# TI Designs: TIDA-080000 Mobile 1080p Display Reference Design Using DLP® 0.33 inch Micromirror Array

# TEXAS INSTRUMENTS

# Description

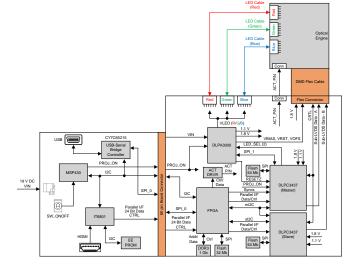
This reference design provides developers with the ability to quickly implement a small form factor 1080p display subsystem. It features the DLP® Pico 0.33-inch TRP 1080p display chipset and is implemented in the DLP LightCrafter<sup>™</sup> Display 3310 evaluation module (EVM). It can be used in a variety of applications including mobile smart TVs, mobile projectors, digital signage, and many more. The design incorporates the DLP3310 1080p digital micromirror device (DMD), DLPC3437 display controllers, and DLPA3000 PMIC and LED driver.

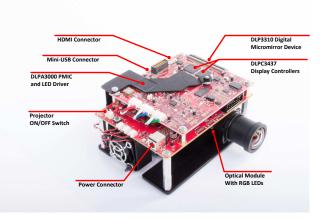
### Resources

TIDA-080000 DLP3310 (DMD) DLPC3437 DLPA3000

> TI E2E<sup>m</sup> Community

Design Folder Product Folder Product Folder Product Folder


ASK Our E2E™ Experts


# Features

- 1920 × 1080p Resolution
- Small Overall Form Factor (5.5 in × 5.2 in × 2.6 in)
- Brightness 300 RGB Lumens (6-A R, G, and B LEDs)
- Compact PCB Layout Supporting 1080p (DLP3310) Optical Engine and Including HDMI and USB Connectivity
- Used in DLPDLCR3310EVM Layout
- 19-V Input and LED Current Drive Up to 6A
- PC Software GUI to Customize Display Configuration

# Applications

- Pico Projectors
- Mobile Projectors
- Mobile Smart TVs
- Smart Speakers with Display
- Gaming Projectors
- Home/Kitchen Displays
- Digital Signage Displays
  - Retail/Restaurant Displays
  - Immersive Elevator Displays





44

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.

1



#### 1 System Description

The 0.33-inch TRP 1080p display chipset enables the use of DLP technology in a variety of applications that require full HD resolution, low power, and small form factors. This reference design provides developers with the ability to quickly implement full HD display subsystems at higher brightness levels using the DLPA3000 PMIC and LED driver.

### 1.1 Applications for Mobile Smart TVs and Mobile Projectors

Mobile projectors can be used as a portable big-screen display for any device with video output, such as laptops, smartphones, tablets, and gaming consoles. These projectors can offer users an easy and lightweight means to project large and colorful videos in a variety of settings.

Mobile smart TV products combine three exciting technologies: Wireless connectivity, video content streaming, and pico projection. A mobile smart TV can wirelessly stream internet content and project it onto virtually any surface. To learn more about mobile smart TVs and mobile projectors, go to the DLP Pico Applications Portal.

| DLP FEATURE                 | DESIGN BENEFIT                                                                                                                                                                                                                        |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High optical efficiency     | DMDs incorporate highly reflective and polarization agnostic aluminum micromirrors, which enable bright and power efficient display products.                                                                                         |
| Small size, high resolution | With micromirrors as small as 5.4 $\mu m,$ DLP Pico chips deliver resolutions up to 1080p while enabling very compact projection designs.                                                                                             |
| High contrast               | Optical modules designed with DLP Pico chips can achieve full on/off contrast ratios of over 1000:1, depending on system design. Higher contrast translates to more vivid colors and darker blacks.                                   |
| Mature ecosystem            | A mature global ecosystem of established optical module manufacturers eases the design process and allows product developers to go to market faster by using an existing, off-the-shelf optical engine that is already in production. |

#### Table 1. DLP Features and Design Benefits for Mobile Smart TVs and Mobile Projectors

#### 1.2 Industrial Applications

2

DLP Pico display chipsets can be incorporated into a variety of industrial applications.

Digital signage is a category of displays designed for commercial and industrial spaces, including retailers, stadiums, casinos, hotels, restaurants, and airports. Digital signage delivers up-to-date information such as advertising, menus, event status, and maps in locations where people gather. The low power and compact size of DLP Pico chipsets enable effective digital signage solutions that can be tucked away for free-form, on-demand displays on virtually any surface.

For more information, read Using TI DLP® technology to make digital signage more effective.

Integrating DLP Pico technology into appliances can enhance their effectiveness. Adding smart displays to appliances can offer many benefits such as interactive, adaptive, and reconfigurable interfaces that can replace buttons, tablets, LCD panels, and mechanical knobs in virtually every room of the house.

To learn more, read *TI DLP*® *Pico™* technology for smart home applications.



#### 2 System Overview

# 2.1 Block Diagram

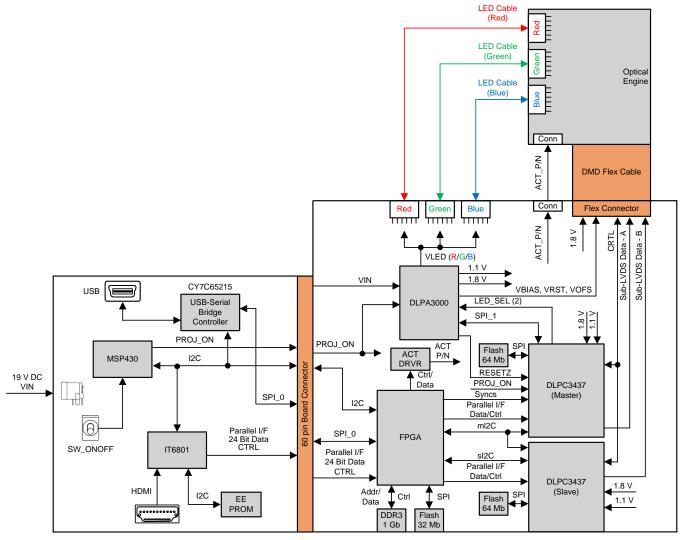



Figure 1. DLP LightCrafter Display EVM Block Diagram

# 2.2 Design Considerations (If Applicable)

See the following documents for considerations in DLP system design:

- TI DLP® Pico<sup>™</sup> System Design: Optical Module Specifications
- TI DLP® System Design: Brightness Requirements and Tradeoffs

# 2.3 Highlighted Products

This chipset reference design guide draws upon figures and content from several other published documents related to the 0.33-in 1080p DLP chipset. For a list of these documents, see Section 6.



# 3 Hardware, Software, Testing Requirements, and Test Results

#### 3.1 Required Hardware and Software

#### 3.1.1 Hardware

Assuming default conditions as shipped:

- Provide power to the DLP LightCrafter Display 3310 EVM by applying an external DC power supply (19-V DC, 3.42 A) to the J9 connector. External power supply requirements:
  - Nominal output voltage: 19-V DC
  - Minimum output current: 2.5 A; maximum output current: 3.42 A
  - Efficiency level: VI
  - **NOTE:** TI recommends using an external power supply that complies with applicable regional safety standards such as UL, CSA, VDE, CCC, and PSE.
  - **NOTE:** The system is designed to operate also with an external 19-V DC power supply. The P5V\_VIN (D1) and P3P3V\_SB (D7) LEDs on the system board will turn on to indicate that 5-V power and 3.3-V power are applied.
- 2. Move the SW2 switch to the ON position to turn on the DLP LightCrafter Display 3310 EVM. When the DLP LightCrafter Display 3310 EVM is turned on, the PROJ\_ON LED (D5) will turn on.
- 3. After the DLP LightCrafter Display 3310 EVM is turned on, the projector will default to displaying a DLP LightCrafter Display splash image.
- 4. The focus of the image can be adjusted manually on the optical engine.



#### Figure 2. Optical Engine With Focus Adjustment

- Connect the USB to the DLP LightCrafter Display 3310 EVM and open the latest GUI on the computer. If needed, connect an HDMI source to the EVM and communicate to the EVM through the GUI software.
- 6. When turning off the projector, turn off the SW2 switch prior to removing the power cable.
  - **NOTE:** To avoid potential damage to the DMD, it is recommended to turn off the projector with the SW2 switch before disconnecting the power.



There are fourteen indicator LEDs on the DLP LightCrafter Display 3310 EVM (Display and System boards), and they are defined in Table 2:

| Board   | LED Reference | Signal<br>Indication | Description                                                                                                                                         |
|---------|---------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|         | D1            | P5V_VIN              | Regulated 5-V power on.                                                                                                                             |
|         | D3            | MSP430_REQ           | ON when Cypress CY65215 requests the MSP430 to give Cypress master control of the $\rm l^2C$ bus.                                                   |
|         | D4            | MSP430_ACK           | ON when Cypress CY65215 is I <sup>2</sup> C master. OFF when MSP430 is I <sup>2</sup> C master.                                                     |
|         | D5            | PROJ_ON              | ON when Projector is turned on via SW_ONOFF.                                                                                                        |
| System  | D6            | RESETZ               | OFF when Projector is turned on via SW_ONOFF.                                                                                                       |
| -       | D7            | P3P3V_SB             | Regulated 3.3-V power on.                                                                                                                           |
|         | D8            | MSP_LED2_ON<br>Z     | ON when HDMI cable is plugged in and external video is detected. OFF when external video is not detected.                                           |
|         | D9            | GPIO_1               | Blinking when PC is communicating to flash over SPI.                                                                                                |
| D10     |               | GPIO_0               | Blinking when PC is communicating to DLPC3437 over I <sup>2</sup> C.                                                                                |
|         | D1            | P12V                 | Regulated 12-V power on.                                                                                                                            |
|         | D2            | DONE                 | ON when FPGA configuration is completed.                                                                                                            |
|         | D7            | INIT_B               | On when FPGA initialization is completed. OFF indicates that the FPGA is in reset or when there is a configuration error.                           |
| Display | D8            | mHOST_IRQ            | ON during master DLPC3437 boot. OFF when projector is running.<br>Indication of master DLPC3437 boot-up completed and ready to receive<br>commands. |
|         | D9            | sHOST_IRQ            | ON during slave DLPC3437 boot. OFF when projector is running.<br>Indication of slave DLPC3437 boot-up completed and ready to receive<br>commands.   |

| Table 0   |          | )   :==h+C==ft== | Diamles |  |
|-----------|----------|------------------|---------|--|
| i able z. | LEDS OII | LightCrafter     | Display |  |

# 3.1.2 Software

The software required for this reference design is available for download in the DLPDLCR3310EVM tool folder.

5



# 3.2 Testing and Results

The results of a successful test of this system is the appearance on the display of the splash screen, as shown in Figure 3.



Figure 3. DLP3310 System Splash Screen



# 4 Design Files

### 4.1 Schematics

To download the schematics, see the design files at TIDA-080000.

# 4.2 Bill of Materials

To download the bill of materials (BOM), see the design files at TIDA-080000.

# 4.3 PCB Layout Recommendations

The layout guidelines listed in this design guide are subsets of the guidelines included in the component data sheets. For more information, refer to the DLPC3437, DLP3310, and DLPA3000 data sheets.

### 4.3.1 DLPC3437 Layout Guidelines

#### 4.3.1.1 Internal ASIC PLL Power

The following guidelines are recommended to achieve desired ASIC performance relative to the internal PLL. Each DLPC3437 contains two internal PLLs, which have dedicated analog supplies (VDD\_PLLM, VSS\_PLLM, VDD\_PLLD, VSS\_PLLD). As a minimum, VDD\_PLLx power and VSS\_PLLx ground pins must be isolated using a simple passive filter consisting of two series ferrites and two shunt capacitors (to widen the spectrum of noise absorption). It is recommended that one capacitor be a 0.1- $\mu$ F capacitor and the other be a 0.01- $\mu$ F capacitor. Place all four components as close to the ASIC as possible; however, it is especially important to keep the leads of the high-frequency capacitors as short as possible. Note that both capacitors must be connected across VDD\_PLLM and VSS\_PLLM / VDD\_PLLD and VSS\_PLLD respectfully on the ASIC side of the ferrites.

For the ferrite beads used, their respective characteristics should be as follows:

- DC resistance less than 0.40  $\Omega$
- Impedance at 10 MHz equal to or greater than 180  $\Omega$
- Impedance at 100 MHz equal to or greater than 600  $\Omega$

The PCB layout is critical to PLL performance. It is vital that the quiet ground and power are treated like analog signals. Therefore, VDD\_PLLM and VDD\_PLLD must be a single trace from the DLPC3437 to both capacitors and then through the series ferrites to the power source. The power and ground traces should be as short as possible, parallel to each other, and as close as possible to each other.

7

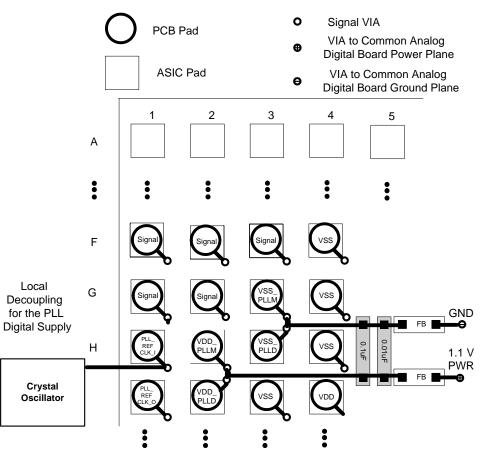



Figure 4. PLL Filter Layout

#### 4.3.1.2 *f*C Interface Performance

Both DLPC3437 I<sup>2</sup>C interface ports support a 100-kHz baud rate. By definition, I<sup>2</sup>C transactions operate at the speed of the slowest device on the bus, thus there is no requirement to match the speed grade of all devices in the system.

#### 4.3.1.3 DMD Interface Considerations

8

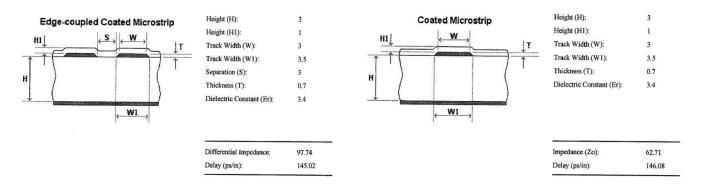
The sub-LVDS HS interface waveform quality and timing on the DLPC3437 ASIC is dependent on the total length of the interconnect system, the spacing between traces, the characteristic impedance, etch losses, and how well matched the lengths are across the interface. Thus, ensuring positive timing margin requires attention to many factors.

As an example, the DMD interface system timing margin can be calculated as follows:

Setup Margin = (DLPC343x output setup) – (DMD input setup) – (PCB routing mismatch) – (PCB SI degradation)

Hold-time Margin = (DLPC343x output hold) – (DMD input hold) – (PCB routing mismatch) – (PCB SI degradation)

where PCB SI degradation is signal integrity degradation due to PCB effects, which includes such things as simultaneously switching output (SSO) noise, crosstalk, and inter-symbol interference (ISI) noise. (2)


The DLPC3437 I/O timing parameters as well as the DMD I/O timing parameters can be found in their corresponding data sheets. Similarly, PCB routing mismatch can be budgeted and met through controlled PCB routing. However, PCB SI degradation is a more complicated adjustment.

(1)



9

In an attempt to minimize the signal integrity analysis that would otherwise be required, the following PCB design guidelines are provided as a reference of an interconnect system that satisfy both waveform quality and timing requirements (accounting for both PCB routing mismatch and PCB SI degradation). Variation from these recommendations can also work, but must be confirmed with PCB signal integrity analysis or lab measurements.



DMD\_HS Differential Signals

DMD\_LS Signals

Figure 5. DMD Interface Board Stack-Up Details



Design Files

#### 4.3.1.4 General Handling Guidelines for Unused CMOS-Type Pins

To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends to tie unused ASIC input pins through a pullup resistor to their associated power supply or a pulldown resistor to ground. For ASIC inputs with internal pullup or pulldown resistors, do not add an external pullup or pulldown resistor unless specifically recommended.

**NOTE:** Internal pullup and pulldown resistors are weak and must not be expected to drive the external line. The DLPC3437 device implements very few internal resistors, and these are noted in the pin list. When external pullup or pulldown resistors are needed for pins that have built-in weak pullups or pulldowns, use the value 8 kΩ (max).

Never tie unused output-only pins directly to power or ground. These pins can be left open.

When possible, TI recommends that unused bidirectional I/O pins be configured to their output state such that the pin can be left open. If this control is not available and the pins can become an input, then the pins must be pulled up (or pulled down) using an appropriate, dedicated resistor.

#### 4.3.1.5 Maximum Pin-to-Pin, PCB Interconnects Etch Lengths

|                                      | SIGNAL INTERCONNECT TOPOLOGY          |                                      |              |  |
|--------------------------------------|---------------------------------------|--------------------------------------|--------------|--|
| DMD BUS SIGNAL                       | SINGLE BOARD SIGNAL ROUTING<br>LENGTH | MULTI-BOARD SIGNAL ROUTING<br>LENGTH | UNIT         |  |
| DMD_HS_CLK_P<br>DMD_HS_CLK_N         | 6.0<br>152.4                          | See <sup>(3)</sup>                   | inch<br>(mm) |  |
| DMD_HS_WDATA_A_P<br>DMD_HS_WDATA_A_N |                                       |                                      |              |  |
| DMD_HS_WDATA_B_P<br>DMD_HS_WDATA_B_N |                                       |                                      |              |  |
| DMD_HS_WDATA_C_P<br>DMD_HS_WDATA_C_N |                                       |                                      |              |  |
| DMD_HS_WDATA_D_P<br>DMD_HS_WDATA_D_N | 6.0                                   | See <sup>(3)</sup>                   | inch         |  |
| DMD_HS_WDATA_E_P<br>DMD_HS_WDATA_E_N | 152.4                                 | See                                  | (mm)         |  |
| DMD_HS_WDATA_F_P<br>DMD_HS_WDATA_F_N |                                       |                                      |              |  |
| DMD_HS_WDATA_G_P<br>DMD_HS_WDATA_G_N |                                       |                                      |              |  |
| DMD_HS_WDATA_H_P<br>DMD_HS_WDATA_H_N |                                       |                                      |              |  |
| DMD_LS_CLK                           | 6.5<br>165.1                          | See <sup>(3)</sup>                   | inch<br>(mm) |  |
| DMD_LS_WDATA                         | 6.5<br>165.1                          | See <sup>(3)</sup>                   | inch<br>(mm) |  |
| DMD_LS_RDATA                         | 6.5<br>165.1                          | See <sup>(3)</sup>                   | inch<br>(mm) |  |
| DMD_DEN_ARSTZ                        | 7.0<br>177.8                          | See <sup>(3)</sup>                   | inch<br>(mm) |  |

#### Table 3. Max Pin-to-Pin PCB Interconnect Recommendations<sup>(1)(2)</sup>

<sup>(1)</sup> Maximum signal routing length includes escape routing.

<sup>(2)</sup> Multi-board DMD routing length is more restricted due to the impact of the connector.

<sup>(3)</sup> Due to board variations, these are impossible to define. Any board designs should be SPICE simulated with the ASIC IBIS models to ensure single routing lengths do not exceed requirements.

| www.ti.com |
|------------|
|------------|

| INTERFACE | SIGNAL GROUP                         | REFERENCE SIGNAL | MAX MISMATCH <sup>(5)</sup> | UNIT         |  |
|-----------|--------------------------------------|------------------|-----------------------------|--------------|--|
|           | DMD_HS_WDATA_A_P<br>DMD_HS_WDATA_A_N |                  |                             |              |  |
|           | DMD_HS_WDATA_B_P<br>DMD_HS_WDATA_B_N |                  |                             |              |  |
|           | DMD_HS_WDATA_C_P<br>DMD_HS_WDATA_C_N |                  |                             |              |  |
| DMD       | DMD_HS_WDATA_D_P<br>DMD_HS_WDATA_D_N | DMD_HS_CLK_P     | ±1.0                        | inch         |  |
| DMD       | DMD_HS_WDATA_E_P<br>DMD_HS_WDATA_E_N | DMD_HS_CLK_N     | (±25.4)                     | (mm)         |  |
|           | DMD_HS_WDATA_F_P<br>DMD_HS_WDATA_F_N |                  |                             |              |  |
|           | DMD_HS_WDATA_G_P<br>DMD_HS_WDATA_G_N |                  |                             |              |  |
|           | DMD_HS_WDATA_H_P<br>DMD_HS_WDATA_H_N |                  |                             |              |  |
| DMD       | DMD_HS_WDATA_x_P                     | DMD_HS_WDATA_x_N | ±0.025<br>(±0.635)          | inch<br>(mm) |  |
| DMD       | DMD_HS_CLK_P                         | DMD_HS_CLK_N     | ±0.025<br>(±0.635)          | inch<br>(mm) |  |
| DMD       | DMD_LS_WDATA<br>DMD_LS_RDATA         | DMD_LS_CLK       | ±0.2<br>(±5.08)             | inch<br>(mm) |  |
| DMD       | DMD_DEN_ARSTZ                        | N/A              | N/A                         | inch<br>(mm) |  |

Table 4. High-Speed PCB Signal Routing Matching Requirements<sup>(1)(2)(3)(4)</sup>

<sup>(1)</sup> These values apply to PCB routing only and do not include any internal package routing mismatch associated with the DLPC3437 or the DMD.

<sup>(2)</sup> DMD HS data lines are differential, thus these specifications are pair-to-pair.

<sup>(3)</sup> Training is applied to DMD HS data lines, so defined matching requirements are slightly relaxed.

<sup>(4)</sup> DMD LS signals are single-ended.

<sup>(5)</sup> Mismatch variance for a signal group is always with respect to reference signal.

#### 4.3.1.6 Number of Layer Changes

- Single-ended signals: Minimize the number of layer changes.
- Differential signals: Individual differential pairs can be routed on different layers, but the signals of a given pair must not change layers.

#### 4.3.1.7 Stubs

• Avoid stubs.

#### 4.3.1.8 Terminations

- No external termination resistors are required on DMD\_HS differential signals.
- The DMD\_LS\_CLK and DMD\_LS\_WDATA signal paths must include a 43-Ω series termination resistor located as close as possible to the corresponding ASIC pins.
- The DMD\_LS\_RDATA signal path must include a 43-Ω series termination resistor located as close as possible to the corresponding DMD pin.
- DMD\_DEN\_ARSTZ does not require a series resistor.

#### 4.3.1.9 Routing Vias

- Minimize the number of vias on DMD\_HS, DMD\_LS\_CLK, and DMD\_LS\_WDATA signals to not exceed two.
- Any and all vias on these signals must be located as close to the ASIC as possible.

# 4.3.2 DLPA3000 Layout Guidelines

#### 4.3.2.1 Layout Guidelines

For switching power supplies, the layout is an important step in the design process, especially when it concerns high-peak currents and high-switching frequencies. If the layout is not carefully done, the regulator could show stability issues and EMI problems. Therefore, it is recommended to use wide- and short-traces for high-current paths and for their return power ground paths. The input capacitor, output capacitor, and inductor must be placed as near as possible to the device. To minimize ground noise coupling between different buck converters, separate their grounds and connect them together at a central point under the part.

The high currents of the buck converters concentrate around pins  $V_{IN}$ , SWITCH, and  $P_{GND}$  (see Figure 6). The voltage at the pins  $V_{IN}$ ,  $P_{GND}$ , and FB are DC voltages while the pin SWITCH has a switching voltage between  $V_{IN}$  and  $P_{GND}$ . In case the FET between pins 52 and 53 is closed, the red line indicates the current flow while the blue line indicates the current flow when the FET between pins 53 and 54 is closed. These paths carry the highest currents and must be kept as short as possible.

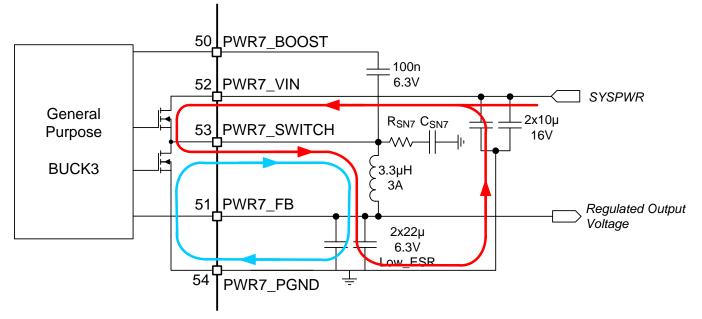



Figure 6. High AC Current Paths in a Buck Converter

The trace to the V<sub>IN</sub> pin carries high AC currents. Therefore, the trace must be low-resistive to prevent voltage drop across the trace. Additionally, the decoupling capacitors must be placed as near to the V<sub>IN</sub> pin as possible.

The SWITCH pin is connected alternatingly to the V<sub>IN</sub> or GND. This means a square wave voltage is present on the SWITCH pin with an amplitude of V<sub>IN</sub> and containing high frequencies. This condition can lead to EMI problems if not properly handled. To reduce EMI problems, a snubber network (RSN7 and CSN7) is placed at the SWITCH pin to prevent or suppress unwanted high-frequency ringing at the moment of switching.

The P<sub>GND</sub> pin sinks high current and must be connected to a star ground point such that it does not interfere with other ground connections.

The FB pin is the sense connection for the regulated output voltage, which is a DC voltage. No current is flowing through this pin. The voltage on the FB pin is compared with the internal reference voltage to control the loop. The FB connection must be made at the load such that the IR drop does not affect the sensed voltage.



#### 4.3.2.2 SPI Connections

The SPI consists of several digital lines and the SPI supply. If routing of the interface lines is not done properly, communication errors can occur. SPI lines must not pick up noise and keep possible interfering sources away from the interface.

Pickup of noise can be prevented by ensuring that the SPI ground line is routed together with the digital lines as much as possible to the respective pins. The SPI must be connected by a separate ground connection to the DGND of the DLPA3000 (see Figure 7). This prevents ground noise between SPI ground references of the DLPA3000 and DLPC due to the high current in the system.

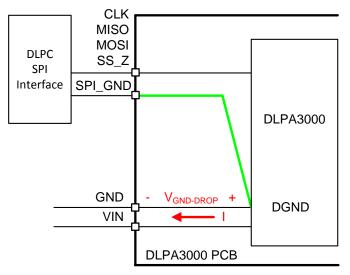



Figure 7. SPI Connections

Keep interfering sources away from the interface lines as much as possible. High-current lines such as neighboring PWR\_6 must especially be routed carefully. If PWR 6 is routed too close to SPI\_CLK, for example, it could lead to false clock pulses and thus communication errors.

# 4.3.2.3 R<sub>LM</sub> Routing

 $R_{\text{LIM}}$  is used to sense the LED current. To accurately measure the LED current, the RLIM\_K\_1,2 lines must be connected close to the top side of measurement resistor  $R_{\text{LIM}}$ , while RLIM\_BOT\_K\_1,2 must be connected close to the bottom side of  $R_{\text{LIM}}$ .

The switched LED current is running through  $R_{LIM}$ . Therefore, a low-ohmic ground connection for  $R_{LIM}$  is strongly advised.

# 4.3.2.4 LED Connection

Switched large currents are running through the wiring from the DLPA3000 to the LEDs. Therefore, special attention is needed. Two perspectives apply to the LED-to-DLPA3000 wiring:

- 1. The resistance of the wiring,  $R_{series}$ .
- 2. The inductance of the wiring,  $L_{series}$ .

Figure 8 shows the location of the parasitic series impedances.

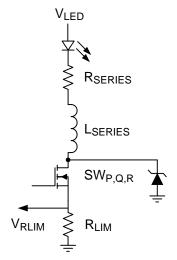



Figure 8. Parasitic Inductance (L<sub>series</sub>) and Resistance (R<sub>series</sub>) in Series With LED

Currents up to 6 A can run through the wires connecting the LEDs to the DLPA3000. Some noticeable dissipation can easily be caused. Every 10 m $\Omega$  of series resistance implies, for a 6-A average LED current, a parasitic power dissipation of 0.36 W. This dissipation can cause PCB heating, but more importantly, the overall system efficiency is deteriorated.

Additionally, the resistance of the wiring might impact the control dynamics of the LED current. The routing resistance is part of the LED current control loop. The LED current is controlled by  $V_{LED}$ . For a small change in  $V_{LED}$  ( $\Delta V_{LED}$ ), the resulting LED current variation ( $\Delta I_{LED}$ ) is given by the total differential resistance in that path:

$$\Delta I_{LED} = \frac{\Delta V_{LED}}{r_{LED} + R_{series} + R_{on \_SW \_P,Q,R} + R_{LIM}}$$

where

- r<sub>LED</sub> is the differential resistance of the LED
- R<sub>on SW P.Q.R</sub> is the on-resistance of the strobe decoder switch

(3)

This expression ignores  $L_{series}$  because realistic values are usually sufficiently low to cause any noticeable impact on the dynamics.

All the comprising differential resistances are in the range of 25 m $\Omega$  to several hundred millii-ohms. Without paying special attention, a series resistance of 100 m $\Omega$  can easily be obtained. It is advised to keep this series resistance sufficiently low (< 50 m $\Omega$  for example).

The series inductance plays an important role when considering the switched nature of the LED current. While cycling through R, G, and B LEDs, the current through these branches is turned on and turned off in short-time duration. Specifically, turnoff is fast. A current of 6 A goes to 0 A in a matter of 50 ns, which implies a voltage spike of about 1 V for every 10 nH of parasitic inductance. It is recommended to minimize the series inductance of the LED wiring by using:

- Short wires
- Thick wires or multiple parallel wires
- Small enclosed area of the forward and return current path

If the inductance cannot be made sufficiently low, use a Zener diode to clamp the drain voltage of the RGB switch, so that it does not surpass the absolute maximum rating. The clamping voltage needs to be chosen between the maximum expected  $V_{LED}$  and the absolute maximum rating. Take care of sufficient margin of the clamping voltage relative to the mentioned minimum and maximum voltage.



### 4.3.3 DMD Interface Layout Guidelines

The DMD is connected to a PCB or a Flex circuit using an interposer. For additional layout guidelines regarding length matching, impedance, etc. see the DLPC3437 controller datasheet.

**Design Files** 

Some layout guidelines for routing to the DMD are:

- Match lengths for the LS\_WDATA and LS\_CLK signals.
- Minimize vias, layer changes, and turns for the HS bus signals. Refer to Figure 9.
- Minimum of two 220-nF (35 V) capacitors one close to V<sub>BIAS</sub> pin. Capacitors C10 and C14 in Figure 9.
- Minimum of two 220-nF (35 V) capacitors one close to each V<sub>RST</sub> pin. Capacitors C11 and C13 in Figure 9.
- Minimum of two 220-nF (35 V) capacitors one close to each V<sub>OFS</sub> pin. Capacitors C4 and C12 in Figure 9.
- Minimum of four 220-nF (10 V) capacitors two close to each side of the DMD. Capacitors C1, C3, C2, and C5 in Figure 9.

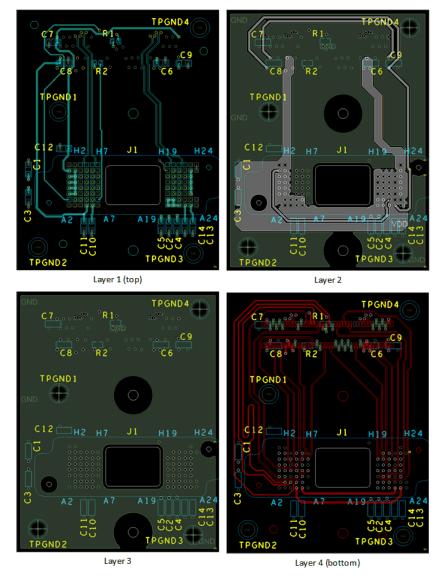



Figure 9. Power Supply Connections



#### 4.3.4 FPGA - DDR3L SDRAM Interface Layout Guidelines

The FPGA to DDR3L SDRAM interface is based on a 533-MHz DDR clock rate. The Xilinx Zynq FPGA (XC7Z020-1CLG484I4493) to a Micron low power DDR3 SDRAM (MT41K64M16TW-107 IT) interface diagram is shown in Figure 10 and the recommended interface layout guidelines are defined in Table 5.

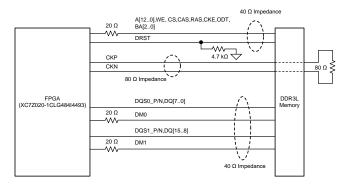



Figure 10. FPGA-DDR3L Interface

| Net Name               | Minimum Trace Delay<br>(ps) | Maximum Trace Delay<br>(ps) | Trace Impedance<br>(Ω) |
|------------------------|-----------------------------|-----------------------------|------------------------|
| DDR_A(12:0)            | 175                         | 225                         | 40                     |
| DDR_BA(2:0)            | 175                         | 225                         | 40                     |
| DDR_CAS_B              | 175                         | 225                         | 40                     |
| DDR_CKE                | 150                         | 175                         | 40                     |
| DDR_CS_B               | 175                         | 225                         | 40                     |
| DDR_DRST_B             | 175                         | 225                         | 40                     |
| DDR_ODT                | 175                         | 225                         | 40                     |
| DDR_RAS_B              | 175                         | 225                         | 40                     |
| DDR_WE_B               | 150                         | 175                         | 40                     |
| DDR_CK(P,N)            | 208                         | 212                         | 80 Differential        |
| DDR_DQS_P0, DDR_DQS_N0 | 180                         | 190                         | 40                     |
| DDR_DM0                | 180                         | 200                         | 40                     |
| DDR_DQ(7:0)            | 180                         | 200                         | 40                     |
| DDR_DQS_P1, DDR_DQS_N1 | 180                         | 190                         | 40                     |
| DDR_DM1                | 180                         | 200                         | 40                     |
| DDR_DQ(15:8)           | 180                         | 200                         | 40                     |

#### Table 5. Recommended FPGA-DDR3L PCB Trace Delays

Good PCB routing practices:

- Use inner PCB layers when possible.
- Route DDR\_DQ(7:0), DDR\_DM0 and DDR\_DQS\_(P,N)0 on the same layer(s).
- Route DDR\_DQ(15:8), DDR\_DM1 and DDR\_DQS\_(P,N)1 on the same layer(s).
- DDR\_DQS\_P0/N0 should have equal delays.
- DDR\_DQS\_P1/N1 should have equal delays.



# 4.3.5 Layout Prints

To download the layer plots, see the design files in the TIDA-080000 folder.

# 4.4 Cadence Project

To download the Cadence project files, see the design files in the TIDA-080000 folder.

# 4.5 Gerber Files

To download the Gerber files, see the design files in the TIDA-080000 folder.

# 4.6 Assembly Drawings

To download the assembly drawings, see the design files in the TIDA-080000 folder.

# 5 Software Files

To download the software files, see the design files in the TIDA-080000 folder.

# 6 Related Documentation

- 1. Texas Instruments, *TI DLP*® *LightCrafter™ Display* 3310 EVM User's Guide
- 2. Texas Instruments, DLPC3437 Software Programmer's Guide
- 3. Texas Instruments, DLPC3437 Display Controller Data Sheet
- 4. Texas Instruments, DLP3310 0.33 1080p DMD Data Sheet
- 5. Texas Instruments, DLPA3000 PMIC and High-Current LED Driver IC Data Sheet

# 6.1 Trademarks

LightCrafter, E2E are trademarks of Texas Instruments. DLP is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

# 7 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

Design Files

#### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated