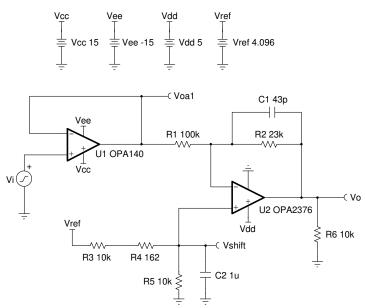
Analog Engineer's Circuit Inverting Dual-Supply to Single-Supply Amplifier Circuit



Design Goals

Input		Output		Supply			
V _{iMin}	V _{iMax}	V _{oMin}	V _{oMax}	V _{cc}	V _{ee}	V _{dd}	V _{ref}
–10 V	+10 V	+0.2 V	+4.8 V	+15 V	–15 V	+5 V	+4.096 V

Design Description

This inverting dual-supply to single-supply amplifier translates a ± 10 V signal to a 0 V to 5 V signal for use with an ADC. Levels can easily be adjusted using the given equations. The buffer can be replaced with other ± 15 V configurations to accommodate the desired input signal, as long as the output of the first stage is low impedance.

Design Notes

- 1. Observe common-mode limitations of the input buffer.
- 2. A high-impedance source will alter the gain characteristics of U₂ if buffer amplifier U1 is not used.
- 3. R₆ provides a path to ground for the output of U₁ if the ±15 V supplies come up before the 5 V supply. This limits the voltage at the inverting pin of U₂ through the voltage divider created by R₁, R₂, and R₆ and prevents damage to U₂ as well as to any converter that may be connected to its output. To best protect the devices a transient voltage suppressor (TVS) should be used at the power pins of U₂.
- 4. A capacitor across R_5 will help filter V_{ref} and provide a cleaner V_{shift} .

Design Steps

The transfer function for this circuit follows:

$$V_{o} = -\frac{R_{2}}{R_{1}} \times V_{i} + \left(1 + \frac{R_{2}}{R_{1}}\right) \times V_{shift}$$

1. Set the gain of the amplifier.

$$\begin{split} &\frac{\Delta V_{o}}{\Delta V_{i}}=\frac{V_{o}Max-V_{o}Min}{V_{i}Max-V_{i}Min}=\frac{4.8\,V-0.2\,V}{10\,V-(-10\,V)}=0.23\\ &\frac{\Delta V_{o}}{\Delta V_{i}}=\frac{R_{2}}{R_{1}}\\ &R_{2}=0.23\times R_{1}\\ &\text{Choose}\quad R_{1}=100k\Omega \quad (standard \ value) \end{split}$$

 $R_2=23k\Omega$ (for standard values use $22k\Omega$ and $1k\Omega$ in series)

2. Set V_{shift} to translate the signal to single supply.

At midscale, $V_{in} = 0V$

Then
$$V_o = \left(1 + \frac{R_2}{R_1}\right) \times V_{shift}$$

$$V_{\text{shift}} = \frac{V_0}{\left(1 + \frac{R_2}{R_1}\right)} = \frac{2.5V}{1.23} = 2.033V$$

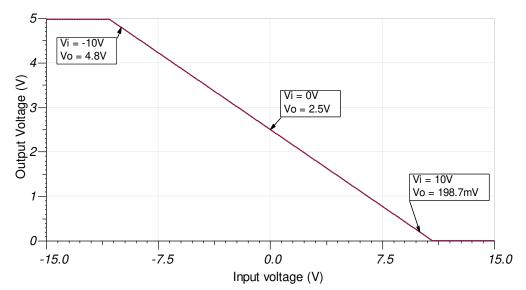
3. Select resistors for reference voltage divider to achieve V_{shift} .

$$V_{\rm ref} = 4.096V$$

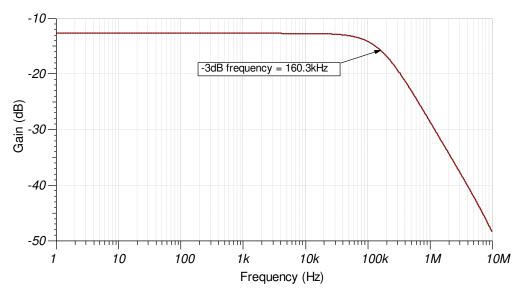
$$\begin{split} V_{shift} &= V_{ref} \times \frac{R_5}{(R_3 + R_4) + R_5} \\ \frac{V_{shift}}{V_{ref}} &= \frac{2.033V}{4.096V} = \frac{R_5}{(R_3 + R_4) + R_5} \\ R_3 + R_4 &= 1.0161 \times R_5 \\ Select \ a \ standard \ value \ for \ R_5 \\ R_5 &= 10k\Omega \\ R_3 + R_4 &= 10.161k\Omega \\ R_3 &= 10k\Omega \end{split}$$

 $R_4 = 162\Omega$ (standard 1% value)

4. Large feedback resistors can interact with the input capacitance and cause instability. Choose C₁ to add a pole to the transfer function to counteract this. The pole must be lower in frequency than the effective bandwidth of the op amp.

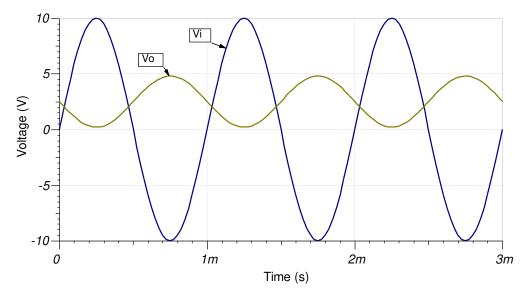

$$C_1 = 43 pF$$

 $f_p = \frac{1}{2\pi \times R_2 \times C_1} = 160.3 \text{kHz}$



Design Simulations

DC Simulation Results



Transient Simulation Results

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See TINA-TI[™] circuit simulation file, SBOMAT9.

See TIPD148.

Design Featured Op Amp

OPA376				
V _{ss}	2.2 V to 5.5 V			
V _{inCM}	V _{ee} to V _{cc} -1.3 V			
V _{out}	Rail-to-rail			
V _{os}	5 µV			
Ι _q	760 µA/Ch			
۱ _b	0.2 pA			
UGBW	5.5 MHz			
SR	2 V/µs			
#Channels	1, 2, and 4			
OP	A376			

Design Featured Op Amp

OPA140				
V _{ss}	4.5 V to 36 V			
V _{inCM}	$\rm V_{ee}\text{-}0.1~V$ to $\rm V_{cc}\text{-}3.5~V$			
V _{out}	Rail-to-rail			
V _{os}	30 µV			
Ιq	1.8 mA/Ch			
I _b	±0.5 pA			
UGBW	11 MHz			
SR	20 V/µs			
#Channels	1, 2, and 4			
OPA140				

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated