Compatible With TIDA-01351 4
•	Added Table 3: Comparison of TI SAR ADC Performance versus Resolution 4
•	Added Figure 26: ADC AC Performance With a Gain of 10 at 2 kHz Using 18-Bit ADS8910B
•	Added Figure 27: ADC AC Performance With a Gain of 10 at 20 kHz Using 18-Bit ADS8910B
•	Added Figure 28: ADC AC Performance With a Gain of 10 at 2 kHz Using 16-Bit ADS8920B
•	Added Figure 29: ADC AC Performance With a Gain of 10 at 20 kHz Using 16-Bit ADS8920B

Changes from Original (December 2016) to A Revision

Page

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated